linux/drivers/leds/blink/leds-lgm-sso.c

889 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Intel Lightning Mountain SoC LED Serial Shift Output Controller driver
*
* Copyright (c) 2020 Intel Corporation.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/leds.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/sizes.h>
#include <linux/uaccess.h>
#define SSO_DEV_NAME "lgm-sso"
#define LED_BLINK_H8_0 0x0
#define LED_BLINK_H8_1 0x4
#define GET_FREQ_OFFSET(pin, src) (((pin) * 6) + ((src) * 2))
#define GET_SRC_OFFSET(pinc) (((pin) * 6) + 4)
#define DUTY_CYCLE(x) (0x8 + ((x) * 4))
#define SSO_CON0 0x2B0
#define SSO_CON0_RZFL BIT(26)
#define SSO_CON0_BLINK_R BIT(30)
#define SSO_CON0_SWU BIT(31)
#define SSO_CON1 0x2B4
#define SSO_CON1_FCDSC GENMASK(21, 20) /* Fixed Divider Shift Clock */
#define SSO_CON1_FPID GENMASK(24, 23)
#define SSO_CON1_GPTD GENMASK(26, 25)
#define SSO_CON1_US GENMASK(31, 30)
#define SSO_CPU 0x2B8
#define SSO_CON2 0x2C4
#define SSO_CON3 0x2C8
/* Driver MACRO */
#define MAX_PIN_NUM_PER_BANK SZ_32
#define MAX_GROUP_NUM SZ_4
#define PINS_PER_GROUP SZ_8
#define FPID_FREQ_RANK_MAX SZ_4
#define SSO_LED_MAX_NUM SZ_32
#define MAX_FREQ_RANK 10
#define DEF_GPTC_CLK_RATE 200000000
#define SSO_DEF_BRIGHTNESS LED_HALF
#define DATA_CLK_EDGE 0 /* 0-rising, 1-falling */
static const u32 freq_div_tbl[] = {4000, 2000, 1000, 800};
static const int freq_tbl[] = {2, 4, 8, 10, 50000, 100000, 200000, 250000};
static const int shift_clk_freq_tbl[] = {25000000, 12500000, 6250000, 3125000};
/*
* Update Source to update the SOUTs
* SW - Software has to update the SWU bit
* GPTC - General Purpose timer is used as clock source
* FPID - Divided FSC clock (FPID) is used as clock source
*/
enum {
US_SW = 0,
US_GPTC = 1,
US_FPID = 2
};
enum {
MAX_FPID_FREQ_RANK = 5, /* 1 to 4 */
MAX_GPTC_FREQ_RANK = 9, /* 5 to 8 */
MAX_GPTC_HS_FREQ_RANK = 10, /* 9 to 10 */
};
enum {
LED_GRP0_PIN_MAX = 24,
LED_GRP1_PIN_MAX = 29,
LED_GRP2_PIN_MAX = 32,
};
enum {
LED_GRP0_0_23,
LED_GRP1_24_28,
LED_GRP2_29_31,
LED_GROUP_MAX,
};
enum {
CLK_SRC_FPID = 0,
CLK_SRC_GPTC = 1,
CLK_SRC_GPTC_HS = 2,
};
struct sso_led_priv;
struct sso_led_desc {
const char *name;
const char *default_trigger;
unsigned int brightness;
unsigned int blink_rate;
unsigned int retain_state_suspended:1;
unsigned int retain_state_shutdown:1;
unsigned int panic_indicator:1;
unsigned int hw_blink:1;
unsigned int hw_trig:1;
unsigned int blinking:1;
int freq_idx;
u32 pin;
};
struct sso_led {
struct list_head list;
struct led_classdev cdev;
struct gpio_desc *gpiod;
struct sso_led_desc desc;
struct sso_led_priv *priv;
};
struct sso_gpio {
struct gpio_chip chip;
int shift_clk_freq;
int edge;
int freq;
u32 pins;
u32 alloc_bitmap;
};
struct sso_led_priv {
struct regmap *mmap;
struct device *dev;
struct platform_device *pdev;
struct clk *gclk;
struct clk *fpid_clk;
u32 fpid_clkrate;
u32 gptc_clkrate;
u32 freq[MAX_FREQ_RANK];
struct list_head led_list;
struct sso_gpio gpio;
};
static int sso_get_blink_rate_idx(struct sso_led_priv *priv, u32 rate)
{
int i;
for (i = 0; i < MAX_FREQ_RANK; i++) {
if (rate <= priv->freq[i])
return i;
}
return -1;
}
static unsigned int sso_led_pin_to_group(u32 pin)
{
if (pin < LED_GRP0_PIN_MAX)
return LED_GRP0_0_23;
else if (pin < LED_GRP1_PIN_MAX)
return LED_GRP1_24_28;
else
return LED_GRP2_29_31;
}
static u32 sso_led_get_freq_src(int freq_idx)
{
if (freq_idx < MAX_FPID_FREQ_RANK)
return CLK_SRC_FPID;
else if (freq_idx < MAX_GPTC_FREQ_RANK)
return CLK_SRC_GPTC;
else
return CLK_SRC_GPTC_HS;
}
static u32 sso_led_pin_blink_off(u32 pin, unsigned int group)
{
if (group == LED_GRP2_29_31)
return pin - LED_GRP1_PIN_MAX;
else if (group == LED_GRP1_24_28)
return pin - LED_GRP0_PIN_MAX;
else /* led 0 - 23 in led 32 location */
return SSO_LED_MAX_NUM - LED_GRP1_PIN_MAX;
}
static struct sso_led
*cdev_to_sso_led_data(struct led_classdev *led_cdev)
{
return container_of(led_cdev, struct sso_led, cdev);
}
static void sso_led_freq_set(struct sso_led_priv *priv, u32 pin, int freq_idx)
{
u32 reg, off, freq_src, val_freq;
u32 low, high, val;
unsigned int group;
if (!freq_idx)
return;
group = sso_led_pin_to_group(pin);
freq_src = sso_led_get_freq_src(freq_idx);
off = sso_led_pin_blink_off(pin, group);
if (group == LED_GRP0_0_23)
return;
else if (group == LED_GRP1_24_28)
reg = LED_BLINK_H8_0;
else
reg = LED_BLINK_H8_1;
if (freq_src == CLK_SRC_FPID)
val_freq = freq_idx - 1;
else if (freq_src == CLK_SRC_GPTC)
val_freq = freq_idx - MAX_FPID_FREQ_RANK;
/* set blink rate idx */
if (freq_src != CLK_SRC_GPTC_HS) {
low = GET_FREQ_OFFSET(off, freq_src);
high = low + 2;
val = val_freq << high;
regmap_update_bits(priv->mmap, reg, GENMASK(high, low), val);
}
/* select clock source */
low = GET_SRC_OFFSET(off);
high = low + 2;
val = freq_src << high;
regmap_update_bits(priv->mmap, reg, GENMASK(high, low), val);
}
static void sso_led_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct sso_led_priv *priv;
struct sso_led_desc *desc;
struct sso_led *led;
int val;
led = cdev_to_sso_led_data(led_cdev);
priv = led->priv;
desc = &led->desc;
desc->brightness = brightness;
regmap_write(priv->mmap, DUTY_CYCLE(desc->pin), brightness);
if (brightness == LED_OFF)
val = 0;
else
val = 1;
/* HW blink off */
if (desc->hw_blink && !val && desc->blinking) {
desc->blinking = 0;
regmap_update_bits(priv->mmap, SSO_CON2, BIT(desc->pin), 0);
} else if (desc->hw_blink && val && !desc->blinking) {
desc->blinking = 1;
regmap_update_bits(priv->mmap, SSO_CON2, BIT(desc->pin),
1 << desc->pin);
}
if (!desc->hw_trig && led->gpiod)
gpiod_set_value(led->gpiod, val);
}
static enum led_brightness sso_led_brightness_get(struct led_classdev *led_cdev)
{
struct sso_led *led = cdev_to_sso_led_data(led_cdev);
return (enum led_brightness)led->desc.brightness;
}
static int
delay_to_freq_idx(struct sso_led *led, unsigned long *delay_on,
unsigned long *delay_off)
{
struct sso_led_priv *priv = led->priv;
unsigned long delay;
int freq_idx;
u32 freq;
if (!*delay_on && !*delay_off) {
*delay_on = *delay_off = (1000 / priv->freq[0]) / 2;
return 0;
}
delay = *delay_on + *delay_off;
freq = 1000 / delay;
freq_idx = sso_get_blink_rate_idx(priv, freq);
if (freq_idx == -1)
freq_idx = MAX_FREQ_RANK - 1;
delay = 1000 / priv->freq[freq_idx];
*delay_on = *delay_off = delay / 2;
if (!*delay_on)
*delay_on = *delay_off = 1;
return freq_idx;
}
static int
sso_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on,
unsigned long *delay_off)
{
struct sso_led_priv *priv;
struct sso_led *led;
int freq_idx;
led = cdev_to_sso_led_data(led_cdev);
priv = led->priv;
freq_idx = delay_to_freq_idx(led, delay_on, delay_off);
sso_led_freq_set(priv, led->desc.pin, freq_idx);
regmap_update_bits(priv->mmap, SSO_CON2, BIT(led->desc.pin),
1 << led->desc.pin);
led->desc.freq_idx = freq_idx;
led->desc.blink_rate = priv->freq[freq_idx];
led->desc.blinking = 1;
return 1;
}
static void sso_led_hw_cfg(struct sso_led_priv *priv, struct sso_led *led)
{
struct sso_led_desc *desc = &led->desc;
/* set freq */
if (desc->hw_blink) {
sso_led_freq_set(priv, desc->pin, desc->freq_idx);
regmap_update_bits(priv->mmap, SSO_CON2, BIT(desc->pin),
1 << desc->pin);
}
if (desc->hw_trig)
regmap_update_bits(priv->mmap, SSO_CON3, BIT(desc->pin),
1 << desc->pin);
/* set brightness */
regmap_write(priv->mmap, DUTY_CYCLE(desc->pin), desc->brightness);
/* enable output */
if (!desc->hw_trig && desc->brightness)
gpiod_set_value(led->gpiod, 1);
}
static int sso_create_led(struct sso_led_priv *priv, struct sso_led *led,
struct fwnode_handle *child)
{
struct sso_led_desc *desc = &led->desc;
struct led_init_data init_data;
int err;
init_data.fwnode = child;
init_data.devicename = SSO_DEV_NAME;
init_data.default_label = ":";
led->cdev.default_trigger = desc->default_trigger;
led->cdev.brightness_set = sso_led_brightness_set;
led->cdev.brightness_get = sso_led_brightness_get;
led->cdev.brightness = desc->brightness;
led->cdev.max_brightness = LED_FULL;
if (desc->retain_state_shutdown)
led->cdev.flags |= LED_RETAIN_AT_SHUTDOWN;
if (desc->retain_state_suspended)
led->cdev.flags |= LED_CORE_SUSPENDRESUME;
if (desc->panic_indicator)
led->cdev.flags |= LED_PANIC_INDICATOR;
if (desc->hw_blink)
led->cdev.blink_set = sso_led_blink_set;
sso_led_hw_cfg(priv, led);
err = devm_led_classdev_register_ext(priv->dev, &led->cdev, &init_data);
if (err)
return err;
list_add(&led->list, &priv->led_list);
return 0;
}
static void sso_init_freq(struct sso_led_priv *priv)
{
int i;
priv->freq[0] = 0;
for (i = 1; i < MAX_FREQ_RANK; i++) {
if (i < MAX_FPID_FREQ_RANK) {
priv->freq[i] = priv->fpid_clkrate / freq_div_tbl[i - 1];
} else if (i < MAX_GPTC_FREQ_RANK) {
priv->freq[i] = priv->gptc_clkrate /
freq_div_tbl[i - MAX_FPID_FREQ_RANK];
} else if (i < MAX_GPTC_HS_FREQ_RANK) {
priv->freq[i] = priv->gptc_clkrate;
}
}
}
static int sso_gpio_request(struct gpio_chip *chip, unsigned int offset)
{
struct sso_led_priv *priv = gpiochip_get_data(chip);
if (priv->gpio.alloc_bitmap & BIT(offset))
return -EINVAL;
priv->gpio.alloc_bitmap |= BIT(offset);
regmap_write(priv->mmap, DUTY_CYCLE(offset), 0xFF);
return 0;
}
static void sso_gpio_free(struct gpio_chip *chip, unsigned int offset)
{
struct sso_led_priv *priv = gpiochip_get_data(chip);
priv->gpio.alloc_bitmap &= ~BIT(offset);
regmap_write(priv->mmap, DUTY_CYCLE(offset), 0x0);
}
static int sso_gpio_get_dir(struct gpio_chip *chip, unsigned int offset)
{
return GPIOF_DIR_OUT;
}
static int
sso_gpio_dir_out(struct gpio_chip *chip, unsigned int offset, int value)
{
struct sso_led_priv *priv = gpiochip_get_data(chip);
bool bit = !!value;
regmap_update_bits(priv->mmap, SSO_CPU, BIT(offset), bit << offset);
if (!priv->gpio.freq)
regmap_update_bits(priv->mmap, SSO_CON0, SSO_CON0_SWU,
SSO_CON0_SWU);
return 0;
}
static int sso_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
struct sso_led_priv *priv = gpiochip_get_data(chip);
u32 reg_val;
regmap_read(priv->mmap, SSO_CPU, &reg_val);
return !!(reg_val & BIT(offset));
}
static void sso_gpio_set(struct gpio_chip *chip, unsigned int offset, int value)
{
struct sso_led_priv *priv = gpiochip_get_data(chip);
regmap_update_bits(priv->mmap, SSO_CPU, BIT(offset), value << offset);
if (!priv->gpio.freq)
regmap_update_bits(priv->mmap, SSO_CON0, SSO_CON0_SWU,
SSO_CON0_SWU);
}
static int sso_gpio_gc_init(struct device *dev, struct sso_led_priv *priv)
{
struct gpio_chip *gc = &priv->gpio.chip;
gc->request = sso_gpio_request;
gc->free = sso_gpio_free;
gc->get_direction = sso_gpio_get_dir;
gc->direction_output = sso_gpio_dir_out;
gc->get = sso_gpio_get;
gc->set = sso_gpio_set;
gc->label = "lgm-sso";
gc->base = -1;
/* To exclude pins from control, use "gpio-reserved-ranges" */
gc->ngpio = priv->gpio.pins;
gc->parent = dev;
gc->owner = THIS_MODULE;
gc->of_node = dev->of_node;
return devm_gpiochip_add_data(dev, gc, priv);
}
static int sso_gpio_get_freq_idx(int freq)
{
int idx;
for (idx = 0; idx < ARRAY_SIZE(freq_tbl); idx++) {
if (freq <= freq_tbl[idx])
return idx;
}
return -1;
}
static void sso_register_shift_clk(struct sso_led_priv *priv)
{
int idx, size = ARRAY_SIZE(shift_clk_freq_tbl);
u32 val = 0;
for (idx = 0; idx < size; idx++) {
if (shift_clk_freq_tbl[idx] <= priv->gpio.shift_clk_freq) {
val = idx;
break;
}
}
if (idx == size)
dev_warn(priv->dev, "%s: Invalid freq %d\n",
__func__, priv->gpio.shift_clk_freq);
regmap_update_bits(priv->mmap, SSO_CON1, SSO_CON1_FCDSC,
FIELD_PREP(SSO_CON1_FCDSC, val));
}
static int sso_gpio_freq_set(struct sso_led_priv *priv)
{
int freq_idx;
u32 val;
freq_idx = sso_gpio_get_freq_idx(priv->gpio.freq);
if (freq_idx == -1)
freq_idx = ARRAY_SIZE(freq_tbl) - 1;
val = freq_idx % FPID_FREQ_RANK_MAX;
if (!priv->gpio.freq) {
regmap_update_bits(priv->mmap, SSO_CON0, SSO_CON0_BLINK_R, 0);
regmap_update_bits(priv->mmap, SSO_CON1, SSO_CON1_US,
FIELD_PREP(SSO_CON1_US, US_SW));
} else if (freq_idx < FPID_FREQ_RANK_MAX) {
regmap_update_bits(priv->mmap, SSO_CON0, SSO_CON0_BLINK_R,
SSO_CON0_BLINK_R);
regmap_update_bits(priv->mmap, SSO_CON1, SSO_CON1_US,
FIELD_PREP(SSO_CON1_US, US_FPID));
regmap_update_bits(priv->mmap, SSO_CON1, SSO_CON1_FPID,
FIELD_PREP(SSO_CON1_FPID, val));
} else {
regmap_update_bits(priv->mmap, SSO_CON0, SSO_CON0_BLINK_R,
SSO_CON0_BLINK_R);
regmap_update_bits(priv->mmap, SSO_CON1, SSO_CON1_US,
FIELD_PREP(SSO_CON1_US, US_GPTC));
regmap_update_bits(priv->mmap, SSO_CON1, SSO_CON1_GPTD,
FIELD_PREP(SSO_CON1_GPTD, val));
}
return 0;
}
static int sso_gpio_hw_init(struct sso_led_priv *priv)
{
u32 activate;
int i, err;
/* Clear all duty cycles */
for (i = 0; i < priv->gpio.pins; i++) {
err = regmap_write(priv->mmap, DUTY_CYCLE(i), 0);
if (err)
return err;
}
/* 4 groups for total 32 pins */
for (i = 1; i <= MAX_GROUP_NUM; i++) {
activate = !!(i * PINS_PER_GROUP <= priv->gpio.pins ||
priv->gpio.pins > (i - 1) * PINS_PER_GROUP);
err = regmap_update_bits(priv->mmap, SSO_CON1, BIT(i - 1),
activate << (i - 1));
if (err)
return err;
}
/* NO HW directly controlled pin by default */
err = regmap_write(priv->mmap, SSO_CON3, 0);
if (err)
return err;
/* NO BLINK for all pins */
err = regmap_write(priv->mmap, SSO_CON2, 0);
if (err)
return err;
/* OUTPUT 0 by default */
err = regmap_write(priv->mmap, SSO_CPU, 0);
if (err)
return err;
/* update edge */
err = regmap_update_bits(priv->mmap, SSO_CON0, SSO_CON0_RZFL,
FIELD_PREP(SSO_CON0_RZFL, priv->gpio.edge));
if (err)
return err;
/* Set GPIO update rate */
sso_gpio_freq_set(priv);
/* Register shift clock */
sso_register_shift_clk(priv);
return 0;
}
static void sso_led_shutdown(struct sso_led *led)
{
struct sso_led_priv *priv = led->priv;
/* unregister led */
devm_led_classdev_unregister(priv->dev, &led->cdev);
/* clear HW control bit */
if (led->desc.hw_trig)
regmap_update_bits(priv->mmap, SSO_CON3, BIT(led->desc.pin), 0);
if (led->gpiod)
devm_gpiod_put(priv->dev, led->gpiod);
led->priv = NULL;
}
static int
__sso_led_dt_parse(struct sso_led_priv *priv, struct fwnode_handle *fw_ssoled)
{
struct fwnode_handle *fwnode_child;
struct device *dev = priv->dev;
struct sso_led_desc *desc;
struct sso_led *led;
struct list_head *p;
const char *tmp;
u32 prop;
int ret;
fwnode_for_each_child_node(fw_ssoled, fwnode_child) {
led = devm_kzalloc(dev, sizeof(*led), GFP_KERNEL);
if (!led)
return -ENOMEM;
INIT_LIST_HEAD(&led->list);
led->priv = priv;
desc = &led->desc;
led->gpiod = devm_fwnode_get_gpiod_from_child(dev, NULL,
fwnode_child,
GPIOD_ASIS, NULL);
if (IS_ERR(led->gpiod)) {
dev_err(dev, "led: get gpio fail!\n");
goto __dt_err;
}
fwnode_property_read_string(fwnode_child,
"linux,default-trigger",
&desc->default_trigger);
if (fwnode_property_present(fwnode_child,
"retain-state-suspended"))
desc->retain_state_suspended = 1;
if (fwnode_property_present(fwnode_child,
"retain-state-shutdown"))
desc->retain_state_shutdown = 1;
if (fwnode_property_present(fwnode_child, "panic-indicator"))
desc->panic_indicator = 1;
ret = fwnode_property_read_u32(fwnode_child, "reg", &prop);
if (ret != 0 || prop >= SSO_LED_MAX_NUM) {
dev_err(dev, "invalid LED pin:%u\n", prop);
goto __dt_err;
}
desc->pin = prop;
if (fwnode_property_present(fwnode_child, "intel,sso-hw-blink"))
desc->hw_blink = 1;
desc->hw_trig = fwnode_property_read_bool(fwnode_child,
"intel,sso-hw-trigger");
if (desc->hw_trig) {
desc->default_trigger = NULL;
desc->retain_state_shutdown = 0;
desc->retain_state_suspended = 0;
desc->panic_indicator = 0;
desc->hw_blink = 0;
}
if (fwnode_property_read_u32(fwnode_child,
"intel,sso-blink-rate-hz", &prop)) {
/* default first freq rate */
desc->freq_idx = 0;
desc->blink_rate = priv->freq[desc->freq_idx];
} else {
desc->freq_idx = sso_get_blink_rate_idx(priv, prop);
if (desc->freq_idx == -1)
desc->freq_idx = MAX_FREQ_RANK - 1;
desc->blink_rate = priv->freq[desc->freq_idx];
}
if (!fwnode_property_read_string(fwnode_child, "default-state", &tmp)) {
if (!strcmp(tmp, "on"))
desc->brightness = LED_FULL;
}
if (sso_create_led(priv, led, fwnode_child))
goto __dt_err;
}
fwnode_handle_put(fw_ssoled);
return 0;
__dt_err:
fwnode_handle_put(fw_ssoled);
/* unregister leds */
list_for_each(p, &priv->led_list) {
led = list_entry(p, struct sso_led, list);
sso_led_shutdown(led);
}
return -EINVAL;
}
static int sso_led_dt_parse(struct sso_led_priv *priv)
{
struct fwnode_handle *fwnode = dev_fwnode(priv->dev);
struct fwnode_handle *fw_ssoled;
struct device *dev = priv->dev;
int count;
int ret;
count = device_get_child_node_count(dev);
if (!count)
return 0;
fw_ssoled = fwnode_get_named_child_node(fwnode, "ssoled");
if (fw_ssoled) {
ret = __sso_led_dt_parse(priv, fw_ssoled);
if (ret)
return ret;
}
return 0;
}
static int sso_probe_gpios(struct sso_led_priv *priv)
{
struct device *dev = priv->dev;
int ret;
if (device_property_read_u32(dev, "ngpios", &priv->gpio.pins))
priv->gpio.pins = MAX_PIN_NUM_PER_BANK;
if (priv->gpio.pins > MAX_PIN_NUM_PER_BANK)
return -EINVAL;
if (device_property_read_u32(dev, "intel,sso-update-rate-hz",
&priv->gpio.freq))
priv->gpio.freq = 0;
priv->gpio.edge = DATA_CLK_EDGE;
priv->gpio.shift_clk_freq = -1;
ret = sso_gpio_hw_init(priv);
if (ret)
return ret;
return sso_gpio_gc_init(dev, priv);
}
static void sso_clk_disable(void *data)
{
struct sso_led_priv *priv = data;
clk_disable_unprepare(priv->fpid_clk);
clk_disable_unprepare(priv->gclk);
}
static int intel_sso_led_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sso_led_priv *priv;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->pdev = pdev;
priv->dev = dev;
/* gate clock */
priv->gclk = devm_clk_get(dev, "sso");
if (IS_ERR(priv->gclk)) {
dev_err(dev, "get sso gate clock failed!\n");
return PTR_ERR(priv->gclk);
}
ret = clk_prepare_enable(priv->gclk);
if (ret) {
dev_err(dev, "Failed to prepate/enable sso gate clock!\n");
return ret;
}
priv->fpid_clk = devm_clk_get(dev, "fpid");
if (IS_ERR(priv->fpid_clk)) {
dev_err(dev, "Failed to get fpid clock!\n");
return PTR_ERR(priv->fpid_clk);
}
ret = clk_prepare_enable(priv->fpid_clk);
if (ret) {
dev_err(dev, "Failed to prepare/enable fpid clock!\n");
return ret;
}
priv->fpid_clkrate = clk_get_rate(priv->fpid_clk);
ret = devm_add_action_or_reset(dev, sso_clk_disable, priv);
if (ret) {
dev_err(dev, "Failed to devm_add_action_or_reset, %d\n", ret);
return ret;
}
priv->mmap = syscon_node_to_regmap(dev->of_node);
if (IS_ERR(priv->mmap)) {
dev_err(dev, "Failed to map iomem!\n");
return PTR_ERR(priv->mmap);
}
ret = sso_probe_gpios(priv);
if (ret) {
regmap_exit(priv->mmap);
return ret;
}
INIT_LIST_HEAD(&priv->led_list);
platform_set_drvdata(pdev, priv);
sso_init_freq(priv);
priv->gptc_clkrate = DEF_GPTC_CLK_RATE;
ret = sso_led_dt_parse(priv);
if (ret) {
regmap_exit(priv->mmap);
return ret;
}
dev_info(priv->dev, "sso LED init success!\n");
return 0;
}
static int intel_sso_led_remove(struct platform_device *pdev)
{
struct sso_led_priv *priv;
struct list_head *pos, *n;
struct sso_led *led;
priv = platform_get_drvdata(pdev);
list_for_each_safe(pos, n, &priv->led_list) {
list_del(pos);
led = list_entry(pos, struct sso_led, list);
sso_led_shutdown(led);
}
clk_disable_unprepare(priv->fpid_clk);
clk_disable_unprepare(priv->gclk);
regmap_exit(priv->mmap);
return 0;
}
static const struct of_device_id of_sso_led_match[] = {
{ .compatible = "intel,lgm-ssoled" },
{}
};
MODULE_DEVICE_TABLE(of, of_sso_led_match);
static struct platform_driver intel_sso_led_driver = {
.probe = intel_sso_led_probe,
.remove = intel_sso_led_remove,
.driver = {
.name = "lgm-ssoled",
.of_match_table = of_match_ptr(of_sso_led_match),
},
};
module_platform_driver(intel_sso_led_driver);
MODULE_DESCRIPTION("Intel SSO LED/GPIO driver");
MODULE_LICENSE("GPL v2");