linux/drivers/media/v4l2-core/v4l2-dv-timings.c

1135 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* v4l2-dv-timings - dv-timings helper functions
*
* Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/rational.h>
#include <linux/videodev2.h>
#include <linux/v4l2-dv-timings.h>
#include <media/v4l2-dv-timings.h>
#include <linux/math64.h>
#include <linux/hdmi.h>
#include <media/cec.h>
MODULE_AUTHOR("Hans Verkuil");
MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
MODULE_LICENSE("GPL");
const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
V4L2_DV_BT_CEA_640X480P59_94,
V4L2_DV_BT_CEA_720X480I59_94,
V4L2_DV_BT_CEA_720X480P59_94,
V4L2_DV_BT_CEA_720X576I50,
V4L2_DV_BT_CEA_720X576P50,
V4L2_DV_BT_CEA_1280X720P24,
V4L2_DV_BT_CEA_1280X720P25,
V4L2_DV_BT_CEA_1280X720P30,
V4L2_DV_BT_CEA_1280X720P50,
V4L2_DV_BT_CEA_1280X720P60,
V4L2_DV_BT_CEA_1920X1080P24,
V4L2_DV_BT_CEA_1920X1080P25,
V4L2_DV_BT_CEA_1920X1080P30,
V4L2_DV_BT_CEA_1920X1080I50,
V4L2_DV_BT_CEA_1920X1080P50,
V4L2_DV_BT_CEA_1920X1080I60,
V4L2_DV_BT_CEA_1920X1080P60,
V4L2_DV_BT_DMT_640X350P85,
V4L2_DV_BT_DMT_640X400P85,
V4L2_DV_BT_DMT_720X400P85,
V4L2_DV_BT_DMT_640X480P72,
V4L2_DV_BT_DMT_640X480P75,
V4L2_DV_BT_DMT_640X480P85,
V4L2_DV_BT_DMT_800X600P56,
V4L2_DV_BT_DMT_800X600P60,
V4L2_DV_BT_DMT_800X600P72,
V4L2_DV_BT_DMT_800X600P75,
V4L2_DV_BT_DMT_800X600P85,
V4L2_DV_BT_DMT_800X600P120_RB,
V4L2_DV_BT_DMT_848X480P60,
V4L2_DV_BT_DMT_1024X768I43,
V4L2_DV_BT_DMT_1024X768P60,
V4L2_DV_BT_DMT_1024X768P70,
V4L2_DV_BT_DMT_1024X768P75,
V4L2_DV_BT_DMT_1024X768P85,
V4L2_DV_BT_DMT_1024X768P120_RB,
V4L2_DV_BT_DMT_1152X864P75,
V4L2_DV_BT_DMT_1280X768P60_RB,
V4L2_DV_BT_DMT_1280X768P60,
V4L2_DV_BT_DMT_1280X768P75,
V4L2_DV_BT_DMT_1280X768P85,
V4L2_DV_BT_DMT_1280X768P120_RB,
V4L2_DV_BT_DMT_1280X800P60_RB,
V4L2_DV_BT_DMT_1280X800P60,
V4L2_DV_BT_DMT_1280X800P75,
V4L2_DV_BT_DMT_1280X800P85,
V4L2_DV_BT_DMT_1280X800P120_RB,
V4L2_DV_BT_DMT_1280X960P60,
V4L2_DV_BT_DMT_1280X960P85,
V4L2_DV_BT_DMT_1280X960P120_RB,
V4L2_DV_BT_DMT_1280X1024P60,
V4L2_DV_BT_DMT_1280X1024P75,
V4L2_DV_BT_DMT_1280X1024P85,
V4L2_DV_BT_DMT_1280X1024P120_RB,
V4L2_DV_BT_DMT_1360X768P60,
V4L2_DV_BT_DMT_1360X768P120_RB,
V4L2_DV_BT_DMT_1366X768P60,
V4L2_DV_BT_DMT_1366X768P60_RB,
V4L2_DV_BT_DMT_1400X1050P60_RB,
V4L2_DV_BT_DMT_1400X1050P60,
V4L2_DV_BT_DMT_1400X1050P75,
V4L2_DV_BT_DMT_1400X1050P85,
V4L2_DV_BT_DMT_1400X1050P120_RB,
V4L2_DV_BT_DMT_1440X900P60_RB,
V4L2_DV_BT_DMT_1440X900P60,
V4L2_DV_BT_DMT_1440X900P75,
V4L2_DV_BT_DMT_1440X900P85,
V4L2_DV_BT_DMT_1440X900P120_RB,
V4L2_DV_BT_DMT_1600X900P60_RB,
V4L2_DV_BT_DMT_1600X1200P60,
V4L2_DV_BT_DMT_1600X1200P65,
V4L2_DV_BT_DMT_1600X1200P70,
V4L2_DV_BT_DMT_1600X1200P75,
V4L2_DV_BT_DMT_1600X1200P85,
V4L2_DV_BT_DMT_1600X1200P120_RB,
V4L2_DV_BT_DMT_1680X1050P60_RB,
V4L2_DV_BT_DMT_1680X1050P60,
V4L2_DV_BT_DMT_1680X1050P75,
V4L2_DV_BT_DMT_1680X1050P85,
V4L2_DV_BT_DMT_1680X1050P120_RB,
V4L2_DV_BT_DMT_1792X1344P60,
V4L2_DV_BT_DMT_1792X1344P75,
V4L2_DV_BT_DMT_1792X1344P120_RB,
V4L2_DV_BT_DMT_1856X1392P60,
V4L2_DV_BT_DMT_1856X1392P75,
V4L2_DV_BT_DMT_1856X1392P120_RB,
V4L2_DV_BT_DMT_1920X1200P60_RB,
V4L2_DV_BT_DMT_1920X1200P60,
V4L2_DV_BT_DMT_1920X1200P75,
V4L2_DV_BT_DMT_1920X1200P85,
V4L2_DV_BT_DMT_1920X1200P120_RB,
V4L2_DV_BT_DMT_1920X1440P60,
V4L2_DV_BT_DMT_1920X1440P75,
V4L2_DV_BT_DMT_1920X1440P120_RB,
V4L2_DV_BT_DMT_2048X1152P60_RB,
V4L2_DV_BT_DMT_2560X1600P60_RB,
V4L2_DV_BT_DMT_2560X1600P60,
V4L2_DV_BT_DMT_2560X1600P75,
V4L2_DV_BT_DMT_2560X1600P85,
V4L2_DV_BT_DMT_2560X1600P120_RB,
V4L2_DV_BT_CEA_3840X2160P24,
V4L2_DV_BT_CEA_3840X2160P25,
V4L2_DV_BT_CEA_3840X2160P30,
V4L2_DV_BT_CEA_3840X2160P50,
V4L2_DV_BT_CEA_3840X2160P60,
V4L2_DV_BT_CEA_4096X2160P24,
V4L2_DV_BT_CEA_4096X2160P25,
V4L2_DV_BT_CEA_4096X2160P30,
V4L2_DV_BT_CEA_4096X2160P50,
V4L2_DV_BT_DMT_4096X2160P59_94_RB,
V4L2_DV_BT_CEA_4096X2160P60,
{ }
};
EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
const struct v4l2_dv_timings_cap *dvcap,
v4l2_check_dv_timings_fnc fnc,
void *fnc_handle)
{
const struct v4l2_bt_timings *bt = &t->bt;
const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
u32 caps = cap->capabilities;
if (t->type != V4L2_DV_BT_656_1120)
return false;
if (t->type != dvcap->type ||
bt->height < cap->min_height ||
bt->height > cap->max_height ||
bt->width < cap->min_width ||
bt->width > cap->max_width ||
bt->pixelclock < cap->min_pixelclock ||
bt->pixelclock > cap->max_pixelclock ||
(!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
cap->standards && bt->standards &&
!(bt->standards & cap->standards)) ||
(bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
(!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
return false;
return fnc == NULL || fnc(t, fnc_handle);
}
EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
const struct v4l2_dv_timings_cap *cap,
v4l2_check_dv_timings_fnc fnc,
void *fnc_handle)
{
u32 i, idx;
memset(t->reserved, 0, sizeof(t->reserved));
for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
fnc, fnc_handle) &&
idx++ == t->index) {
t->timings = v4l2_dv_timings_presets[i];
return 0;
}
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
const struct v4l2_dv_timings_cap *cap,
unsigned pclock_delta,
v4l2_check_dv_timings_fnc fnc,
void *fnc_handle)
{
int i;
if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
return false;
for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
fnc, fnc_handle) &&
v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
pclock_delta, false)) {
u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
*t = v4l2_dv_timings_presets[i];
if (can_reduce_fps(&t->bt))
t->bt.flags |= flags;
return true;
}
}
return false;
}
EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
{
unsigned int i;
for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
const struct v4l2_bt_timings *bt =
&v4l2_dv_timings_presets[i].bt;
if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
bt->cea861_vic == vic) {
*t = v4l2_dv_timings_presets[i];
return true;
}
}
return false;
}
EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
/**
* v4l2_match_dv_timings - check if two timings match
* @t1: compare this v4l2_dv_timings struct...
* @t2: with this struct.
* @pclock_delta: the allowed pixelclock deviation.
* @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
* match.
*
* Compare t1 with t2 with a given margin of error for the pixelclock.
*/
bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
const struct v4l2_dv_timings *t2,
unsigned pclock_delta, bool match_reduced_fps)
{
if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
return false;
if (t1->bt.width == t2->bt.width &&
t1->bt.height == t2->bt.height &&
t1->bt.interlaced == t2->bt.interlaced &&
t1->bt.polarities == t2->bt.polarities &&
t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
t1->bt.hfrontporch == t2->bt.hfrontporch &&
t1->bt.hsync == t2->bt.hsync &&
t1->bt.hbackporch == t2->bt.hbackporch &&
t1->bt.vfrontporch == t2->bt.vfrontporch &&
t1->bt.vsync == t2->bt.vsync &&
t1->bt.vbackporch == t2->bt.vbackporch &&
(!match_reduced_fps ||
(t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
(t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
(!t1->bt.interlaced ||
(t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
t1->bt.il_vsync == t2->bt.il_vsync &&
t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
return true;
return false;
}
EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
const struct v4l2_dv_timings *t, bool detailed)
{
const struct v4l2_bt_timings *bt = &t->bt;
u32 htot, vtot;
u32 fps;
if (t->type != V4L2_DV_BT_656_1120)
return;
htot = V4L2_DV_BT_FRAME_WIDTH(bt);
vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
if (bt->interlaced)
vtot /= 2;
fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
(htot * vtot)) : 0;
if (prefix == NULL)
prefix = "";
pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix,
bt->width, bt->height, bt->interlaced ? "i" : "p",
fps / 100, fps % 100, htot, vtot);
if (!detailed)
return;
pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
dev_prefix, bt->hfrontporch,
(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
bt->hsync, bt->hbackporch);
pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
dev_prefix, bt->vfrontporch,
(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
bt->vsync, bt->vbackporch);
if (bt->interlaced)
pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
dev_prefix, bt->il_vfrontporch,
(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
bt->il_vsync, bt->il_vbackporch);
pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
dev_prefix, bt->flags,
(bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
" REDUCED_BLANKING" : "",
((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
bt->vsync == 8) ? " (V2)" : "",
(bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
" CAN_REDUCE_FPS" : "",
(bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
" REDUCED_FPS" : "",
(bt->flags & V4L2_DV_FL_HALF_LINE) ?
" HALF_LINE" : "",
(bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
" CE_VIDEO" : "",
(bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
" FIRST_FIELD_EXTRA_LINE" : "",
(bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
" HAS_PICTURE_ASPECT" : "",
(bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
" HAS_CEA861_VIC" : "",
(bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
" HAS_HDMI_VIC" : "");
pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
(bt->standards & V4L2_DV_BT_STD_CEA861) ? " CEA" : "",
(bt->standards & V4L2_DV_BT_STD_DMT) ? " DMT" : "",
(bt->standards & V4L2_DV_BT_STD_CVT) ? " CVT" : "",
(bt->standards & V4L2_DV_BT_STD_GTF) ? " GTF" : "",
(bt->standards & V4L2_DV_BT_STD_SDI) ? " SDI" : "");
if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
bt->picture_aspect.numerator,
bt->picture_aspect.denominator);
if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
}
EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
{
struct v4l2_fract ratio = { 1, 1 };
unsigned long n, d;
if (t->type != V4L2_DV_BT_656_1120)
return ratio;
if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
return ratio;
ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
rational_best_approximation(ratio.numerator, ratio.denominator,
ratio.numerator, ratio.denominator, &n, &d);
ratio.numerator = n;
ratio.denominator = d;
return ratio;
}
EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
/** v4l2_calc_timeperframe - helper function to calculate timeperframe based
* v4l2_dv_timings fields.
* @t - Timings for the video mode.
*
* Calculates the expected timeperframe using the pixel clock value and
* horizontal/vertical measures. This means that v4l2_dv_timings structure
* must be correctly and fully filled.
*/
struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
{
const struct v4l2_bt_timings *bt = &t->bt;
struct v4l2_fract fps_fract = { 1, 1 };
unsigned long n, d;
u32 htot, vtot, fps;
u64 pclk;
if (t->type != V4L2_DV_BT_656_1120)
return fps_fract;
htot = V4L2_DV_BT_FRAME_WIDTH(bt);
vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
pclk = bt->pixelclock;
if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
(bt->flags & V4L2_DV_FL_REDUCED_FPS))
pclk = div_u64(pclk * 1000ULL, 1001);
fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
if (!fps)
return fps_fract;
rational_best_approximation(fps, 100, fps, 100, &n, &d);
fps_fract.numerator = d;
fps_fract.denominator = n;
return fps_fract;
}
EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
/*
* CVT defines
* Based on Coordinated Video Timings Standard
* version 1.1 September 10, 2003
*/
#define CVT_PXL_CLK_GRAN 250000 /* pixel clock granularity */
#define CVT_PXL_CLK_GRAN_RB_V2 1000 /* granularity for reduced blanking v2*/
/* Normal blanking */
#define CVT_MIN_V_BPORCH 7 /* lines */
#define CVT_MIN_V_PORCH_RND 3 /* lines */
#define CVT_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
#define CVT_HSYNC_PERCENT 8 /* nominal hsync as percentage of line */
/* Normal blanking for CVT uses GTF to calculate horizontal blanking */
#define CVT_CELL_GRAN 8 /* character cell granularity */
#define CVT_M 600 /* blanking formula gradient */
#define CVT_C 40 /* blanking formula offset */
#define CVT_K 128 /* blanking formula scaling factor */
#define CVT_J 20 /* blanking formula scaling factor */
#define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
#define CVT_M_PRIME (CVT_K * CVT_M / 256)
/* Reduced Blanking */
#define CVT_RB_MIN_V_BPORCH 7 /* lines */
#define CVT_RB_V_FPORCH 3 /* lines */
#define CVT_RB_MIN_V_BLANK 460 /* us */
#define CVT_RB_H_SYNC 32 /* pixels */
#define CVT_RB_H_BLANK 160 /* pixels */
/* Reduce blanking Version 2 */
#define CVT_RB_V2_H_BLANK 80 /* pixels */
#define CVT_RB_MIN_V_FPORCH 3 /* lines */
#define CVT_RB_V2_MIN_V_FPORCH 1 /* lines */
#define CVT_RB_V_BPORCH 6 /* lines */
/** v4l2_detect_cvt - detect if the given timings follow the CVT standard
* @frame_height - the total height of the frame (including blanking) in lines.
* @hfreq - the horizontal frequency in Hz.
* @vsync - the height of the vertical sync in lines.
* @active_width - active width of image (does not include blanking). This
* information is needed only in case of version 2 of reduced blanking.
* In other cases, this parameter does not have any effect on timings.
* @polarities - the horizontal and vertical polarities (same as struct
* v4l2_bt_timings polarities).
* @interlaced - if this flag is true, it indicates interlaced format
* @fmt - the resulting timings.
*
* This function will attempt to detect if the given values correspond to a
* valid CVT format. If so, then it will return true, and fmt will be filled
* in with the found CVT timings.
*/
bool v4l2_detect_cvt(unsigned frame_height,
unsigned hfreq,
unsigned vsync,
unsigned active_width,
u32 polarities,
bool interlaced,
struct v4l2_dv_timings *fmt)
{
int v_fp, v_bp, h_fp, h_bp, hsync;
int frame_width, image_height, image_width;
bool reduced_blanking;
bool rb_v2 = false;
unsigned pix_clk;
if (vsync < 4 || vsync > 8)
return false;
if (polarities == V4L2_DV_VSYNC_POS_POL)
reduced_blanking = false;
else if (polarities == V4L2_DV_HSYNC_POS_POL)
reduced_blanking = true;
else
return false;
if (reduced_blanking && vsync == 8)
rb_v2 = true;
if (rb_v2 && active_width == 0)
return false;
if (!rb_v2 && vsync > 7)
return false;
if (hfreq == 0)
return false;
/* Vertical */
if (reduced_blanking) {
if (rb_v2) {
v_bp = CVT_RB_V_BPORCH;
v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
v_fp -= vsync + v_bp;
if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
v_fp = CVT_RB_V2_MIN_V_FPORCH;
} else {
v_fp = CVT_RB_V_FPORCH;
v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
v_bp -= vsync + v_fp;
if (v_bp < CVT_RB_MIN_V_BPORCH)
v_bp = CVT_RB_MIN_V_BPORCH;
}
} else {
v_fp = CVT_MIN_V_PORCH_RND;
v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
if (v_bp < CVT_MIN_V_BPORCH)
v_bp = CVT_MIN_V_BPORCH;
}
if (interlaced)
image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
else
image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
if (image_height < 0)
return false;
/* Aspect ratio based on vsync */
switch (vsync) {
case 4:
image_width = (image_height * 4) / 3;
break;
case 5:
image_width = (image_height * 16) / 9;
break;
case 6:
image_width = (image_height * 16) / 10;
break;
case 7:
/* special case */
if (image_height == 1024)
image_width = (image_height * 5) / 4;
else if (image_height == 768)
image_width = (image_height * 15) / 9;
else
return false;
break;
case 8:
image_width = active_width;
break;
default:
return false;
}
if (!rb_v2)
image_width = image_width & ~7;
/* Horizontal */
if (reduced_blanking) {
int h_blank;
int clk_gran;
h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
pix_clk = (image_width + h_blank) * hfreq;
pix_clk = (pix_clk / clk_gran) * clk_gran;
h_bp = h_blank / 2;
hsync = CVT_RB_H_SYNC;
h_fp = h_blank - h_bp - hsync;
frame_width = image_width + h_blank;
} else {
unsigned ideal_duty_cycle_per_myriad =
100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
int h_blank;
if (ideal_duty_cycle_per_myriad < 2000)
ideal_duty_cycle_per_myriad = 2000;
h_blank = image_width * ideal_duty_cycle_per_myriad /
(10000 - ideal_duty_cycle_per_myriad);
h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
pix_clk = (image_width + h_blank) * hfreq;
pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
h_bp = h_blank / 2;
frame_width = image_width + h_blank;
hsync = frame_width * CVT_HSYNC_PERCENT / 100;
hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
h_fp = h_blank - hsync - h_bp;
}
fmt->type = V4L2_DV_BT_656_1120;
fmt->bt.polarities = polarities;
fmt->bt.width = image_width;
fmt->bt.height = image_height;
fmt->bt.hfrontporch = h_fp;
fmt->bt.vfrontporch = v_fp;
fmt->bt.hsync = hsync;
fmt->bt.vsync = vsync;
fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
if (!interlaced) {
fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
} else {
fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
2 * vsync) / 2;
fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
2 * vsync - fmt->bt.vbackporch;
fmt->bt.il_vfrontporch = v_fp;
fmt->bt.il_vsync = vsync;
fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
fmt->bt.interlaced = V4L2_DV_INTERLACED;
}
fmt->bt.pixelclock = pix_clk;
fmt->bt.standards = V4L2_DV_BT_STD_CVT;
if (reduced_blanking)
fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
return true;
}
EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
/*
* GTF defines
* Based on Generalized Timing Formula Standard
* Version 1.1 September 2, 1999
*/
#define GTF_PXL_CLK_GRAN 250000 /* pixel clock granularity */
#define GTF_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
#define GTF_V_FP 1 /* vertical front porch (lines) */
#define GTF_CELL_GRAN 8 /* character cell granularity */
/* Default */
#define GTF_D_M 600 /* blanking formula gradient */
#define GTF_D_C 40 /* blanking formula offset */
#define GTF_D_K 128 /* blanking formula scaling factor */
#define GTF_D_J 20 /* blanking formula scaling factor */
#define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
#define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
/* Secondary */
#define GTF_S_M 3600 /* blanking formula gradient */
#define GTF_S_C 40 /* blanking formula offset */
#define GTF_S_K 128 /* blanking formula scaling factor */
#define GTF_S_J 35 /* blanking formula scaling factor */
#define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
#define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
/** v4l2_detect_gtf - detect if the given timings follow the GTF standard
* @frame_height - the total height of the frame (including blanking) in lines.
* @hfreq - the horizontal frequency in Hz.
* @vsync - the height of the vertical sync in lines.
* @polarities - the horizontal and vertical polarities (same as struct
* v4l2_bt_timings polarities).
* @interlaced - if this flag is true, it indicates interlaced format
* @aspect - preferred aspect ratio. GTF has no method of determining the
* aspect ratio in order to derive the image width from the
* image height, so it has to be passed explicitly. Usually
* the native screen aspect ratio is used for this. If it
* is not filled in correctly, then 16:9 will be assumed.
* @fmt - the resulting timings.
*
* This function will attempt to detect if the given values correspond to a
* valid GTF format. If so, then it will return true, and fmt will be filled
* in with the found GTF timings.
*/
bool v4l2_detect_gtf(unsigned frame_height,
unsigned hfreq,
unsigned vsync,
u32 polarities,
bool interlaced,
struct v4l2_fract aspect,
struct v4l2_dv_timings *fmt)
{
int pix_clk;
int v_fp, v_bp, h_fp, hsync;
int frame_width, image_height, image_width;
bool default_gtf;
int h_blank;
if (vsync != 3)
return false;
if (polarities == V4L2_DV_VSYNC_POS_POL)
default_gtf = true;
else if (polarities == V4L2_DV_HSYNC_POS_POL)
default_gtf = false;
else
return false;
if (hfreq == 0)
return false;
/* Vertical */
v_fp = GTF_V_FP;
v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
if (interlaced)
image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
else
image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
if (image_height < 0)
return false;
if (aspect.numerator == 0 || aspect.denominator == 0) {
aspect.numerator = 16;
aspect.denominator = 9;
}
image_width = ((image_height * aspect.numerator) / aspect.denominator);
image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
/* Horizontal */
if (default_gtf) {
u64 num;
u32 den;
num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
((u64)image_width * GTF_D_M_PRIME * 1000));
den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
(2 * GTF_CELL_GRAN);
h_blank = div_u64((num + (den >> 1)), den);
h_blank *= (2 * GTF_CELL_GRAN);
} else {
u64 num;
u32 den;
num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
((u64)image_width * GTF_S_M_PRIME * 1000));
den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
(2 * GTF_CELL_GRAN);
h_blank = div_u64((num + (den >> 1)), den);
h_blank *= (2 * GTF_CELL_GRAN);
}
frame_width = image_width + h_blank;
pix_clk = (image_width + h_blank) * hfreq;
pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
hsync = (frame_width * 8 + 50) / 100;
hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN;
h_fp = h_blank / 2 - hsync;
fmt->type = V4L2_DV_BT_656_1120;
fmt->bt.polarities = polarities;
fmt->bt.width = image_width;
fmt->bt.height = image_height;
fmt->bt.hfrontporch = h_fp;
fmt->bt.vfrontporch = v_fp;
fmt->bt.hsync = hsync;
fmt->bt.vsync = vsync;
fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
if (!interlaced) {
fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
} else {
fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
2 * vsync) / 2;
fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
2 * vsync - fmt->bt.vbackporch;
fmt->bt.il_vfrontporch = v_fp;
fmt->bt.il_vsync = vsync;
fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
fmt->bt.interlaced = V4L2_DV_INTERLACED;
}
fmt->bt.pixelclock = pix_clk;
fmt->bt.standards = V4L2_DV_BT_STD_GTF;
if (!default_gtf)
fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
return true;
}
EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
/** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
* 0x15 and 0x16 from the EDID.
* @hor_landscape - byte 0x15 from the EDID.
* @vert_portrait - byte 0x16 from the EDID.
*
* Determines the aspect ratio from the EDID.
* See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
* "Horizontal and Vertical Screen Size or Aspect Ratio"
*/
struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
{
struct v4l2_fract aspect = { 16, 9 };
u8 ratio;
/* Nothing filled in, fallback to 16:9 */
if (!hor_landscape && !vert_portrait)
return aspect;
/* Both filled in, so they are interpreted as the screen size in cm */
if (hor_landscape && vert_portrait) {
aspect.numerator = hor_landscape;
aspect.denominator = vert_portrait;
return aspect;
}
/* Only one is filled in, so interpret them as a ratio:
(val + 99) / 100 */
ratio = hor_landscape | vert_portrait;
/* Change some rounded values into the exact aspect ratio */
if (ratio == 79) {
aspect.numerator = 16;
aspect.denominator = 9;
} else if (ratio == 34) {
aspect.numerator = 4;
aspect.denominator = 3;
} else if (ratio == 68) {
aspect.numerator = 15;
aspect.denominator = 9;
} else {
aspect.numerator = hor_landscape + 99;
aspect.denominator = 100;
}
if (hor_landscape)
return aspect;
/* The aspect ratio is for portrait, so swap numerator and denominator */
swap(aspect.denominator, aspect.numerator);
return aspect;
}
EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
/** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
* based on various InfoFrames.
* @avi: the AVI InfoFrame
* @hdmi: the HDMI Vendor InfoFrame, may be NULL
* @height: the frame height
*
* Determines the HDMI colorimetry information, i.e. how the HDMI
* pixel color data should be interpreted.
*
* Note that some of the newer features (DCI-P3, HDR) are not yet
* implemented: the hdmi.h header needs to be updated to the HDMI 2.0
* and CTA-861-G standards.
*/
struct v4l2_hdmi_colorimetry
v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
const struct hdmi_vendor_infoframe *hdmi,
unsigned int height)
{
struct v4l2_hdmi_colorimetry c = {
V4L2_COLORSPACE_SRGB,
V4L2_YCBCR_ENC_DEFAULT,
V4L2_QUANTIZATION_FULL_RANGE,
V4L2_XFER_FUNC_SRGB
};
bool is_ce = avi->video_code || (hdmi && hdmi->vic);
bool is_sdtv = height <= 576;
bool default_is_lim_range_rgb = avi->video_code > 1;
switch (avi->colorspace) {
case HDMI_COLORSPACE_RGB:
/* RGB pixel encoding */
switch (avi->colorimetry) {
case HDMI_COLORIMETRY_EXTENDED:
switch (avi->extended_colorimetry) {
case HDMI_EXTENDED_COLORIMETRY_OPRGB:
c.colorspace = V4L2_COLORSPACE_OPRGB;
c.xfer_func = V4L2_XFER_FUNC_OPRGB;
break;
case HDMI_EXTENDED_COLORIMETRY_BT2020:
c.colorspace = V4L2_COLORSPACE_BT2020;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
default:
break;
}
break;
default:
break;
}
switch (avi->quantization_range) {
case HDMI_QUANTIZATION_RANGE_LIMITED:
c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
break;
case HDMI_QUANTIZATION_RANGE_FULL:
break;
default:
if (default_is_lim_range_rgb)
c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
break;
}
break;
default:
/* YCbCr pixel encoding */
c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
switch (avi->colorimetry) {
case HDMI_COLORIMETRY_NONE:
if (!is_ce)
break;
if (is_sdtv) {
c.colorspace = V4L2_COLORSPACE_SMPTE170M;
c.ycbcr_enc = V4L2_YCBCR_ENC_601;
} else {
c.colorspace = V4L2_COLORSPACE_REC709;
c.ycbcr_enc = V4L2_YCBCR_ENC_709;
}
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_COLORIMETRY_ITU_601:
c.colorspace = V4L2_COLORSPACE_SMPTE170M;
c.ycbcr_enc = V4L2_YCBCR_ENC_601;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_COLORIMETRY_ITU_709:
c.colorspace = V4L2_COLORSPACE_REC709;
c.ycbcr_enc = V4L2_YCBCR_ENC_709;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_COLORIMETRY_EXTENDED:
switch (avi->extended_colorimetry) {
case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
c.colorspace = V4L2_COLORSPACE_REC709;
c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
c.colorspace = V4L2_COLORSPACE_REC709;
c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
c.colorspace = V4L2_COLORSPACE_SRGB;
c.ycbcr_enc = V4L2_YCBCR_ENC_601;
c.xfer_func = V4L2_XFER_FUNC_SRGB;
break;
case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
c.colorspace = V4L2_COLORSPACE_OPRGB;
c.ycbcr_enc = V4L2_YCBCR_ENC_601;
c.xfer_func = V4L2_XFER_FUNC_OPRGB;
break;
case HDMI_EXTENDED_COLORIMETRY_BT2020:
c.colorspace = V4L2_COLORSPACE_BT2020;
c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
c.colorspace = V4L2_COLORSPACE_BT2020;
c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
default: /* fall back to ITU_709 */
c.colorspace = V4L2_COLORSPACE_REC709;
c.ycbcr_enc = V4L2_YCBCR_ENC_709;
c.xfer_func = V4L2_XFER_FUNC_709;
break;
}
break;
default:
break;
}
/*
* YCC Quantization Range signaling is more-or-less broken,
* let's just ignore this.
*/
break;
}
return c;
}
EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
/**
* v4l2_get_edid_phys_addr() - find and return the physical address
*
* @edid: pointer to the EDID data
* @size: size in bytes of the EDID data
* @offset: If not %NULL then the location of the physical address
* bytes in the EDID will be returned here. This is set to 0
* if there is no physical address found.
*
* Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
*/
u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
unsigned int *offset)
{
unsigned int loc = cec_get_edid_spa_location(edid, size);
if (offset)
*offset = loc;
if (loc == 0)
return CEC_PHYS_ADDR_INVALID;
return (edid[loc] << 8) | edid[loc + 1];
}
EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
/**
* v4l2_set_edid_phys_addr() - find and set the physical address
*
* @edid: pointer to the EDID data
* @size: size in bytes of the EDID data
* @phys_addr: the new physical address
*
* This function finds the location of the physical address in the EDID
* and fills in the given physical address and updates the checksum
* at the end of the EDID block. It does nothing if the EDID doesn't
* contain a physical address.
*/
void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
{
unsigned int loc = cec_get_edid_spa_location(edid, size);
u8 sum = 0;
unsigned int i;
if (loc == 0)
return;
edid[loc] = phys_addr >> 8;
edid[loc + 1] = phys_addr & 0xff;
loc &= ~0x7f;
/* update the checksum */
for (i = loc; i < loc + 127; i++)
sum += edid[i];
edid[i] = 256 - sum;
}
EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
/**
* v4l2_phys_addr_for_input() - calculate the PA for an input
*
* @phys_addr: the physical address of the parent
* @input: the number of the input port, must be between 1 and 15
*
* This function calculates a new physical address based on the input
* port number. For example:
*
* PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
*
* PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
*
* PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
*
* PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
*
* Return: the new physical address or CEC_PHYS_ADDR_INVALID.
*/
u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
{
/* Check if input is sane */
if (WARN_ON(input == 0 || input > 0xf))
return CEC_PHYS_ADDR_INVALID;
if (phys_addr == 0)
return input << 12;
if ((phys_addr & 0x0fff) == 0)
return phys_addr | (input << 8);
if ((phys_addr & 0x00ff) == 0)
return phys_addr | (input << 4);
if ((phys_addr & 0x000f) == 0)
return phys_addr | input;
/*
* All nibbles are used so no valid physical addresses can be assigned
* to the input.
*/
return CEC_PHYS_ADDR_INVALID;
}
EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
/**
* v4l2_phys_addr_validate() - validate a physical address from an EDID
*
* @phys_addr: the physical address to validate
* @parent: if not %NULL, then this is filled with the parents PA.
* @port: if not %NULL, then this is filled with the input port.
*
* This validates a physical address as read from an EDID. If the
* PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
* then it will return -EINVAL.
*
* The parent PA is passed into %parent and the input port is passed into
* %port. For example:
*
* PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
*
* PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
*
* PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
*
* PA = f.f.f.f: has parent f.f.f.f and input port 0.
*
* Return: 0 if the PA is valid, -EINVAL if not.
*/
int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
{
int i;
if (parent)
*parent = phys_addr;
if (port)
*port = 0;
if (phys_addr == CEC_PHYS_ADDR_INVALID)
return 0;
for (i = 0; i < 16; i += 4)
if (phys_addr & (0xf << i))
break;
if (i == 16)
return 0;
if (parent)
*parent = phys_addr & (0xfff0 << i);
if (port)
*port = (phys_addr >> i) & 0xf;
for (i += 4; i < 16; i += 4)
if ((phys_addr & (0xf << i)) == 0)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);