linux/sound/soc/codecs/cs4234.c

919 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
// cs4234.c -- ALSA SoC CS4234 driver
//
// Copyright (C) 2020 Cirrus Logic, Inc. and
// Cirrus Logic International Semiconductor Ltd.
//
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/jiffies.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include <linux/workqueue.h>
#include "cs4234.h"
struct cs4234 {
struct device *dev;
struct regmap *regmap;
struct gpio_desc *reset_gpio;
struct regulator_bulk_data core_supplies[2];
int num_core_supplies;
struct completion vq_ramp_complete;
struct delayed_work vq_ramp_delay;
struct clk *mclk;
unsigned long mclk_rate;
unsigned long lrclk_rate;
unsigned int format;
struct snd_ratnum rate_dividers[2];
struct snd_pcm_hw_constraint_ratnums rate_constraint;
};
/* -89.92dB to +6.02dB with step of 0.38dB */
static const DECLARE_TLV_DB_SCALE(dac_tlv, -8992, 38, 0);
static const char * const cs4234_dac14_delay_text[] = {
"0us", "100us", "150us", "200us", "225us", "250us", "275us", "300us",
"325us", "350us", "375us", "400us", "425us", "450us", "475us", "500us",
};
static SOC_ENUM_SINGLE_DECL(cs4234_dac14_group_delay, CS4234_TPS_CTRL,
CS4234_GRP_DELAY_SHIFT, cs4234_dac14_delay_text);
static const char * const cs4234_noise_gate_text[] = {
"72dB", "78dB", "84dB", "90dB", "96dB", "102dB", "138dB", "Disabled",
};
static SOC_ENUM_SINGLE_DECL(cs4234_ll_noise_gate, CS4234_LOW_LAT_CTRL1,
CS4234_LL_NG_SHIFT, cs4234_noise_gate_text);
static SOC_ENUM_SINGLE_DECL(cs4234_dac14_noise_gate, CS4234_DAC_CTRL1,
CS4234_DAC14_NG_SHIFT, cs4234_noise_gate_text);
static SOC_ENUM_SINGLE_DECL(cs4234_dac5_noise_gate, CS4234_DAC_CTRL2,
CS4234_DAC5_NG_SHIFT, cs4234_noise_gate_text);
static const char * const cs4234_dac5_config_fltr_sel_text[] = {
"Interpolation Filter", "Sample and Hold"
};
static SOC_ENUM_SINGLE_DECL(cs4234_dac5_config_fltr_sel, CS4234_DAC_CTRL1,
CS4234_DAC5_CFG_FLTR_SHIFT,
cs4234_dac5_config_fltr_sel_text);
static const char * const cs4234_mute_delay_text[] = {
"1x", "4x", "16x", "64x",
};
static SOC_ENUM_SINGLE_DECL(cs4234_mute_delay, CS4234_VOLUME_MODE,
CS4234_MUTE_DELAY_SHIFT, cs4234_mute_delay_text);
static const char * const cs4234_minmax_delay_text[] = {
"1x", "2x", "4x", "8x", "16x", "32x", "64x", "128x",
};
static SOC_ENUM_SINGLE_DECL(cs4234_min_delay, CS4234_VOLUME_MODE,
CS4234_MIN_DELAY_SHIFT, cs4234_minmax_delay_text);
static SOC_ENUM_SINGLE_DECL(cs4234_max_delay, CS4234_VOLUME_MODE,
CS4234_MAX_DELAY_SHIFT, cs4234_minmax_delay_text);
static int cs4234_dac14_grp_delay_put(struct snd_kcontrol *kctrl,
struct snd_ctl_elem_value *uctrl)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kctrl);
struct cs4234 *cs4234 = snd_soc_component_get_drvdata(component);
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
unsigned int val = 0;
int ret = 0;
snd_soc_dapm_mutex_lock(dapm);
regmap_read(cs4234->regmap, CS4234_ADC_CTRL2, &val);
if ((val & 0x0F) != 0x0F) { // are all the ADCs powerdown
ret = -EBUSY;
dev_err(component->dev, "Can't change group delay while ADC are ON\n");
goto exit;
}
regmap_read(cs4234->regmap, CS4234_DAC_CTRL4, &val);
if ((val & 0x1F) != 0x1F) { // are all the DACs powerdown
ret = -EBUSY;
dev_err(component->dev, "Can't change group delay while DAC are ON\n");
goto exit;
}
ret = snd_soc_put_enum_double(kctrl, uctrl);
exit:
snd_soc_dapm_mutex_unlock(dapm);
return ret;
}
static void cs4234_vq_ramp_done(struct work_struct *work)
{
struct delayed_work *dw = to_delayed_work(work);
struct cs4234 *cs4234 = container_of(dw, struct cs4234, vq_ramp_delay);
complete_all(&cs4234->vq_ramp_complete);
}
static int cs4234_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct cs4234 *cs4234 = snd_soc_component_get_drvdata(component);
switch (level) {
case SND_SOC_BIAS_PREPARE:
switch (snd_soc_component_get_bias_level(component)) {
case SND_SOC_BIAS_STANDBY:
wait_for_completion(&cs4234->vq_ramp_complete);
break;
default:
break;
}
break;
default:
break;
}
return 0;
}
static const struct snd_soc_dapm_widget cs4234_dapm_widgets[] = {
SND_SOC_DAPM_AIF_IN("SDRX1", NULL, 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("SDRX2", NULL, 1, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("SDRX3", NULL, 2, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("SDRX4", NULL, 3, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("SDRX5", NULL, 4, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("DAC1", NULL, CS4234_DAC_CTRL4, CS4234_PDN_DAC1_SHIFT, 1),
SND_SOC_DAPM_DAC("DAC2", NULL, CS4234_DAC_CTRL4, CS4234_PDN_DAC2_SHIFT, 1),
SND_SOC_DAPM_DAC("DAC3", NULL, CS4234_DAC_CTRL4, CS4234_PDN_DAC3_SHIFT, 1),
SND_SOC_DAPM_DAC("DAC4", NULL, CS4234_DAC_CTRL4, CS4234_PDN_DAC4_SHIFT, 1),
SND_SOC_DAPM_DAC("DAC5", NULL, CS4234_DAC_CTRL4, CS4234_PDN_DAC5_SHIFT, 1),
SND_SOC_DAPM_OUTPUT("AOUT1"),
SND_SOC_DAPM_OUTPUT("AOUT2"),
SND_SOC_DAPM_OUTPUT("AOUT3"),
SND_SOC_DAPM_OUTPUT("AOUT4"),
SND_SOC_DAPM_OUTPUT("AOUT5"),
SND_SOC_DAPM_INPUT("AIN1"),
SND_SOC_DAPM_INPUT("AIN2"),
SND_SOC_DAPM_INPUT("AIN3"),
SND_SOC_DAPM_INPUT("AIN4"),
SND_SOC_DAPM_ADC("ADC1", NULL, CS4234_ADC_CTRL2, CS4234_PDN_ADC1_SHIFT, 1),
SND_SOC_DAPM_ADC("ADC2", NULL, CS4234_ADC_CTRL2, CS4234_PDN_ADC2_SHIFT, 1),
SND_SOC_DAPM_ADC("ADC3", NULL, CS4234_ADC_CTRL2, CS4234_PDN_ADC3_SHIFT, 1),
SND_SOC_DAPM_ADC("ADC4", NULL, CS4234_ADC_CTRL2, CS4234_PDN_ADC4_SHIFT, 1),
SND_SOC_DAPM_AIF_OUT("SDTX1", NULL, 0, SND_SOC_NOPM, 0, 1),
SND_SOC_DAPM_AIF_OUT("SDTX2", NULL, 1, SND_SOC_NOPM, 0, 1),
SND_SOC_DAPM_AIF_OUT("SDTX3", NULL, 2, SND_SOC_NOPM, 0, 1),
SND_SOC_DAPM_AIF_OUT("SDTX4", NULL, 3, SND_SOC_NOPM, 0, 1),
};
static const struct snd_soc_dapm_route cs4234_dapm_routes[] = {
/* Playback */
{ "AOUT1", NULL, "DAC1" },
{ "AOUT2", NULL, "DAC2" },
{ "AOUT3", NULL, "DAC3" },
{ "AOUT4", NULL, "DAC4" },
{ "AOUT5", NULL, "DAC5" },
{ "DAC1", NULL, "SDRX1" },
{ "DAC2", NULL, "SDRX2" },
{ "DAC3", NULL, "SDRX3" },
{ "DAC4", NULL, "SDRX4" },
{ "DAC5", NULL, "SDRX5" },
{ "SDRX1", NULL, "Playback" },
{ "SDRX2", NULL, "Playback" },
{ "SDRX3", NULL, "Playback" },
{ "SDRX4", NULL, "Playback" },
{ "SDRX5", NULL, "Playback" },
/* Capture */
{ "ADC1", NULL, "AIN1" },
{ "ADC2", NULL, "AIN2" },
{ "ADC3", NULL, "AIN3" },
{ "ADC4", NULL, "AIN4" },
{ "SDTX1", NULL, "ADC1" },
{ "SDTX2", NULL, "ADC2" },
{ "SDTX3", NULL, "ADC3" },
{ "SDTX4", NULL, "ADC4" },
{ "Capture", NULL, "SDTX1" },
{ "Capture", NULL, "SDTX2" },
{ "Capture", NULL, "SDTX3" },
{ "Capture", NULL, "SDTX4" },
};
static const struct snd_kcontrol_new cs4234_snd_controls[] = {
SOC_SINGLE_TLV("Master Volume", CS4234_MASTER_VOL, 0, 0xff, 1, dac_tlv),
SOC_SINGLE_TLV("DAC1 Volume", CS4234_DAC1_VOL, 0, 0xff, 1, dac_tlv),
SOC_SINGLE_TLV("DAC2 Volume", CS4234_DAC2_VOL, 0, 0xff, 1, dac_tlv),
SOC_SINGLE_TLV("DAC3 Volume", CS4234_DAC3_VOL, 0, 0xff, 1, dac_tlv),
SOC_SINGLE_TLV("DAC4 Volume", CS4234_DAC4_VOL, 0, 0xff, 1, dac_tlv),
SOC_SINGLE_TLV("DAC5 Volume", CS4234_DAC5_VOL, 0, 0xff, 1, dac_tlv),
SOC_SINGLE("DAC5 Soft Ramp Switch", CS4234_DAC_CTRL3, CS4234_DAC5_ATT_SHIFT, 1, 1),
SOC_SINGLE("DAC1-4 Soft Ramp Switch", CS4234_DAC_CTRL3, CS4234_DAC14_ATT_SHIFT, 1, 1),
SOC_SINGLE("ADC HPF Switch", CS4234_ADC_CTRL1, CS4234_ENA_HPF_SHIFT, 1, 0),
SOC_ENUM_EXT("DAC1-4 Group Delay", cs4234_dac14_group_delay,
snd_soc_get_enum_double, cs4234_dac14_grp_delay_put),
SOC_SINGLE("ADC1 Invert Switch", CS4234_ADC_CTRL1, CS4234_INV_ADC1_SHIFT, 1, 0),
SOC_SINGLE("ADC2 Invert Switch", CS4234_ADC_CTRL1, CS4234_INV_ADC2_SHIFT, 1, 0),
SOC_SINGLE("ADC3 Invert Switch", CS4234_ADC_CTRL1, CS4234_INV_ADC3_SHIFT, 1, 0),
SOC_SINGLE("ADC4 Invert Switch", CS4234_ADC_CTRL1, CS4234_INV_ADC4_SHIFT, 1, 0),
SOC_SINGLE("DAC1 Invert Switch", CS4234_DAC_CTRL2, CS4234_INV_DAC1_SHIFT, 1, 0),
SOC_SINGLE("DAC2 Invert Switch", CS4234_DAC_CTRL2, CS4234_INV_DAC2_SHIFT, 1, 0),
SOC_SINGLE("DAC3 Invert Switch", CS4234_DAC_CTRL2, CS4234_INV_DAC3_SHIFT, 1, 0),
SOC_SINGLE("DAC4 Invert Switch", CS4234_DAC_CTRL2, CS4234_INV_DAC4_SHIFT, 1, 0),
SOC_SINGLE("DAC5 Invert Switch", CS4234_DAC_CTRL2, CS4234_INV_DAC5_SHIFT, 1, 0),
SOC_SINGLE("ADC1 Switch", CS4234_ADC_CTRL2, CS4234_MUTE_ADC1_SHIFT, 1, 1),
SOC_SINGLE("ADC2 Switch", CS4234_ADC_CTRL2, CS4234_MUTE_ADC2_SHIFT, 1, 1),
SOC_SINGLE("ADC3 Switch", CS4234_ADC_CTRL2, CS4234_MUTE_ADC3_SHIFT, 1, 1),
SOC_SINGLE("ADC4 Switch", CS4234_ADC_CTRL2, CS4234_MUTE_ADC4_SHIFT, 1, 1),
SOC_SINGLE("DAC1 Switch", CS4234_DAC_CTRL3, CS4234_MUTE_DAC1_SHIFT, 1, 1),
SOC_SINGLE("DAC2 Switch", CS4234_DAC_CTRL3, CS4234_MUTE_DAC2_SHIFT, 1, 1),
SOC_SINGLE("DAC3 Switch", CS4234_DAC_CTRL3, CS4234_MUTE_DAC3_SHIFT, 1, 1),
SOC_SINGLE("DAC4 Switch", CS4234_DAC_CTRL3, CS4234_MUTE_DAC4_SHIFT, 1, 1),
SOC_SINGLE("DAC5 Switch", CS4234_DAC_CTRL3, CS4234_MUTE_DAC5_SHIFT, 1, 1),
SOC_SINGLE("Low-latency Switch", CS4234_DAC_CTRL3, CS4234_MUTE_LL_SHIFT, 1, 1),
SOC_SINGLE("DAC1 Low-latency Invert Switch", CS4234_LOW_LAT_CTRL1,
CS4234_INV_LL1_SHIFT, 1, 0),
SOC_SINGLE("DAC2 Low-latency Invert Switch", CS4234_LOW_LAT_CTRL1,
CS4234_INV_LL2_SHIFT, 1, 0),
SOC_SINGLE("DAC3 Low-latency Invert Switch", CS4234_LOW_LAT_CTRL1,
CS4234_INV_LL3_SHIFT, 1, 0),
SOC_SINGLE("DAC4 Low-latency Invert Switch", CS4234_LOW_LAT_CTRL1,
CS4234_INV_LL4_SHIFT, 1, 0),
SOC_ENUM("Low-latency Noise Gate", cs4234_ll_noise_gate),
SOC_ENUM("DAC1-4 Noise Gate", cs4234_dac14_noise_gate),
SOC_ENUM("DAC5 Noise Gate", cs4234_dac5_noise_gate),
SOC_SINGLE("DAC1-4 De-emphasis Switch", CS4234_DAC_CTRL1,
CS4234_DAC14_DE_SHIFT, 1, 0),
SOC_SINGLE("DAC5 De-emphasis Switch", CS4234_DAC_CTRL1,
CS4234_DAC5_DE_SHIFT, 1, 0),
SOC_SINGLE("DAC5 Master Controlled Switch", CS4234_DAC_CTRL1,
CS4234_DAC5_MVC_SHIFT, 1, 0),
SOC_ENUM("DAC5 Filter", cs4234_dac5_config_fltr_sel),
SOC_ENUM("Mute Delay", cs4234_mute_delay),
SOC_ENUM("Ramp Minimum Delay", cs4234_min_delay),
SOC_ENUM("Ramp Maximum Delay", cs4234_max_delay),
};
static int cs4234_dai_set_fmt(struct snd_soc_dai *codec_dai, unsigned int format)
{
struct snd_soc_component *component = codec_dai->component;
struct cs4234 *cs4234 = snd_soc_component_get_drvdata(component);
unsigned int sp_ctrl = 0;
cs4234->format = format & SND_SOC_DAIFMT_FORMAT_MASK;
switch (cs4234->format) {
case SND_SOC_DAIFMT_LEFT_J:
sp_ctrl |= CS4234_LEFT_J << CS4234_SP_FORMAT_SHIFT;
break;
case SND_SOC_DAIFMT_I2S:
sp_ctrl |= CS4234_I2S << CS4234_SP_FORMAT_SHIFT;
break;
case SND_SOC_DAIFMT_DSP_A: /* TDM mode in datasheet */
sp_ctrl |= CS4234_TDM << CS4234_SP_FORMAT_SHIFT;
break;
default:
dev_err(component->dev, "Unsupported dai format\n");
return -EINVAL;
}
switch (format & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
break;
case SND_SOC_DAIFMT_CBM_CFM:
if (cs4234->format == SND_SOC_DAIFMT_DSP_A) {
dev_err(component->dev, "Unsupported DSP A format in master mode\n");
return -EINVAL;
}
sp_ctrl |= CS4234_MST_SLV_MASK;
break;
default:
dev_err(component->dev, "Unsupported master/slave mode\n");
return -EINVAL;
}
switch (format & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
sp_ctrl |= CS4234_INVT_SCLK_MASK;
break;
default:
dev_err(component->dev, "Unsupported inverted clock setting\n");
return -EINVAL;
}
regmap_update_bits(cs4234->regmap, CS4234_SP_CTRL,
CS4234_SP_FORMAT_MASK | CS4234_MST_SLV_MASK | CS4234_INVT_SCLK_MASK,
sp_ctrl);
return 0;
}
static int cs4234_dai_hw_params(struct snd_pcm_substream *sub,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct cs4234 *cs4234 = snd_soc_component_get_drvdata(component);
unsigned int mclk_mult, double_speed = 0;
int ret = 0, rate_ad, sample_width;
cs4234->lrclk_rate = params_rate(params);
mclk_mult = cs4234->mclk_rate / cs4234->lrclk_rate;
if (cs4234->lrclk_rate > 48000) {
double_speed = 1;
mclk_mult *= 2;
}
switch (mclk_mult) {
case 256:
case 384:
case 512:
regmap_update_bits(cs4234->regmap, CS4234_CLOCK_SP,
CS4234_SPEED_MODE_MASK,
double_speed << CS4234_SPEED_MODE_SHIFT);
regmap_update_bits(cs4234->regmap, CS4234_CLOCK_SP,
CS4234_MCLK_RATE_MASK,
((mclk_mult / 128) - 2) << CS4234_MCLK_RATE_SHIFT);
break;
default:
dev_err(component->dev, "Unsupported mclk/lrclk rate\n");
return -EINVAL;
}
switch (cs4234->lrclk_rate) {
case 48000:
case 96000:
rate_ad = CS4234_48K;
break;
case 44100:
case 88200:
rate_ad = CS4234_44K1;
break;
case 32000:
case 64000:
rate_ad = CS4234_32K;
break;
default:
dev_err(component->dev, "Unsupported LR clock\n");
return -EINVAL;
}
regmap_update_bits(cs4234->regmap, CS4234_CLOCK_SP, CS4234_BASE_RATE_MASK,
rate_ad << CS4234_BASE_RATE_SHIFT);
sample_width = params_width(params);
switch (sample_width) {
case 16:
sample_width = 0;
break;
case 18:
sample_width = 1;
break;
case 20:
sample_width = 2;
break;
case 24:
sample_width = 3;
break;
default:
dev_err(component->dev, "Unsupported sample width\n");
return -EINVAL;
}
if (sub->stream == SNDRV_PCM_STREAM_CAPTURE)
regmap_update_bits(cs4234->regmap, CS4234_SAMPLE_WIDTH,
CS4234_SDOUTX_SW_MASK,
sample_width << CS4234_SDOUTX_SW_SHIFT);
else
regmap_update_bits(cs4234->regmap, CS4234_SAMPLE_WIDTH,
CS4234_INPUT_SW_MASK | CS4234_LOW_LAT_SW_MASK | CS4234_DAC5_SW_MASK,
sample_width << CS4234_INPUT_SW_SHIFT |
sample_width << CS4234_LOW_LAT_SW_SHIFT |
sample_width << CS4234_DAC5_SW_SHIFT);
return ret;
}
/* Scale MCLK rate by 64 to avoid overflow in the ratnum calculation */
#define CS4234_MCLK_SCALE 64
static const struct snd_ratnum cs4234_dividers[] = {
{
.num = 0,
.den_min = 256 / CS4234_MCLK_SCALE,
.den_max = 512 / CS4234_MCLK_SCALE,
.den_step = 128 / CS4234_MCLK_SCALE,
},
{
.num = 0,
.den_min = 128 / CS4234_MCLK_SCALE,
.den_max = 192 / CS4234_MCLK_SCALE,
.den_step = 64 / CS4234_MCLK_SCALE,
},
};
static int cs4234_dai_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
{
struct cs4234 *cs4234 = rule->private;
int mclk = cs4234->mclk_rate;
struct snd_interval ranges[] = {
{ /* Single Speed Mode */
.min = mclk / clamp(mclk / 30000, 256, 512),
.max = mclk / clamp(mclk / 50000, 256, 512),
},
{ /* Double Speed Mode */
.min = mclk / clamp(mclk / 60000, 128, 256),
.max = mclk / clamp(mclk / 100000, 128, 256),
},
};
return snd_interval_ranges(hw_param_interval(params, rule->var),
ARRAY_SIZE(ranges), ranges, 0);
}
static int cs4234_dai_startup(struct snd_pcm_substream *sub, struct snd_soc_dai *dai)
{
struct snd_soc_component *comp = dai->component;
struct cs4234 *cs4234 = snd_soc_component_get_drvdata(comp);
int i, ret;
switch (cs4234->format) {
case SND_SOC_DAIFMT_LEFT_J:
case SND_SOC_DAIFMT_I2S:
cs4234->rate_constraint.nrats = 2;
/*
* Playback only supports 24-bit samples in these modes.
* Note: SNDRV_PCM_HW_PARAM_SAMPLE_BITS constrains the physical
* width, which we don't care about, so constrain the format.
*/
if (sub->stream == SNDRV_PCM_STREAM_PLAYBACK) {
ret = snd_pcm_hw_constraint_mask64(
sub->runtime,
SNDRV_PCM_HW_PARAM_FORMAT,
SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S24_3LE);
if (ret < 0)
return ret;
ret = snd_pcm_hw_constraint_minmax(sub->runtime,
SNDRV_PCM_HW_PARAM_CHANNELS,
1, 4);
if (ret < 0)
return ret;
}
break;
case SND_SOC_DAIFMT_DSP_A:
cs4234->rate_constraint.nrats = 1;
break;
default:
dev_err(comp->dev, "Startup unsupported DAI format\n");
return -EINVAL;
}
for (i = 0; i < cs4234->rate_constraint.nrats; i++)
cs4234->rate_dividers[i].num = cs4234->mclk_rate / CS4234_MCLK_SCALE;
ret = snd_pcm_hw_constraint_ratnums(sub->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE,
&cs4234->rate_constraint);
if (ret < 0)
return ret;
/*
* MCLK/rate may be a valid ratio but out-of-spec (e.g. 24576000/64000)
* so this rule limits the range of sample rate for given MCLK.
*/
return snd_pcm_hw_rule_add(sub->runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
cs4234_dai_rule_rate, cs4234, -1);
}
static int cs4234_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots, int slot_width)
{
struct snd_soc_component *component = dai->component;
struct cs4234 *cs4234 = snd_soc_component_get_drvdata(component);
unsigned int slot_offset, dac5_slot, dac5_mask_group;
uint8_t dac5_masks[4];
if (slot_width != 32) {
dev_err(component->dev, "Unsupported slot width\n");
return -EINVAL;
}
/* Either 4 or 5 consecutive bits, DAC5 is optional */
slot_offset = ffs(tx_mask) - 1;
tx_mask >>= slot_offset;
if ((slot_offset % 4) || ((tx_mask != 0x0F) && (tx_mask != 0x1F))) {
dev_err(component->dev, "Unsupported tx slots allocation\n");
return -EINVAL;
}
regmap_update_bits(cs4234->regmap, CS4234_SP_DATA_SEL, CS4234_DAC14_SRC_MASK,
(slot_offset / 4) << CS4234_DAC14_SRC_SHIFT);
regmap_update_bits(cs4234->regmap, CS4234_SP_DATA_SEL, CS4234_LL_SRC_MASK,
(slot_offset / 4) << CS4234_LL_SRC_SHIFT);
if (tx_mask == 0x1F) {
dac5_slot = slot_offset + 4;
memset(dac5_masks, 0xFF, sizeof(dac5_masks));
dac5_mask_group = dac5_slot / 8;
dac5_slot %= 8;
dac5_masks[dac5_mask_group] ^= BIT(7 - dac5_slot);
regmap_bulk_write(cs4234->regmap,
CS4234_SDIN1_MASK1,
dac5_masks,
ARRAY_SIZE(dac5_masks));
}
return 0;
}
static const struct snd_soc_dai_ops cs4234_dai_ops = {
.set_fmt = cs4234_dai_set_fmt,
.hw_params = cs4234_dai_hw_params,
.startup = cs4234_dai_startup,
.set_tdm_slot = cs4234_dai_set_tdm_slot,
};
static struct snd_soc_dai_driver cs4234_dai[] = {
{
.name = "cs4234-dai",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 5,
.rates = CS4234_PCM_RATES,
.formats = CS4234_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 4,
.rates = CS4234_PCM_RATES,
.formats = CS4234_FORMATS,
},
.ops = &cs4234_dai_ops,
.symmetric_rate = 1,
},
};
static const struct reg_default cs4234_default_reg[] = {
{ CS4234_CLOCK_SP, 0x04},
{ CS4234_SAMPLE_WIDTH, 0xFF},
{ CS4234_SP_CTRL, 0x48},
{ CS4234_SP_DATA_SEL, 0x01},
{ CS4234_SDIN1_MASK1, 0xFF},
{ CS4234_SDIN1_MASK2, 0xFF},
{ CS4234_SDIN2_MASK1, 0xFF},
{ CS4234_SDIN2_MASK2, 0xFF},
{ CS4234_TPS_CTRL, 0x00},
{ CS4234_ADC_CTRL1, 0xC0},
{ CS4234_ADC_CTRL2, 0xFF},
{ CS4234_LOW_LAT_CTRL1, 0xE0},
{ CS4234_DAC_CTRL1, 0xE0},
{ CS4234_DAC_CTRL2, 0xE0},
{ CS4234_DAC_CTRL3, 0xBF},
{ CS4234_DAC_CTRL4, 0x1F},
{ CS4234_VOLUME_MODE, 0x87},
{ CS4234_MASTER_VOL, 0x10},
{ CS4234_DAC1_VOL, 0x10},
{ CS4234_DAC2_VOL, 0x10},
{ CS4234_DAC3_VOL, 0x10},
{ CS4234_DAC4_VOL, 0x10},
{ CS4234_DAC5_VOL, 0x10},
{ CS4234_INT_CTRL, 0x40},
{ CS4234_INT_MASK1, 0x10},
{ CS4234_INT_MASK2, 0x20},
};
static bool cs4234_readable_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS4234_DEVID_AB ... CS4234_DEVID_EF:
case CS4234_REVID ... CS4234_DAC5_VOL:
case CS4234_INT_CTRL ... CS4234_MAX_REGISTER:
return true;
default:
return false;
}
}
static bool cs4234_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS4234_INT_NOTIFY1:
case CS4234_INT_NOTIFY2:
return true;
default:
return false;
}
}
static bool cs4234_writeable_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS4234_DEVID_AB ... CS4234_REVID:
case CS4234_INT_NOTIFY1 ... CS4234_INT_NOTIFY2:
return false;
default:
return true;
}
}
static const struct snd_soc_component_driver soc_component_cs4234 = {
.dapm_widgets = cs4234_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(cs4234_dapm_widgets),
.dapm_routes = cs4234_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(cs4234_dapm_routes),
.controls = cs4234_snd_controls,
.num_controls = ARRAY_SIZE(cs4234_snd_controls),
.set_bias_level = cs4234_set_bias_level,
.non_legacy_dai_naming = 1,
.idle_bias_on = 1,
.suspend_bias_off = 1,
};
static const struct regmap_config cs4234_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = CS4234_MAX_REGISTER,
.readable_reg = cs4234_readable_register,
.volatile_reg = cs4234_volatile_reg,
.writeable_reg = cs4234_writeable_register,
.reg_defaults = cs4234_default_reg,
.num_reg_defaults = ARRAY_SIZE(cs4234_default_reg),
.cache_type = REGCACHE_RBTREE,
.use_single_read = true,
.use_single_write = true,
};
static const char * const cs4234_core_supplies[] = {
"VA",
"VL",
};
static void cs4234_shutdown(struct cs4234 *cs4234)
{
cancel_delayed_work_sync(&cs4234->vq_ramp_delay);
reinit_completion(&cs4234->vq_ramp_complete);
regmap_update_bits(cs4234->regmap, CS4234_DAC_CTRL4, CS4234_VQ_RAMP_MASK,
CS4234_VQ_RAMP_MASK);
msleep(50);
regcache_cache_only(cs4234->regmap, true);
/* Clear VQ Ramp Bit in cache for the next PowerUp */
regmap_update_bits(cs4234->regmap, CS4234_DAC_CTRL4, CS4234_VQ_RAMP_MASK, 0);
gpiod_set_value_cansleep(cs4234->reset_gpio, 0);
regulator_bulk_disable(cs4234->num_core_supplies, cs4234->core_supplies);
clk_disable_unprepare(cs4234->mclk);
}
static int cs4234_powerup(struct cs4234 *cs4234)
{
int ret;
ret = clk_prepare_enable(cs4234->mclk);
if (ret) {
dev_err(cs4234->dev, "Failed to enable mclk: %d\n", ret);
return ret;
}
ret = regulator_bulk_enable(cs4234->num_core_supplies, cs4234->core_supplies);
if (ret) {
dev_err(cs4234->dev, "Failed to enable core supplies: %d\n", ret);
clk_disable_unprepare(cs4234->mclk);
return ret;
}
usleep_range(CS4234_HOLD_RESET_TIME_US, 2 * CS4234_HOLD_RESET_TIME_US);
gpiod_set_value_cansleep(cs4234->reset_gpio, 1);
/* Make sure hardware reset done 2 ms + (3000/MCLK) */
usleep_range(CS4234_BOOT_TIME_US, CS4234_BOOT_TIME_US * 2);
queue_delayed_work(system_power_efficient_wq,
&cs4234->vq_ramp_delay,
msecs_to_jiffies(CS4234_VQ_CHARGE_MS));
return 0;
}
static int cs4234_i2c_probe(struct i2c_client *i2c_client, const struct i2c_device_id *id)
{
struct cs4234 *cs4234;
struct device *dev = &i2c_client->dev;
unsigned int revid;
uint32_t devid;
uint8_t ids[3];
int ret = 0, i;
cs4234 = devm_kzalloc(dev, sizeof(*cs4234), GFP_KERNEL);
if (!cs4234)
return -ENOMEM;
i2c_set_clientdata(i2c_client, cs4234);
cs4234->dev = dev;
init_completion(&cs4234->vq_ramp_complete);
INIT_DELAYED_WORK(&cs4234->vq_ramp_delay, cs4234_vq_ramp_done);
cs4234->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(cs4234->reset_gpio))
return PTR_ERR(cs4234->reset_gpio);
BUILD_BUG_ON(ARRAY_SIZE(cs4234->core_supplies) < ARRAY_SIZE(cs4234_core_supplies));
cs4234->num_core_supplies = ARRAY_SIZE(cs4234_core_supplies);
for (i = 0; i < ARRAY_SIZE(cs4234_core_supplies); i++)
cs4234->core_supplies[i].supply = cs4234_core_supplies[i];
ret = devm_regulator_bulk_get(dev, cs4234->num_core_supplies, cs4234->core_supplies);
if (ret) {
dev_err(dev, "Failed to request core supplies %d\n", ret);
return ret;
}
cs4234->mclk = devm_clk_get(dev, "mclk");
if (IS_ERR(cs4234->mclk)) {
ret = PTR_ERR(cs4234->mclk);
dev_err(dev, "Failed to get the mclk: %d\n", ret);
return ret;
}
cs4234->mclk_rate = clk_get_rate(cs4234->mclk);
if (cs4234->mclk_rate < 7680000 || cs4234->mclk_rate > 25600000) {
dev_err(dev, "Invalid Master Clock rate\n");
return -EINVAL;
}
cs4234->regmap = devm_regmap_init_i2c(i2c_client, &cs4234_regmap);
if (IS_ERR(cs4234->regmap)) {
ret = PTR_ERR(cs4234->regmap);
dev_err(dev, "regmap_init() failed: %d\n", ret);
return ret;
}
ret = cs4234_powerup(cs4234);
if (ret)
return ret;
ret = regmap_bulk_read(cs4234->regmap, CS4234_DEVID_AB, ids, ARRAY_SIZE(ids));
if (ret < 0) {
dev_err(dev, "Failed to read DEVID: %d\n", ret);
goto fail_shutdown;
}
devid = (ids[0] << 16) | (ids[1] << 8) | ids[2];
if (devid != CS4234_SUPPORTED_ID) {
dev_err(dev, "Unknown device ID: %x\n", devid);
ret = -EINVAL;
goto fail_shutdown;
}
ret = regmap_read(cs4234->regmap, CS4234_REVID, &revid);
if (ret < 0) {
dev_err(dev, "Failed to read CS4234_REVID: %d\n", ret);
goto fail_shutdown;
}
dev_info(dev, "Cirrus Logic CS4234, Alpha Rev: %02X, Numeric Rev: %02X\n",
(revid & 0xF0) >> 4, revid & 0x0F);
ret = regulator_get_voltage(cs4234->core_supplies[CS4234_SUPPLY_VA].consumer);
switch (ret) {
case 3135000 ... 3650000:
regmap_update_bits(cs4234->regmap, CS4234_ADC_CTRL1,
CS4234_VA_SEL_MASK,
CS4234_3V3 << CS4234_VA_SEL_SHIFT);
break;
case 4750000 ... 5250000:
regmap_update_bits(cs4234->regmap, CS4234_ADC_CTRL1,
CS4234_VA_SEL_MASK,
CS4234_5V << CS4234_VA_SEL_SHIFT);
break;
default:
dev_err(dev, "Invalid VA voltage\n");
ret = -EINVAL;
goto fail_shutdown;
}
pm_runtime_set_active(&i2c_client->dev);
pm_runtime_enable(&i2c_client->dev);
memcpy(&cs4234->rate_dividers, &cs4234_dividers, sizeof(cs4234_dividers));
cs4234->rate_constraint.rats = cs4234->rate_dividers;
ret = snd_soc_register_component(dev, &soc_component_cs4234, cs4234_dai,
ARRAY_SIZE(cs4234_dai));
if (ret < 0) {
dev_err(dev, "Failed to register component:%d\n", ret);
pm_runtime_disable(&i2c_client->dev);
goto fail_shutdown;
}
return ret;
fail_shutdown:
cs4234_shutdown(cs4234);
return ret;
}
static int cs4234_i2c_remove(struct i2c_client *i2c_client)
{
struct cs4234 *cs4234 = i2c_get_clientdata(i2c_client);
struct device *dev = &i2c_client->dev;
snd_soc_unregister_component(dev);
pm_runtime_disable(dev);
cs4234_shutdown(cs4234);
return 0;
}
static int __maybe_unused cs4234_runtime_resume(struct device *dev)
{
struct cs4234 *cs4234 = dev_get_drvdata(dev);
int ret;
ret = cs4234_powerup(cs4234);
if (ret)
return ret;
regcache_mark_dirty(cs4234->regmap);
regcache_cache_only(cs4234->regmap, false);
ret = regcache_sync(cs4234->regmap);
if (ret) {
dev_err(dev, "Failed to sync regmap: %d\n", ret);
cs4234_shutdown(cs4234);
return ret;
}
return 0;
}
static int __maybe_unused cs4234_runtime_suspend(struct device *dev)
{
struct cs4234 *cs4234 = dev_get_drvdata(dev);
cs4234_shutdown(cs4234);
return 0;
}
static const struct dev_pm_ops cs4234_pm = {
SET_RUNTIME_PM_OPS(cs4234_runtime_suspend, cs4234_runtime_resume, NULL)
};
static const struct of_device_id cs4234_of_match[] = {
{ .compatible = "cirrus,cs4234", },
{ }
};
MODULE_DEVICE_TABLE(of, cs4234_of_match);
static struct i2c_driver cs4234_i2c_driver = {
.driver = {
.name = "cs4234",
.pm = &cs4234_pm,
.of_match_table = cs4234_of_match,
},
.probe = cs4234_i2c_probe,
.remove = cs4234_i2c_remove,
};
module_i2c_driver(cs4234_i2c_driver);
MODULE_DESCRIPTION("ASoC Cirrus Logic CS4234 driver");
MODULE_AUTHOR("Lucas Tanure <tanureal@opensource.cirrus.com>");
MODULE_LICENSE("GPL v2");