linux/arch/powerpc/kvm/e500_tlb.c

1377 lines
35 KiB
C

/*
* Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, yu.liu@freescale.com
* Scott Wood, scottwood@freescale.com
* Ashish Kalra, ashish.kalra@freescale.com
* Varun Sethi, varun.sethi@freescale.com
*
* Description:
* This file is based on arch/powerpc/kvm/44x_tlb.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/hugetlb.h>
#include <asm/kvm_ppc.h>
#include "e500.h"
#include "trace.h"
#include "timing.h"
#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
static inline unsigned int gtlb0_get_next_victim(
struct kvmppc_vcpu_e500 *vcpu_e500)
{
unsigned int victim;
victim = vcpu_e500->gtlb_nv[0]++;
if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
vcpu_e500->gtlb_nv[0] = 0;
return victim;
}
static inline unsigned int tlb1_max_shadow_size(void)
{
/* reserve one entry for magic page */
return host_tlb_params[1].entries - tlbcam_index - 1;
}
static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
{
return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
}
static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
{
/* Mask off reserved bits. */
mas3 &= MAS3_ATTRIB_MASK;
#ifndef CONFIG_KVM_BOOKE_HV
if (!usermode) {
/* Guest is in supervisor mode,
* so we need to translate guest
* supervisor permissions into user permissions. */
mas3 &= ~E500_TLB_USER_PERM_MASK;
mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
}
mas3 |= E500_TLB_SUPER_PERM_MASK;
#endif
return mas3;
}
static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
{
#ifdef CONFIG_SMP
return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
#else
return mas2 & MAS2_ATTRIB_MASK;
#endif
}
/*
* writing shadow tlb entry to host TLB
*/
static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
uint32_t mas0)
{
unsigned long flags;
local_irq_save(flags);
mtspr(SPRN_MAS0, mas0);
mtspr(SPRN_MAS1, stlbe->mas1);
mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
#ifdef CONFIG_KVM_BOOKE_HV
mtspr(SPRN_MAS8, stlbe->mas8);
#endif
asm volatile("isync; tlbwe" : : : "memory");
#ifdef CONFIG_KVM_BOOKE_HV
/* Must clear mas8 for other host tlbwe's */
mtspr(SPRN_MAS8, 0);
isync();
#endif
local_irq_restore(flags);
trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
stlbe->mas2, stlbe->mas7_3);
}
/*
* Acquire a mas0 with victim hint, as if we just took a TLB miss.
*
* We don't care about the address we're searching for, other than that it's
* in the right set and is not present in the TLB. Using a zero PID and a
* userspace address means we don't have to set and then restore MAS5, or
* calculate a proper MAS6 value.
*/
static u32 get_host_mas0(unsigned long eaddr)
{
unsigned long flags;
u32 mas0;
local_irq_save(flags);
mtspr(SPRN_MAS6, 0);
asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
mas0 = mfspr(SPRN_MAS0);
local_irq_restore(flags);
return mas0;
}
/* sesel is for tlb1 only */
static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
{
u32 mas0;
if (tlbsel == 0) {
mas0 = get_host_mas0(stlbe->mas2);
__write_host_tlbe(stlbe, mas0);
} else {
__write_host_tlbe(stlbe,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(sesel)));
}
}
#ifdef CONFIG_KVM_E500V2
void kvmppc_map_magic(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry magic;
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
unsigned int stid;
pfn_t pfn;
pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
preempt_disable();
stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
MAS1_TSIZE(BOOK3E_PAGESZ_4K);
magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
magic.mas8 = 0;
__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
preempt_enable();
}
#endif
static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int esel)
{
struct kvm_book3e_206_tlb_entry *gtlbe =
get_entry(vcpu_e500, tlbsel, esel);
if (tlbsel == 1 &&
vcpu_e500->gtlb_priv[1][esel].ref.flags & E500_TLB_BITMAP) {
u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
int hw_tlb_indx;
unsigned long flags;
local_irq_save(flags);
while (tmp) {
hw_tlb_indx = __ilog2_u64(tmp & -tmp);
mtspr(SPRN_MAS0,
MAS0_TLBSEL(1) |
MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
mtspr(SPRN_MAS1, 0);
asm volatile("tlbwe");
vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
tmp &= tmp - 1;
}
mb();
vcpu_e500->g2h_tlb1_map[esel] = 0;
vcpu_e500->gtlb_priv[1][esel].ref.flags &= ~E500_TLB_BITMAP;
local_irq_restore(flags);
return;
}
/* Guest tlbe is backed by at most one host tlbe per shadow pid. */
kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
}
static int tlb0_set_base(gva_t addr, int sets, int ways)
{
int set_base;
set_base = (addr >> PAGE_SHIFT) & (sets - 1);
set_base *= ways;
return set_base;
}
static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
{
return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
vcpu_e500->gtlb_params[0].ways);
}
static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int esel = get_tlb_esel_bit(vcpu);
if (tlbsel == 0) {
esel &= vcpu_e500->gtlb_params[0].ways - 1;
esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
} else {
esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
}
return esel;
}
/* Search the guest TLB for a matching entry. */
static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
gva_t eaddr, int tlbsel, unsigned int pid, int as)
{
int size = vcpu_e500->gtlb_params[tlbsel].entries;
unsigned int set_base, offset;
int i;
if (tlbsel == 0) {
set_base = gtlb0_set_base(vcpu_e500, eaddr);
size = vcpu_e500->gtlb_params[0].ways;
} else {
if (eaddr < vcpu_e500->tlb1_min_eaddr ||
eaddr > vcpu_e500->tlb1_max_eaddr)
return -1;
set_base = 0;
}
offset = vcpu_e500->gtlb_offset[tlbsel];
for (i = 0; i < size; i++) {
struct kvm_book3e_206_tlb_entry *tlbe =
&vcpu_e500->gtlb_arch[offset + set_base + i];
unsigned int tid;
if (eaddr < get_tlb_eaddr(tlbe))
continue;
if (eaddr > get_tlb_end(tlbe))
continue;
tid = get_tlb_tid(tlbe);
if (tid && (tid != pid))
continue;
if (!get_tlb_v(tlbe))
continue;
if (get_tlb_ts(tlbe) != as && as != -1)
continue;
return set_base + i;
}
return -1;
}
static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
struct kvm_book3e_206_tlb_entry *gtlbe,
pfn_t pfn)
{
ref->pfn = pfn;
ref->flags = E500_TLB_VALID;
if (tlbe_is_writable(gtlbe))
ref->flags |= E500_TLB_DIRTY;
}
static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
{
if (ref->flags & E500_TLB_VALID) {
if (ref->flags & E500_TLB_DIRTY)
kvm_release_pfn_dirty(ref->pfn);
else
kvm_release_pfn_clean(ref->pfn);
ref->flags = 0;
}
}
static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
{
if (vcpu_e500->g2h_tlb1_map)
memset(vcpu_e500->g2h_tlb1_map, 0,
sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
if (vcpu_e500->h2g_tlb1_rmap)
memset(vcpu_e500->h2g_tlb1_rmap, 0,
sizeof(unsigned int) * host_tlb_params[1].entries);
}
static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int tlbsel = 0;
int i;
for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
struct tlbe_ref *ref =
&vcpu_e500->gtlb_priv[tlbsel][i].ref;
kvmppc_e500_ref_release(ref);
}
}
static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int stlbsel = 1;
int i;
kvmppc_e500_tlbil_all(vcpu_e500);
for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
struct tlbe_ref *ref =
&vcpu_e500->tlb_refs[stlbsel][i];
kvmppc_e500_ref_release(ref);
}
clear_tlb_privs(vcpu_e500);
}
static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
unsigned int eaddr, int as)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
unsigned int victim, tsized;
int tlbsel;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
| MAS1_TID(get_tlbmiss_tid(vcpu))
| MAS1_TSIZE(tsized);
vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
| (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
| (get_cur_pid(vcpu) << 16)
| (as ? MAS6_SAS : 0);
}
/* TID must be supplied by the caller */
static inline void kvmppc_e500_setup_stlbe(
struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe,
int tsize, struct tlbe_ref *ref, u64 gvaddr,
struct kvm_book3e_206_tlb_entry *stlbe)
{
pfn_t pfn = ref->pfn;
u32 pr = vcpu->arch.shared->msr & MSR_PR;
BUG_ON(!(ref->flags & E500_TLB_VALID));
/* Force IPROT=0 for all guest mappings. */
stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
stlbe->mas2 = (gvaddr & MAS2_EPN) |
e500_shadow_mas2_attrib(gtlbe->mas2, pr);
stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
#ifdef CONFIG_KVM_BOOKE_HV
stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
#endif
}
static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
struct tlbe_ref *ref)
{
struct kvm_memory_slot *slot;
unsigned long pfn, hva;
int pfnmap = 0;
int tsize = BOOK3E_PAGESZ_4K;
/*
* Translate guest physical to true physical, acquiring
* a page reference if it is normal, non-reserved memory.
*
* gfn_to_memslot() must succeed because otherwise we wouldn't
* have gotten this far. Eventually we should just pass the slot
* pointer through from the first lookup.
*/
slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
hva = gfn_to_hva_memslot(slot, gfn);
if (tlbsel == 1) {
struct vm_area_struct *vma;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, hva);
if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_PFNMAP)) {
/*
* This VMA is a physically contiguous region (e.g.
* /dev/mem) that bypasses normal Linux page
* management. Find the overlap between the
* vma and the memslot.
*/
unsigned long start, end;
unsigned long slot_start, slot_end;
pfnmap = 1;
start = vma->vm_pgoff;
end = start +
((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
slot_start = pfn - (gfn - slot->base_gfn);
slot_end = slot_start + slot->npages;
if (start < slot_start)
start = slot_start;
if (end > slot_end)
end = slot_end;
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
/*
* Now find the largest tsize (up to what the guest
* requested) that will cover gfn, stay within the
* range, and for which gfn and pfn are mutually
* aligned.
*/
for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
unsigned long gfn_start, gfn_end, tsize_pages;
tsize_pages = 1 << (tsize - 2);
gfn_start = gfn & ~(tsize_pages - 1);
gfn_end = gfn_start + tsize_pages;
if (gfn_start + pfn - gfn < start)
continue;
if (gfn_end + pfn - gfn > end)
continue;
if ((gfn & (tsize_pages - 1)) !=
(pfn & (tsize_pages - 1)))
continue;
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
pfn &= ~(tsize_pages - 1);
break;
}
} else if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_HUGETLB)) {
unsigned long psize = vma_kernel_pagesize(vma);
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* Take the largest page size that satisfies both host
* and guest mapping
*/
tsize = min(__ilog2(psize) - 10, tsize);
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
}
up_read(&current->mm->mmap_sem);
}
if (likely(!pfnmap)) {
unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
pfn = gfn_to_pfn_memslot(slot, gfn);
if (is_error_pfn(pfn)) {
printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
(long)gfn);
return;
}
/* Align guest and physical address to page map boundaries */
pfn &= ~(tsize_pages - 1);
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
}
/* Drop old ref and setup new one. */
kvmppc_e500_ref_release(ref);
kvmppc_e500_ref_setup(ref, gtlbe, pfn);
kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
ref, gvaddr, stlbe);
/* Clear i-cache for new pages */
kvmppc_mmu_flush_icache(pfn);
}
/* XXX only map the one-one case, for now use TLB0 */
static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
int esel,
struct kvm_book3e_206_tlb_entry *stlbe)
{
struct kvm_book3e_206_tlb_entry *gtlbe;
struct tlbe_ref *ref;
gtlbe = get_entry(vcpu_e500, 0, esel);
ref = &vcpu_e500->gtlb_priv[0][esel].ref;
kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
gtlbe, 0, stlbe, ref);
}
/* Caller must ensure that the specified guest TLB entry is safe to insert into
* the shadow TLB. */
/* XXX for both one-one and one-to-many , for now use TLB1 */
static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe, int esel)
{
struct tlbe_ref *ref;
unsigned int victim;
victim = vcpu_e500->host_tlb1_nv++;
if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
vcpu_e500->host_tlb1_nv = 0;
ref = &vcpu_e500->tlb_refs[1][victim];
kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref);
vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << victim;
vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
if (vcpu_e500->h2g_tlb1_rmap[victim]) {
unsigned int idx = vcpu_e500->h2g_tlb1_rmap[victim];
vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << victim);
}
vcpu_e500->h2g_tlb1_rmap[victim] = esel;
return victim;
}
static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int size = vcpu_e500->gtlb_params[1].entries;
unsigned int offset;
gva_t eaddr;
int i;
vcpu_e500->tlb1_min_eaddr = ~0UL;
vcpu_e500->tlb1_max_eaddr = 0;
offset = vcpu_e500->gtlb_offset[1];
for (i = 0; i < size; i++) {
struct kvm_book3e_206_tlb_entry *tlbe =
&vcpu_e500->gtlb_arch[offset + i];
if (!get_tlb_v(tlbe))
continue;
eaddr = get_tlb_eaddr(tlbe);
vcpu_e500->tlb1_min_eaddr =
min(vcpu_e500->tlb1_min_eaddr, eaddr);
eaddr = get_tlb_end(tlbe);
vcpu_e500->tlb1_max_eaddr =
max(vcpu_e500->tlb1_max_eaddr, eaddr);
}
}
static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
unsigned long start, end, size;
size = get_tlb_bytes(gtlbe);
start = get_tlb_eaddr(gtlbe) & ~(size - 1);
end = start + size - 1;
return vcpu_e500->tlb1_min_eaddr == start ||
vcpu_e500->tlb1_max_eaddr == end;
}
/* This function is supposed to be called for a adding a new valid tlb entry */
static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu,
struct kvm_book3e_206_tlb_entry *gtlbe)
{
unsigned long start, end, size;
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
if (!get_tlb_v(gtlbe))
return;
size = get_tlb_bytes(gtlbe);
start = get_tlb_eaddr(gtlbe) & ~(size - 1);
end = start + size - 1;
vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start);
vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end);
}
static inline int kvmppc_e500_gtlbe_invalidate(
struct kvmppc_vcpu_e500 *vcpu_e500,
int tlbsel, int esel)
{
struct kvm_book3e_206_tlb_entry *gtlbe =
get_entry(vcpu_e500, tlbsel, esel);
if (unlikely(get_tlb_iprot(gtlbe)))
return -1;
if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
kvmppc_recalc_tlb1map_range(vcpu_e500);
gtlbe->mas1 = 0;
return 0;
}
int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
{
int esel;
if (value & MMUCSR0_TLB0FI)
for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
if (value & MMUCSR0_TLB1FI)
for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
/* Invalidate all vcpu id mappings */
kvmppc_e500_tlbil_all(vcpu_e500);
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
unsigned int ia;
int esel, tlbsel;
gva_t ea;
ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
ia = (ea >> 2) & 0x1;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = (ea >> 3) & 0x1;
if (ia) {
/* invalidate all entries */
for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
esel++)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
} else {
ea &= 0xfffff000;
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
get_cur_pid(vcpu), -1);
if (esel >= 0)
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
}
/* Invalidate all vcpu id mappings */
kvmppc_e500_tlbil_all(vcpu_e500);
return EMULATE_DONE;
}
static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
int pid, int rt)
{
struct kvm_book3e_206_tlb_entry *tlbe;
int tid, esel;
/* invalidate all entries */
for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
tlbe = get_entry(vcpu_e500, tlbsel, esel);
tid = get_tlb_tid(tlbe);
if (rt == 0 || tid == pid) {
inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
}
}
}
static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
int ra, int rb)
{
int tlbsel, esel;
gva_t ea;
ea = kvmppc_get_gpr(&vcpu_e500->vcpu, rb);
if (ra)
ea += kvmppc_get_gpr(&vcpu_e500->vcpu, ra);
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
if (esel >= 0) {
inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
break;
}
}
}
int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int rt, int ra, int rb)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int pid = get_cur_spid(vcpu);
if (rt == 0 || rt == 1) {
tlbilx_all(vcpu_e500, 0, pid, rt);
tlbilx_all(vcpu_e500, 1, pid, rt);
} else if (rt == 3) {
tlbilx_one(vcpu_e500, pid, ra, rb);
}
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int tlbsel, esel;
struct kvm_book3e_206_tlb_entry *gtlbe;
tlbsel = get_tlb_tlbsel(vcpu);
esel = get_tlb_esel(vcpu, tlbsel);
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 = gtlbe->mas1;
vcpu->arch.shared->mas2 = gtlbe->mas2;
vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
return EMULATE_DONE;
}
int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int as = !!get_cur_sas(vcpu);
unsigned int pid = get_cur_spid(vcpu);
int esel, tlbsel;
struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
gva_t ea;
ea = kvmppc_get_gpr(vcpu, rb);
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
if (esel >= 0) {
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
break;
}
}
if (gtlbe) {
esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 = gtlbe->mas1;
vcpu->arch.shared->mas2 = gtlbe->mas2;
vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
} else {
int victim;
/* since we only have two TLBs, only lower bit is used. */
tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
| MAS0_ESEL(victim)
| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
vcpu->arch.shared->mas1 =
(vcpu->arch.shared->mas6 & MAS6_SPID0)
| (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0))
| (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
vcpu->arch.shared->mas2 &= MAS2_EPN;
vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
MAS2_ATTRIB_MASK;
vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
MAS3_U2 | MAS3_U3;
}
kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
return EMULATE_DONE;
}
/* sesel is for tlb1 only */
static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
struct kvm_book3e_206_tlb_entry *gtlbe,
struct kvm_book3e_206_tlb_entry *stlbe,
int stlbsel, int sesel)
{
int stid;
preempt_disable();
stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
stlbe->mas1 |= MAS1_TID(stid);
write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
preempt_enable();
}
int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
int tlbsel, esel, stlbsel, sesel;
int recal = 0;
tlbsel = get_tlb_tlbsel(vcpu);
esel = get_tlb_esel(vcpu, tlbsel);
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
if (get_tlb_v(gtlbe)) {
inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
if ((tlbsel == 1) &&
kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
recal = 1;
}
gtlbe->mas1 = vcpu->arch.shared->mas1;
gtlbe->mas2 = vcpu->arch.shared->mas2;
gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
gtlbe->mas2, gtlbe->mas7_3);
if (tlbsel == 1) {
/*
* If a valid tlb1 entry is overwritten then recalculate the
* min/max TLB1 map address range otherwise no need to look
* in tlb1 array.
*/
if (recal)
kvmppc_recalc_tlb1map_range(vcpu_e500);
else
kvmppc_set_tlb1map_range(vcpu, gtlbe);
}
/* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
if (tlbe_is_host_safe(vcpu, gtlbe)) {
u64 eaddr;
u64 raddr;
switch (tlbsel) {
case 0:
/* TLB0 */
gtlbe->mas1 &= ~MAS1_TSIZE(~0);
gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
stlbsel = 0;
kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
sesel = 0; /* unused */
break;
case 1:
/* TLB1 */
eaddr = get_tlb_eaddr(gtlbe);
raddr = get_tlb_raddr(gtlbe);
/* Create a 4KB mapping on the host.
* If the guest wanted a large page,
* only the first 4KB is mapped here and the rest
* are mapped on the fly. */
stlbsel = 1;
sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
raddr >> PAGE_SHIFT, gtlbe, &stlbe, esel);
break;
default:
BUG();
}
write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
}
kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
return EMULATE_DONE;
}
static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
gva_t eaddr, unsigned int pid, int as)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
int esel, tlbsel;
for (tlbsel = 0; tlbsel < 2; tlbsel++) {
esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
if (esel >= 0)
return index_of(tlbsel, esel);
}
return -1;
}
/* 'linear_address' is actually an encoding of AS|PID|EADDR . */
int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
int index;
gva_t eaddr;
u8 pid;
u8 as;
eaddr = tr->linear_address;
pid = (tr->linear_address >> 32) & 0xff;
as = (tr->linear_address >> 40) & 0x1;
index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
if (index < 0) {
tr->valid = 0;
return 0;
}
tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
/* XXX what does "writeable" and "usermode" even mean? */
tr->valid = 1;
return 0;
}
int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
}
int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
}
void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
}
void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
{
unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
}
gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
gva_t eaddr)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_entry *gtlbe;
u64 pgmask;
gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
pgmask = get_tlb_bytes(gtlbe) - 1;
return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
}
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
unsigned int index)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct tlbe_priv *priv;
struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
int tlbsel = tlbsel_of(index);
int esel = esel_of(index);
int stlbsel, sesel;
gtlbe = get_entry(vcpu_e500, tlbsel, esel);
switch (tlbsel) {
case 0:
stlbsel = 0;
sesel = 0; /* unused */
priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
&priv->ref, eaddr, &stlbe);
break;
case 1: {
gfn_t gfn = gpaddr >> PAGE_SHIFT;
stlbsel = 1;
sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
gtlbe, &stlbe, esel);
break;
}
default:
BUG();
break;
}
write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
}
static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
{
int i;
clear_tlb1_bitmap(vcpu_e500);
kfree(vcpu_e500->g2h_tlb1_map);
clear_tlb_refs(vcpu_e500);
kfree(vcpu_e500->gtlb_priv[0]);
kfree(vcpu_e500->gtlb_priv[1]);
if (vcpu_e500->shared_tlb_pages) {
vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
PAGE_SIZE)));
for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
put_page(vcpu_e500->shared_tlb_pages[i]);
}
vcpu_e500->num_shared_tlb_pages = 0;
vcpu_e500->shared_tlb_pages = NULL;
} else {
kfree(vcpu_e500->gtlb_arch);
}
vcpu_e500->gtlb_arch = NULL;
}
void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
sregs->u.e.mas0 = vcpu->arch.shared->mas0;
sregs->u.e.mas1 = vcpu->arch.shared->mas1;
sregs->u.e.mas2 = vcpu->arch.shared->mas2;
sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
sregs->u.e.mas4 = vcpu->arch.shared->mas4;
sregs->u.e.mas6 = vcpu->arch.shared->mas6;
sregs->u.e.mmucfg = vcpu->arch.mmucfg;
sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
sregs->u.e.tlbcfg[2] = 0;
sregs->u.e.tlbcfg[3] = 0;
}
int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
vcpu->arch.shared->mas0 = sregs->u.e.mas0;
vcpu->arch.shared->mas1 = sregs->u.e.mas1;
vcpu->arch.shared->mas2 = sregs->u.e.mas2;
vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
vcpu->arch.shared->mas4 = sregs->u.e.mas4;
vcpu->arch.shared->mas6 = sregs->u.e.mas6;
}
return 0;
}
int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
struct kvm_config_tlb *cfg)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
struct kvm_book3e_206_tlb_params params;
char *virt;
struct page **pages;
struct tlbe_priv *privs[2] = {};
u64 *g2h_bitmap = NULL;
size_t array_len;
u32 sets;
int num_pages, ret, i;
if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
return -EINVAL;
if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
sizeof(params)))
return -EFAULT;
if (params.tlb_sizes[1] > 64)
return -EINVAL;
if (params.tlb_ways[1] != params.tlb_sizes[1])
return -EINVAL;
if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
return -EINVAL;
if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
return -EINVAL;
if (!is_power_of_2(params.tlb_ways[0]))
return -EINVAL;
sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
if (!is_power_of_2(sets))
return -EINVAL;
array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
if (cfg->array_len < array_len)
return -EINVAL;
num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
cfg->array / PAGE_SIZE;
pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
if (!pages)
return -ENOMEM;
ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
if (ret < 0)
goto err_pages;
if (ret != num_pages) {
num_pages = ret;
ret = -EFAULT;
goto err_put_page;
}
virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
if (!virt)
goto err_put_page;
privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
GFP_KERNEL);
privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
GFP_KERNEL);
if (!privs[0] || !privs[1])
goto err_put_page;
g2h_bitmap = kzalloc(sizeof(u64) * params.tlb_sizes[1],
GFP_KERNEL);
if (!g2h_bitmap)
goto err_put_page;
free_gtlb(vcpu_e500);
vcpu_e500->gtlb_priv[0] = privs[0];
vcpu_e500->gtlb_priv[1] = privs[1];
vcpu_e500->g2h_tlb1_map = g2h_bitmap;
vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
(virt + (cfg->array & (PAGE_SIZE - 1)));
vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
vcpu_e500->gtlb_offset[0] = 0;
vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
if (params.tlb_sizes[0] <= 2048)
vcpu->arch.tlbcfg[0] |= params.tlb_sizes[0];
vcpu->arch.tlbcfg[0] |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
vcpu->arch.tlbcfg[1] |= params.tlb_sizes[1];
vcpu->arch.tlbcfg[1] |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
vcpu_e500->shared_tlb_pages = pages;
vcpu_e500->num_shared_tlb_pages = num_pages;
vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
vcpu_e500->gtlb_params[0].sets = sets;
vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
vcpu_e500->gtlb_params[1].sets = 1;
kvmppc_recalc_tlb1map_range(vcpu_e500);
return 0;
err_put_page:
kfree(privs[0]);
kfree(privs[1]);
for (i = 0; i < num_pages; i++)
put_page(pages[i]);
err_pages:
kfree(pages);
return ret;
}
int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
struct kvm_dirty_tlb *dirty)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
kvmppc_recalc_tlb1map_range(vcpu_e500);
clear_tlb_refs(vcpu_e500);
return 0;
}
int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
{
struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
/*
* This should never happen on real e500 hardware, but is
* architecturally possible -- e.g. in some weird nested
* virtualization case.
*/
if (host_tlb_params[0].entries == 0 ||
host_tlb_params[1].entries == 0) {
pr_err("%s: need to know host tlb size\n", __func__);
return -ENODEV;
}
host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
TLBnCFG_ASSOC_SHIFT;
host_tlb_params[1].ways = host_tlb_params[1].entries;
if (!is_power_of_2(host_tlb_params[0].entries) ||
!is_power_of_2(host_tlb_params[0].ways) ||
host_tlb_params[0].entries < host_tlb_params[0].ways ||
host_tlb_params[0].ways == 0) {
pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
__func__, host_tlb_params[0].entries,
host_tlb_params[0].ways);
return -ENODEV;
}
host_tlb_params[0].sets =
host_tlb_params[0].entries / host_tlb_params[0].ways;
host_tlb_params[1].sets = 1;
vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
vcpu_e500->gtlb_params[0].sets =
KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
vcpu_e500->gtlb_params[1].sets = 1;
vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
if (!vcpu_e500->gtlb_arch)
return -ENOMEM;
vcpu_e500->gtlb_offset[0] = 0;
vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
vcpu_e500->tlb_refs[0] =
kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
GFP_KERNEL);
if (!vcpu_e500->tlb_refs[0])
goto err;
vcpu_e500->tlb_refs[1] =
kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->tlb_refs[1])
goto err;
vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
vcpu_e500->gtlb_params[0].entries,
GFP_KERNEL);
if (!vcpu_e500->gtlb_priv[0])
goto err;
vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
vcpu_e500->gtlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->gtlb_priv[1])
goto err;
vcpu_e500->g2h_tlb1_map = kzalloc(sizeof(unsigned int) *
vcpu_e500->gtlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->g2h_tlb1_map)
goto err;
vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
host_tlb_params[1].entries,
GFP_KERNEL);
if (!vcpu_e500->h2g_tlb1_rmap)
goto err;
/* Init TLB configuration register */
vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[0].entries;
vcpu->arch.tlbcfg[0] |=
vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT;
vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
vcpu->arch.tlbcfg[1] |= vcpu_e500->gtlb_params[1].entries;
vcpu->arch.tlbcfg[1] |=
vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT;
kvmppc_recalc_tlb1map_range(vcpu_e500);
return 0;
err:
free_gtlb(vcpu_e500);
kfree(vcpu_e500->tlb_refs[0]);
kfree(vcpu_e500->tlb_refs[1]);
return -1;
}
void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
{
free_gtlb(vcpu_e500);
kfree(vcpu_e500->h2g_tlb1_rmap);
kfree(vcpu_e500->tlb_refs[0]);
kfree(vcpu_e500->tlb_refs[1]);
}