linux/net/xfrm/xfrm_state.c

2855 lines
66 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* xfrm_state.c
*
* Changes:
* Mitsuru KANDA @USAGI
* Kazunori MIYAZAWA @USAGI
* Kunihiro Ishiguro <kunihiro@ipinfusion.com>
* IPv6 support
* YOSHIFUJI Hideaki @USAGI
* Split up af-specific functions
* Derek Atkins <derek@ihtfp.com>
* Add UDP Encapsulation
*
*/
#include <linux/workqueue.h>
#include <net/xfrm.h>
#include <linux/pfkeyv2.h>
#include <linux/ipsec.h>
#include <linux/module.h>
#include <linux/cache.h>
#include <linux/audit.h>
#include <linux/uaccess.h>
#include <linux/ktime.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <crypto/aead.h>
#include "xfrm_hash.h"
#define xfrm_state_deref_prot(table, net) \
rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock))
static void xfrm_state_gc_task(struct work_struct *work);
/* Each xfrm_state may be linked to two tables:
1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
2. Hash table by (daddr,family,reqid) to find what SAs exist for given
destination/tunnel endpoint. (output)
*/
static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
static __read_mostly seqcount_t xfrm_state_hash_generation = SEQCNT_ZERO(xfrm_state_hash_generation);
static struct kmem_cache *xfrm_state_cache __ro_after_init;
static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task);
static HLIST_HEAD(xfrm_state_gc_list);
static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x)
{
return refcount_inc_not_zero(&x->refcnt);
}
static inline unsigned int xfrm_dst_hash(struct net *net,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
u32 reqid,
unsigned short family)
{
return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
}
static inline unsigned int xfrm_src_hash(struct net *net,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
unsigned short family)
{
return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
}
static inline unsigned int
xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr,
__be32 spi, u8 proto, unsigned short family)
{
return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
}
static void xfrm_hash_transfer(struct hlist_head *list,
struct hlist_head *ndsttable,
struct hlist_head *nsrctable,
struct hlist_head *nspitable,
unsigned int nhashmask)
{
struct hlist_node *tmp;
struct xfrm_state *x;
hlist_for_each_entry_safe(x, tmp, list, bydst) {
unsigned int h;
h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
x->props.reqid, x->props.family,
nhashmask);
hlist_add_head_rcu(&x->bydst, ndsttable + h);
h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
x->props.family,
nhashmask);
hlist_add_head_rcu(&x->bysrc, nsrctable + h);
if (x->id.spi) {
h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
x->id.proto, x->props.family,
nhashmask);
hlist_add_head_rcu(&x->byspi, nspitable + h);
}
}
}
static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
{
return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
}
static void xfrm_hash_resize(struct work_struct *work)
{
struct net *net = container_of(work, struct net, xfrm.state_hash_work);
struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi;
unsigned long nsize, osize;
unsigned int nhashmask, ohashmask;
int i;
nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
ndst = xfrm_hash_alloc(nsize);
if (!ndst)
return;
nsrc = xfrm_hash_alloc(nsize);
if (!nsrc) {
xfrm_hash_free(ndst, nsize);
return;
}
nspi = xfrm_hash_alloc(nsize);
if (!nspi) {
xfrm_hash_free(ndst, nsize);
xfrm_hash_free(nsrc, nsize);
return;
}
spin_lock_bh(&net->xfrm.xfrm_state_lock);
write_seqcount_begin(&xfrm_state_hash_generation);
nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net);
for (i = net->xfrm.state_hmask; i >= 0; i--)
xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nhashmask);
osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net);
ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net);
ohashmask = net->xfrm.state_hmask;
rcu_assign_pointer(net->xfrm.state_bydst, ndst);
rcu_assign_pointer(net->xfrm.state_bysrc, nsrc);
rcu_assign_pointer(net->xfrm.state_byspi, nspi);
net->xfrm.state_hmask = nhashmask;
write_seqcount_end(&xfrm_state_hash_generation);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
osize = (ohashmask + 1) * sizeof(struct hlist_head);
synchronize_rcu();
xfrm_hash_free(odst, osize);
xfrm_hash_free(osrc, osize);
xfrm_hash_free(ospi, osize);
}
static DEFINE_SPINLOCK(xfrm_state_afinfo_lock);
static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO];
static DEFINE_SPINLOCK(xfrm_state_gc_lock);
int __xfrm_state_delete(struct xfrm_state *x);
int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
static bool km_is_alive(const struct km_event *c);
void km_state_expired(struct xfrm_state *x, int hard, u32 portid);
int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
int err = 0;
if (!afinfo)
return -EAFNOSUPPORT;
#define X(afi, T, name) do { \
WARN_ON((afi)->type_ ## name); \
(afi)->type_ ## name = (T); \
} while (0)
switch (type->proto) {
case IPPROTO_COMP:
X(afinfo, type, comp);
break;
case IPPROTO_AH:
X(afinfo, type, ah);
break;
case IPPROTO_ESP:
X(afinfo, type, esp);
break;
case IPPROTO_IPIP:
X(afinfo, type, ipip);
break;
case IPPROTO_DSTOPTS:
X(afinfo, type, dstopts);
break;
case IPPROTO_ROUTING:
X(afinfo, type, routing);
break;
case IPPROTO_IPV6:
X(afinfo, type, ipip6);
break;
default:
WARN_ON(1);
err = -EPROTONOSUPPORT;
break;
}
#undef X
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(xfrm_register_type);
void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return;
#define X(afi, T, name) do { \
WARN_ON((afi)->type_ ## name != (T)); \
(afi)->type_ ## name = NULL; \
} while (0)
switch (type->proto) {
case IPPROTO_COMP:
X(afinfo, type, comp);
break;
case IPPROTO_AH:
X(afinfo, type, ah);
break;
case IPPROTO_ESP:
X(afinfo, type, esp);
break;
case IPPROTO_IPIP:
X(afinfo, type, ipip);
break;
case IPPROTO_DSTOPTS:
X(afinfo, type, dstopts);
break;
case IPPROTO_ROUTING:
X(afinfo, type, routing);
break;
case IPPROTO_IPV6:
X(afinfo, type, ipip6);
break;
default:
WARN_ON(1);
break;
}
#undef X
rcu_read_unlock();
}
EXPORT_SYMBOL(xfrm_unregister_type);
static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
{
const struct xfrm_type *type = NULL;
struct xfrm_state_afinfo *afinfo;
int modload_attempted = 0;
retry:
afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return NULL;
switch (proto) {
case IPPROTO_COMP:
type = afinfo->type_comp;
break;
case IPPROTO_AH:
type = afinfo->type_ah;
break;
case IPPROTO_ESP:
type = afinfo->type_esp;
break;
case IPPROTO_IPIP:
type = afinfo->type_ipip;
break;
case IPPROTO_DSTOPTS:
type = afinfo->type_dstopts;
break;
case IPPROTO_ROUTING:
type = afinfo->type_routing;
break;
case IPPROTO_IPV6:
type = afinfo->type_ipip6;
break;
default:
break;
}
if (unlikely(type && !try_module_get(type->owner)))
type = NULL;
rcu_read_unlock();
if (!type && !modload_attempted) {
request_module("xfrm-type-%d-%d", family, proto);
modload_attempted = 1;
goto retry;
}
return type;
}
static void xfrm_put_type(const struct xfrm_type *type)
{
module_put(type->owner);
}
int xfrm_register_type_offload(const struct xfrm_type_offload *type,
unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
int err = 0;
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
switch (type->proto) {
case IPPROTO_ESP:
WARN_ON(afinfo->type_offload_esp);
afinfo->type_offload_esp = type;
break;
default:
WARN_ON(1);
err = -EPROTONOSUPPORT;
break;
}
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(xfrm_register_type_offload);
void xfrm_unregister_type_offload(const struct xfrm_type_offload *type,
unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return;
switch (type->proto) {
case IPPROTO_ESP:
WARN_ON(afinfo->type_offload_esp != type);
afinfo->type_offload_esp = NULL;
break;
default:
WARN_ON(1);
break;
}
rcu_read_unlock();
}
EXPORT_SYMBOL(xfrm_unregister_type_offload);
static const struct xfrm_type_offload *
xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load)
{
const struct xfrm_type_offload *type = NULL;
struct xfrm_state_afinfo *afinfo;
retry:
afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return NULL;
switch (proto) {
case IPPROTO_ESP:
type = afinfo->type_offload_esp;
break;
default:
break;
}
if ((type && !try_module_get(type->owner)))
type = NULL;
rcu_read_unlock();
if (!type && try_load) {
request_module("xfrm-offload-%d-%d", family, proto);
try_load = false;
goto retry;
}
return type;
}
static void xfrm_put_type_offload(const struct xfrm_type_offload *type)
{
module_put(type->owner);
}
static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = {
[XFRM_MODE_BEET] = {
.encap = XFRM_MODE_BEET,
.flags = XFRM_MODE_FLAG_TUNNEL,
.family = AF_INET,
},
[XFRM_MODE_TRANSPORT] = {
.encap = XFRM_MODE_TRANSPORT,
.family = AF_INET,
},
[XFRM_MODE_TUNNEL] = {
.encap = XFRM_MODE_TUNNEL,
.flags = XFRM_MODE_FLAG_TUNNEL,
.family = AF_INET,
},
};
static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = {
[XFRM_MODE_BEET] = {
.encap = XFRM_MODE_BEET,
.flags = XFRM_MODE_FLAG_TUNNEL,
.family = AF_INET6,
},
[XFRM_MODE_ROUTEOPTIMIZATION] = {
.encap = XFRM_MODE_ROUTEOPTIMIZATION,
.family = AF_INET6,
},
[XFRM_MODE_TRANSPORT] = {
.encap = XFRM_MODE_TRANSPORT,
.family = AF_INET6,
},
[XFRM_MODE_TUNNEL] = {
.encap = XFRM_MODE_TUNNEL,
.flags = XFRM_MODE_FLAG_TUNNEL,
.family = AF_INET6,
},
};
static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
{
const struct xfrm_mode *mode;
if (unlikely(encap >= XFRM_MODE_MAX))
return NULL;
switch (family) {
case AF_INET:
mode = &xfrm4_mode_map[encap];
if (mode->family == family)
return mode;
break;
case AF_INET6:
mode = &xfrm6_mode_map[encap];
if (mode->family == family)
return mode;
break;
default:
break;
}
return NULL;
}
void xfrm_state_free(struct xfrm_state *x)
{
kmem_cache_free(xfrm_state_cache, x);
}
EXPORT_SYMBOL(xfrm_state_free);
static void ___xfrm_state_destroy(struct xfrm_state *x)
{
hrtimer_cancel(&x->mtimer);
del_timer_sync(&x->rtimer);
kfree(x->aead);
kfree(x->aalg);
kfree(x->ealg);
kfree(x->calg);
kfree(x->encap);
kfree(x->coaddr);
kfree(x->replay_esn);
kfree(x->preplay_esn);
if (x->type_offload)
xfrm_put_type_offload(x->type_offload);
if (x->type) {
x->type->destructor(x);
xfrm_put_type(x->type);
}
if (x->xfrag.page)
put_page(x->xfrag.page);
xfrm_dev_state_free(x);
security_xfrm_state_free(x);
xfrm_state_free(x);
}
static void xfrm_state_gc_task(struct work_struct *work)
{
struct xfrm_state *x;
struct hlist_node *tmp;
struct hlist_head gc_list;
spin_lock_bh(&xfrm_state_gc_lock);
hlist_move_list(&xfrm_state_gc_list, &gc_list);
spin_unlock_bh(&xfrm_state_gc_lock);
synchronize_rcu();
hlist_for_each_entry_safe(x, tmp, &gc_list, gclist)
___xfrm_state_destroy(x);
}
static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me)
{
struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer);
enum hrtimer_restart ret = HRTIMER_NORESTART;
time64_t now = ktime_get_real_seconds();
time64_t next = TIME64_MAX;
int warn = 0;
int err = 0;
spin_lock(&x->lock);
if (x->km.state == XFRM_STATE_DEAD)
goto out;
if (x->km.state == XFRM_STATE_EXPIRED)
goto expired;
if (x->lft.hard_add_expires_seconds) {
long tmo = x->lft.hard_add_expires_seconds +
x->curlft.add_time - now;
if (tmo <= 0) {
if (x->xflags & XFRM_SOFT_EXPIRE) {
/* enter hard expire without soft expire first?!
* setting a new date could trigger this.
* workaround: fix x->curflt.add_time by below:
*/
x->curlft.add_time = now - x->saved_tmo - 1;
tmo = x->lft.hard_add_expires_seconds - x->saved_tmo;
} else
goto expired;
}
if (tmo < next)
next = tmo;
}
if (x->lft.hard_use_expires_seconds) {
long tmo = x->lft.hard_use_expires_seconds +
(x->curlft.use_time ? : now) - now;
if (tmo <= 0)
goto expired;
if (tmo < next)
next = tmo;
}
if (x->km.dying)
goto resched;
if (x->lft.soft_add_expires_seconds) {
long tmo = x->lft.soft_add_expires_seconds +
x->curlft.add_time - now;
if (tmo <= 0) {
warn = 1;
x->xflags &= ~XFRM_SOFT_EXPIRE;
} else if (tmo < next) {
next = tmo;
x->xflags |= XFRM_SOFT_EXPIRE;
x->saved_tmo = tmo;
}
}
if (x->lft.soft_use_expires_seconds) {
long tmo = x->lft.soft_use_expires_seconds +
(x->curlft.use_time ? : now) - now;
if (tmo <= 0)
warn = 1;
else if (tmo < next)
next = tmo;
}
x->km.dying = warn;
if (warn)
km_state_expired(x, 0, 0);
resched:
if (next != TIME64_MAX) {
hrtimer_forward_now(&x->mtimer, ktime_set(next, 0));
ret = HRTIMER_RESTART;
}
goto out;
expired:
if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0)
x->km.state = XFRM_STATE_EXPIRED;
err = __xfrm_state_delete(x);
if (!err)
km_state_expired(x, 1, 0);
xfrm_audit_state_delete(x, err ? 0 : 1, true);
out:
spin_unlock(&x->lock);
return ret;
}
static void xfrm_replay_timer_handler(struct timer_list *t);
struct xfrm_state *xfrm_state_alloc(struct net *net)
{
struct xfrm_state *x;
x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC);
if (x) {
write_pnet(&x->xs_net, net);
refcount_set(&x->refcnt, 1);
atomic_set(&x->tunnel_users, 0);
INIT_LIST_HEAD(&x->km.all);
INIT_HLIST_NODE(&x->bydst);
INIT_HLIST_NODE(&x->bysrc);
INIT_HLIST_NODE(&x->byspi);
hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT);
x->mtimer.function = xfrm_timer_handler;
timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0);
x->curlft.add_time = ktime_get_real_seconds();
x->lft.soft_byte_limit = XFRM_INF;
x->lft.soft_packet_limit = XFRM_INF;
x->lft.hard_byte_limit = XFRM_INF;
x->lft.hard_packet_limit = XFRM_INF;
x->replay_maxage = 0;
x->replay_maxdiff = 0;
spin_lock_init(&x->lock);
}
return x;
}
EXPORT_SYMBOL(xfrm_state_alloc);
void __xfrm_state_destroy(struct xfrm_state *x, bool sync)
{
WARN_ON(x->km.state != XFRM_STATE_DEAD);
if (sync) {
synchronize_rcu();
___xfrm_state_destroy(x);
} else {
spin_lock_bh(&xfrm_state_gc_lock);
hlist_add_head(&x->gclist, &xfrm_state_gc_list);
spin_unlock_bh(&xfrm_state_gc_lock);
schedule_work(&xfrm_state_gc_work);
}
}
EXPORT_SYMBOL(__xfrm_state_destroy);
int __xfrm_state_delete(struct xfrm_state *x)
{
struct net *net = xs_net(x);
int err = -ESRCH;
if (x->km.state != XFRM_STATE_DEAD) {
x->km.state = XFRM_STATE_DEAD;
spin_lock(&net->xfrm.xfrm_state_lock);
list_del(&x->km.all);
hlist_del_rcu(&x->bydst);
hlist_del_rcu(&x->bysrc);
if (x->id.spi)
hlist_del_rcu(&x->byspi);
net->xfrm.state_num--;
spin_unlock(&net->xfrm.xfrm_state_lock);
if (x->encap_sk)
sock_put(rcu_dereference_raw(x->encap_sk));
xfrm_dev_state_delete(x);
/* All xfrm_state objects are created by xfrm_state_alloc.
* The xfrm_state_alloc call gives a reference, and that
* is what we are dropping here.
*/
xfrm_state_put(x);
err = 0;
}
return err;
}
EXPORT_SYMBOL(__xfrm_state_delete);
int xfrm_state_delete(struct xfrm_state *x)
{
int err;
spin_lock_bh(&x->lock);
err = __xfrm_state_delete(x);
spin_unlock_bh(&x->lock);
return err;
}
EXPORT_SYMBOL(xfrm_state_delete);
#ifdef CONFIG_SECURITY_NETWORK_XFRM
static inline int
xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
{
int i, err = 0;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct xfrm_state *x;
hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
if (xfrm_id_proto_match(x->id.proto, proto) &&
(err = security_xfrm_state_delete(x)) != 0) {
xfrm_audit_state_delete(x, 0, task_valid);
return err;
}
}
}
return err;
}
static inline int
xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
{
int i, err = 0;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct xfrm_state *x;
struct xfrm_state_offload *xso;
hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
xso = &x->xso;
if (xso->dev == dev &&
(err = security_xfrm_state_delete(x)) != 0) {
xfrm_audit_state_delete(x, 0, task_valid);
return err;
}
}
}
return err;
}
#else
static inline int
xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
{
return 0;
}
static inline int
xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
{
return 0;
}
#endif
int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync)
{
int i, err = 0, cnt = 0;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
err = xfrm_state_flush_secctx_check(net, proto, task_valid);
if (err)
goto out;
err = -ESRCH;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct xfrm_state *x;
restart:
hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
if (!xfrm_state_kern(x) &&
xfrm_id_proto_match(x->id.proto, proto)) {
xfrm_state_hold(x);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
err = xfrm_state_delete(x);
xfrm_audit_state_delete(x, err ? 0 : 1,
task_valid);
if (sync)
xfrm_state_put_sync(x);
else
xfrm_state_put(x);
if (!err)
cnt++;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
goto restart;
}
}
}
out:
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
if (cnt)
err = 0;
return err;
}
EXPORT_SYMBOL(xfrm_state_flush);
int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid)
{
int i, err = 0, cnt = 0;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid);
if (err)
goto out;
err = -ESRCH;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct xfrm_state *x;
struct xfrm_state_offload *xso;
restart:
hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
xso = &x->xso;
if (!xfrm_state_kern(x) && xso->dev == dev) {
xfrm_state_hold(x);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
err = xfrm_state_delete(x);
xfrm_audit_state_delete(x, err ? 0 : 1,
task_valid);
xfrm_state_put(x);
if (!err)
cnt++;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
goto restart;
}
}
}
if (cnt)
err = 0;
out:
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return err;
}
EXPORT_SYMBOL(xfrm_dev_state_flush);
void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si)
{
spin_lock_bh(&net->xfrm.xfrm_state_lock);
si->sadcnt = net->xfrm.state_num;
si->sadhcnt = net->xfrm.state_hmask + 1;
si->sadhmcnt = xfrm_state_hashmax;
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_sad_getinfo);
static void
__xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
{
const struct flowi4 *fl4 = &fl->u.ip4;
sel->daddr.a4 = fl4->daddr;
sel->saddr.a4 = fl4->saddr;
sel->dport = xfrm_flowi_dport(fl, &fl4->uli);
sel->dport_mask = htons(0xffff);
sel->sport = xfrm_flowi_sport(fl, &fl4->uli);
sel->sport_mask = htons(0xffff);
sel->family = AF_INET;
sel->prefixlen_d = 32;
sel->prefixlen_s = 32;
sel->proto = fl4->flowi4_proto;
sel->ifindex = fl4->flowi4_oif;
}
static void
__xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
{
const struct flowi6 *fl6 = &fl->u.ip6;
/* Initialize temporary selector matching only to current session. */
*(struct in6_addr *)&sel->daddr = fl6->daddr;
*(struct in6_addr *)&sel->saddr = fl6->saddr;
sel->dport = xfrm_flowi_dport(fl, &fl6->uli);
sel->dport_mask = htons(0xffff);
sel->sport = xfrm_flowi_sport(fl, &fl6->uli);
sel->sport_mask = htons(0xffff);
sel->family = AF_INET6;
sel->prefixlen_d = 128;
sel->prefixlen_s = 128;
sel->proto = fl6->flowi6_proto;
sel->ifindex = fl6->flowi6_oif;
}
static void
xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl,
const struct xfrm_tmpl *tmpl,
const xfrm_address_t *daddr, const xfrm_address_t *saddr,
unsigned short family)
{
switch (family) {
case AF_INET:
__xfrm4_init_tempsel(&x->sel, fl);
break;
case AF_INET6:
__xfrm6_init_tempsel(&x->sel, fl);
break;
}
x->id = tmpl->id;
switch (tmpl->encap_family) {
case AF_INET:
if (x->id.daddr.a4 == 0)
x->id.daddr.a4 = daddr->a4;
x->props.saddr = tmpl->saddr;
if (x->props.saddr.a4 == 0)
x->props.saddr.a4 = saddr->a4;
break;
case AF_INET6:
if (ipv6_addr_any((struct in6_addr *)&x->id.daddr))
memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr));
memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr));
if (ipv6_addr_any((struct in6_addr *)&x->props.saddr))
memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr));
break;
}
x->props.mode = tmpl->mode;
x->props.reqid = tmpl->reqid;
x->props.family = tmpl->encap_family;
}
static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark,
const xfrm_address_t *daddr,
__be32 spi, u8 proto,
unsigned short family)
{
unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
struct xfrm_state *x;
hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) {
if (x->props.family != family ||
x->id.spi != spi ||
x->id.proto != proto ||
!xfrm_addr_equal(&x->id.daddr, daddr, family))
continue;
if ((mark & x->mark.m) != x->mark.v)
continue;
if (!xfrm_state_hold_rcu(x))
continue;
return x;
}
return NULL;
}
static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
u8 proto, unsigned short family)
{
unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
struct xfrm_state *x;
hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) {
if (x->props.family != family ||
x->id.proto != proto ||
!xfrm_addr_equal(&x->id.daddr, daddr, family) ||
!xfrm_addr_equal(&x->props.saddr, saddr, family))
continue;
if ((mark & x->mark.m) != x->mark.v)
continue;
if (!xfrm_state_hold_rcu(x))
continue;
return x;
}
return NULL;
}
static inline struct xfrm_state *
__xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
{
struct net *net = xs_net(x);
u32 mark = x->mark.v & x->mark.m;
if (use_spi)
return __xfrm_state_lookup(net, mark, &x->id.daddr,
x->id.spi, x->id.proto, family);
else
return __xfrm_state_lookup_byaddr(net, mark,
&x->id.daddr,
&x->props.saddr,
x->id.proto, family);
}
static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
{
if (have_hash_collision &&
(net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
net->xfrm.state_num > net->xfrm.state_hmask)
schedule_work(&net->xfrm.state_hash_work);
}
static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
const struct flowi *fl, unsigned short family,
struct xfrm_state **best, int *acq_in_progress,
int *error)
{
/* Resolution logic:
* 1. There is a valid state with matching selector. Done.
* 2. Valid state with inappropriate selector. Skip.
*
* Entering area of "sysdeps".
*
* 3. If state is not valid, selector is temporary, it selects
* only session which triggered previous resolution. Key
* manager will do something to install a state with proper
* selector.
*/
if (x->km.state == XFRM_STATE_VALID) {
if ((x->sel.family &&
(x->sel.family != family ||
!xfrm_selector_match(&x->sel, fl, family))) ||
!security_xfrm_state_pol_flow_match(x, pol, fl))
return;
if (!*best ||
(*best)->km.dying > x->km.dying ||
((*best)->km.dying == x->km.dying &&
(*best)->curlft.add_time < x->curlft.add_time))
*best = x;
} else if (x->km.state == XFRM_STATE_ACQ) {
*acq_in_progress = 1;
} else if (x->km.state == XFRM_STATE_ERROR ||
x->km.state == XFRM_STATE_EXPIRED) {
if ((!x->sel.family ||
(x->sel.family == family &&
xfrm_selector_match(&x->sel, fl, family))) &&
security_xfrm_state_pol_flow_match(x, pol, fl))
*error = -ESRCH;
}
}
struct xfrm_state *
xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr,
const struct flowi *fl, struct xfrm_tmpl *tmpl,
struct xfrm_policy *pol, int *err,
unsigned short family, u32 if_id)
{
static xfrm_address_t saddr_wildcard = { };
struct net *net = xp_net(pol);
unsigned int h, h_wildcard;
struct xfrm_state *x, *x0, *to_put;
int acquire_in_progress = 0;
int error = 0;
struct xfrm_state *best = NULL;
u32 mark = pol->mark.v & pol->mark.m;
unsigned short encap_family = tmpl->encap_family;
unsigned int sequence;
struct km_event c;
to_put = NULL;
sequence = read_seqcount_begin(&xfrm_state_hash_generation);
rcu_read_lock();
h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
if (x->props.family == encap_family &&
x->props.reqid == tmpl->reqid &&
(mark & x->mark.m) == x->mark.v &&
x->if_id == if_id &&
!(x->props.flags & XFRM_STATE_WILDRECV) &&
xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
tmpl->mode == x->props.mode &&
tmpl->id.proto == x->id.proto &&
(tmpl->id.spi == x->id.spi || !tmpl->id.spi))
xfrm_state_look_at(pol, x, fl, family,
&best, &acquire_in_progress, &error);
}
if (best || acquire_in_progress)
goto found;
h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family);
hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) {
if (x->props.family == encap_family &&
x->props.reqid == tmpl->reqid &&
(mark & x->mark.m) == x->mark.v &&
x->if_id == if_id &&
!(x->props.flags & XFRM_STATE_WILDRECV) &&
xfrm_addr_equal(&x->id.daddr, daddr, encap_family) &&
tmpl->mode == x->props.mode &&
tmpl->id.proto == x->id.proto &&
(tmpl->id.spi == x->id.spi || !tmpl->id.spi))
xfrm_state_look_at(pol, x, fl, family,
&best, &acquire_in_progress, &error);
}
found:
x = best;
if (!x && !error && !acquire_in_progress) {
if (tmpl->id.spi &&
(x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi,
tmpl->id.proto, encap_family)) != NULL) {
to_put = x0;
error = -EEXIST;
goto out;
}
c.net = net;
/* If the KMs have no listeners (yet...), avoid allocating an SA
* for each and every packet - garbage collection might not
* handle the flood.
*/
if (!km_is_alive(&c)) {
error = -ESRCH;
goto out;
}
x = xfrm_state_alloc(net);
if (x == NULL) {
error = -ENOMEM;
goto out;
}
/* Initialize temporary state matching only
* to current session. */
xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family);
memcpy(&x->mark, &pol->mark, sizeof(x->mark));
x->if_id = if_id;
error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid);
if (error) {
x->km.state = XFRM_STATE_DEAD;
to_put = x;
x = NULL;
goto out;
}
if (km_query(x, tmpl, pol) == 0) {
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x->km.state = XFRM_STATE_ACQ;
list_add(&x->km.all, &net->xfrm.state_all);
hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
h = xfrm_src_hash(net, daddr, saddr, encap_family);
hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
if (x->id.spi) {
h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family);
hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
}
x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
hrtimer_start(&x->mtimer,
ktime_set(net->xfrm.sysctl_acq_expires, 0),
HRTIMER_MODE_REL_SOFT);
net->xfrm.state_num++;
xfrm_hash_grow_check(net, x->bydst.next != NULL);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
} else {
x->km.state = XFRM_STATE_DEAD;
to_put = x;
x = NULL;
error = -ESRCH;
}
}
out:
if (x) {
if (!xfrm_state_hold_rcu(x)) {
*err = -EAGAIN;
x = NULL;
}
} else {
*err = acquire_in_progress ? -EAGAIN : error;
}
rcu_read_unlock();
if (to_put)
xfrm_state_put(to_put);
if (read_seqcount_retry(&xfrm_state_hash_generation, sequence)) {
*err = -EAGAIN;
if (x) {
xfrm_state_put(x);
x = NULL;
}
}
return x;
}
struct xfrm_state *
xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id,
xfrm_address_t *daddr, xfrm_address_t *saddr,
unsigned short family, u8 mode, u8 proto, u32 reqid)
{
unsigned int h;
struct xfrm_state *rx = NULL, *x = NULL;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
if (x->props.family == family &&
x->props.reqid == reqid &&
(mark & x->mark.m) == x->mark.v &&
x->if_id == if_id &&
!(x->props.flags & XFRM_STATE_WILDRECV) &&
xfrm_state_addr_check(x, daddr, saddr, family) &&
mode == x->props.mode &&
proto == x->id.proto &&
x->km.state == XFRM_STATE_VALID) {
rx = x;
break;
}
}
if (rx)
xfrm_state_hold(rx);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return rx;
}
EXPORT_SYMBOL(xfrm_stateonly_find);
struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi,
unsigned short family)
{
struct xfrm_state *x;
struct xfrm_state_walk *w;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
list_for_each_entry(w, &net->xfrm.state_all, all) {
x = container_of(w, struct xfrm_state, km);
if (x->props.family != family ||
x->id.spi != spi)
continue;
xfrm_state_hold(x);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return x;
}
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return NULL;
}
EXPORT_SYMBOL(xfrm_state_lookup_byspi);
static void __xfrm_state_insert(struct xfrm_state *x)
{
struct net *net = xs_net(x);
unsigned int h;
list_add(&x->km.all, &net->xfrm.state_all);
h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
x->props.reqid, x->props.family);
hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
if (x->id.spi) {
h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
x->props.family);
hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
}
hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
if (x->replay_maxage)
mod_timer(&x->rtimer, jiffies + x->replay_maxage);
net->xfrm.state_num++;
xfrm_hash_grow_check(net, x->bydst.next != NULL);
}
/* net->xfrm.xfrm_state_lock is held */
static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
{
struct net *net = xs_net(xnew);
unsigned short family = xnew->props.family;
u32 reqid = xnew->props.reqid;
struct xfrm_state *x;
unsigned int h;
u32 mark = xnew->mark.v & xnew->mark.m;
u32 if_id = xnew->if_id;
h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
if (x->props.family == family &&
x->props.reqid == reqid &&
x->if_id == if_id &&
(mark & x->mark.m) == x->mark.v &&
xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) &&
xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family))
x->genid++;
}
}
void xfrm_state_insert(struct xfrm_state *x)
{
struct net *net = xs_net(x);
spin_lock_bh(&net->xfrm.xfrm_state_lock);
__xfrm_state_bump_genids(x);
__xfrm_state_insert(x);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_state_insert);
/* net->xfrm.xfrm_state_lock is held */
static struct xfrm_state *__find_acq_core(struct net *net,
const struct xfrm_mark *m,
unsigned short family, u8 mode,
u32 reqid, u32 if_id, u8 proto,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
int create)
{
unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
struct xfrm_state *x;
u32 mark = m->v & m->m;
hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
if (x->props.reqid != reqid ||
x->props.mode != mode ||
x->props.family != family ||
x->km.state != XFRM_STATE_ACQ ||
x->id.spi != 0 ||
x->id.proto != proto ||
(mark & x->mark.m) != x->mark.v ||
!xfrm_addr_equal(&x->id.daddr, daddr, family) ||
!xfrm_addr_equal(&x->props.saddr, saddr, family))
continue;
xfrm_state_hold(x);
return x;
}
if (!create)
return NULL;
x = xfrm_state_alloc(net);
if (likely(x)) {
switch (family) {
case AF_INET:
x->sel.daddr.a4 = daddr->a4;
x->sel.saddr.a4 = saddr->a4;
x->sel.prefixlen_d = 32;
x->sel.prefixlen_s = 32;
x->props.saddr.a4 = saddr->a4;
x->id.daddr.a4 = daddr->a4;
break;
case AF_INET6:
x->sel.daddr.in6 = daddr->in6;
x->sel.saddr.in6 = saddr->in6;
x->sel.prefixlen_d = 128;
x->sel.prefixlen_s = 128;
x->props.saddr.in6 = saddr->in6;
x->id.daddr.in6 = daddr->in6;
break;
}
x->km.state = XFRM_STATE_ACQ;
x->id.proto = proto;
x->props.family = family;
x->props.mode = mode;
x->props.reqid = reqid;
x->if_id = if_id;
x->mark.v = m->v;
x->mark.m = m->m;
x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
xfrm_state_hold(x);
hrtimer_start(&x->mtimer,
ktime_set(net->xfrm.sysctl_acq_expires, 0),
HRTIMER_MODE_REL_SOFT);
list_add(&x->km.all, &net->xfrm.state_all);
hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
h = xfrm_src_hash(net, daddr, saddr, family);
hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
net->xfrm.state_num++;
xfrm_hash_grow_check(net, x->bydst.next != NULL);
}
return x;
}
static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);
int xfrm_state_add(struct xfrm_state *x)
{
struct net *net = xs_net(x);
struct xfrm_state *x1, *to_put;
int family;
int err;
u32 mark = x->mark.v & x->mark.m;
int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
family = x->props.family;
to_put = NULL;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x1 = __xfrm_state_locate(x, use_spi, family);
if (x1) {
to_put = x1;
x1 = NULL;
err = -EEXIST;
goto out;
}
if (use_spi && x->km.seq) {
x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq);
if (x1 && ((x1->id.proto != x->id.proto) ||
!xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) {
to_put = x1;
x1 = NULL;
}
}
if (use_spi && !x1)
x1 = __find_acq_core(net, &x->mark, family, x->props.mode,
x->props.reqid, x->if_id, x->id.proto,
&x->id.daddr, &x->props.saddr, 0);
__xfrm_state_bump_genids(x);
__xfrm_state_insert(x);
err = 0;
out:
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
if (x1) {
xfrm_state_delete(x1);
xfrm_state_put(x1);
}
if (to_put)
xfrm_state_put(to_put);
return err;
}
EXPORT_SYMBOL(xfrm_state_add);
#ifdef CONFIG_XFRM_MIGRATE
static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security)
{
struct xfrm_user_sec_ctx *uctx;
int size = sizeof(*uctx) + security->ctx_len;
int err;
uctx = kmalloc(size, GFP_KERNEL);
if (!uctx)
return -ENOMEM;
uctx->exttype = XFRMA_SEC_CTX;
uctx->len = size;
uctx->ctx_doi = security->ctx_doi;
uctx->ctx_alg = security->ctx_alg;
uctx->ctx_len = security->ctx_len;
memcpy(uctx + 1, security->ctx_str, security->ctx_len);
err = security_xfrm_state_alloc(x, uctx);
kfree(uctx);
if (err)
return err;
return 0;
}
static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig,
struct xfrm_encap_tmpl *encap)
{
struct net *net = xs_net(orig);
struct xfrm_state *x = xfrm_state_alloc(net);
if (!x)
goto out;
memcpy(&x->id, &orig->id, sizeof(x->id));
memcpy(&x->sel, &orig->sel, sizeof(x->sel));
memcpy(&x->lft, &orig->lft, sizeof(x->lft));
x->props.mode = orig->props.mode;
x->props.replay_window = orig->props.replay_window;
x->props.reqid = orig->props.reqid;
x->props.family = orig->props.family;
x->props.saddr = orig->props.saddr;
if (orig->aalg) {
x->aalg = xfrm_algo_auth_clone(orig->aalg);
if (!x->aalg)
goto error;
}
x->props.aalgo = orig->props.aalgo;
if (orig->aead) {
x->aead = xfrm_algo_aead_clone(orig->aead);
x->geniv = orig->geniv;
if (!x->aead)
goto error;
}
if (orig->ealg) {
x->ealg = xfrm_algo_clone(orig->ealg);
if (!x->ealg)
goto error;
}
x->props.ealgo = orig->props.ealgo;
if (orig->calg) {
x->calg = xfrm_algo_clone(orig->calg);
if (!x->calg)
goto error;
}
x->props.calgo = orig->props.calgo;
if (encap || orig->encap) {
if (encap)
x->encap = kmemdup(encap, sizeof(*x->encap),
GFP_KERNEL);
else
x->encap = kmemdup(orig->encap, sizeof(*x->encap),
GFP_KERNEL);
if (!x->encap)
goto error;
}
if (orig->security)
if (clone_security(x, orig->security))
goto error;
if (orig->coaddr) {
x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
GFP_KERNEL);
if (!x->coaddr)
goto error;
}
if (orig->replay_esn) {
if (xfrm_replay_clone(x, orig))
goto error;
}
memcpy(&x->mark, &orig->mark, sizeof(x->mark));
memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark));
if (xfrm_init_state(x) < 0)
goto error;
x->props.flags = orig->props.flags;
x->props.extra_flags = orig->props.extra_flags;
x->if_id = orig->if_id;
x->tfcpad = orig->tfcpad;
x->replay_maxdiff = orig->replay_maxdiff;
x->replay_maxage = orig->replay_maxage;
memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft));
x->km.state = orig->km.state;
x->km.seq = orig->km.seq;
x->replay = orig->replay;
x->preplay = orig->preplay;
return x;
error:
xfrm_state_put(x);
out:
return NULL;
}
struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net)
{
unsigned int h;
struct xfrm_state *x = NULL;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
if (m->reqid) {
h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr,
m->reqid, m->old_family);
hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
if (x->props.mode != m->mode ||
x->id.proto != m->proto)
continue;
if (m->reqid && x->props.reqid != m->reqid)
continue;
if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
m->old_family) ||
!xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
m->old_family))
continue;
xfrm_state_hold(x);
break;
}
} else {
h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr,
m->old_family);
hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) {
if (x->props.mode != m->mode ||
x->id.proto != m->proto)
continue;
if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
m->old_family) ||
!xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
m->old_family))
continue;
xfrm_state_hold(x);
break;
}
}
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_migrate_state_find);
struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x,
struct xfrm_migrate *m,
struct xfrm_encap_tmpl *encap)
{
struct xfrm_state *xc;
xc = xfrm_state_clone(x, encap);
if (!xc)
return NULL;
memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));
/* add state */
if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) {
/* a care is needed when the destination address of the
state is to be updated as it is a part of triplet */
xfrm_state_insert(xc);
} else {
if (xfrm_state_add(xc) < 0)
goto error;
}
return xc;
error:
xfrm_state_put(xc);
return NULL;
}
EXPORT_SYMBOL(xfrm_state_migrate);
#endif
int xfrm_state_update(struct xfrm_state *x)
{
struct xfrm_state *x1, *to_put;
int err;
int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
struct net *net = xs_net(x);
to_put = NULL;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x1 = __xfrm_state_locate(x, use_spi, x->props.family);
err = -ESRCH;
if (!x1)
goto out;
if (xfrm_state_kern(x1)) {
to_put = x1;
err = -EEXIST;
goto out;
}
if (x1->km.state == XFRM_STATE_ACQ) {
__xfrm_state_insert(x);
x = NULL;
}
err = 0;
out:
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
if (to_put)
xfrm_state_put(to_put);
if (err)
return err;
if (!x) {
xfrm_state_delete(x1);
xfrm_state_put(x1);
return 0;
}
err = -EINVAL;
spin_lock_bh(&x1->lock);
if (likely(x1->km.state == XFRM_STATE_VALID)) {
if (x->encap && x1->encap &&
x->encap->encap_type == x1->encap->encap_type)
memcpy(x1->encap, x->encap, sizeof(*x1->encap));
else if (x->encap || x1->encap)
goto fail;
if (x->coaddr && x1->coaddr) {
memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
}
if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
x1->km.dying = 0;
hrtimer_start(&x1->mtimer, ktime_set(1, 0),
HRTIMER_MODE_REL_SOFT);
if (x1->curlft.use_time)
xfrm_state_check_expire(x1);
if (x->props.smark.m || x->props.smark.v || x->if_id) {
spin_lock_bh(&net->xfrm.xfrm_state_lock);
if (x->props.smark.m || x->props.smark.v)
x1->props.smark = x->props.smark;
if (x->if_id)
x1->if_id = x->if_id;
__xfrm_state_bump_genids(x1);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}
err = 0;
x->km.state = XFRM_STATE_DEAD;
__xfrm_state_put(x);
}
fail:
spin_unlock_bh(&x1->lock);
xfrm_state_put(x1);
return err;
}
EXPORT_SYMBOL(xfrm_state_update);
int xfrm_state_check_expire(struct xfrm_state *x)
{
if (!x->curlft.use_time)
x->curlft.use_time = ktime_get_real_seconds();
if (x->curlft.bytes >= x->lft.hard_byte_limit ||
x->curlft.packets >= x->lft.hard_packet_limit) {
x->km.state = XFRM_STATE_EXPIRED;
hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT);
return -EINVAL;
}
if (!x->km.dying &&
(x->curlft.bytes >= x->lft.soft_byte_limit ||
x->curlft.packets >= x->lft.soft_packet_limit)) {
x->km.dying = 1;
km_state_expired(x, 0, 0);
}
return 0;
}
EXPORT_SYMBOL(xfrm_state_check_expire);
struct xfrm_state *
xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi,
u8 proto, unsigned short family)
{
struct xfrm_state *x;
rcu_read_lock();
x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family);
rcu_read_unlock();
return x;
}
EXPORT_SYMBOL(xfrm_state_lookup);
struct xfrm_state *
xfrm_state_lookup_byaddr(struct net *net, u32 mark,
const xfrm_address_t *daddr, const xfrm_address_t *saddr,
u8 proto, unsigned short family)
{
struct xfrm_state *x;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_state_lookup_byaddr);
struct xfrm_state *
xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid,
u32 if_id, u8 proto, const xfrm_address_t *daddr,
const xfrm_address_t *saddr, int create, unsigned short family)
{
struct xfrm_state *x;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_find_acq);
#ifdef CONFIG_XFRM_SUB_POLICY
#if IS_ENABLED(CONFIG_IPV6)
/* distribution counting sort function for xfrm_state and xfrm_tmpl */
static void
__xfrm6_sort(void **dst, void **src, int n,
int (*cmp)(const void *p), int maxclass)
{
int count[XFRM_MAX_DEPTH] = { };
int class[XFRM_MAX_DEPTH];
int i;
for (i = 0; i < n; i++) {
int c = cmp(src[i]);
class[i] = c;
count[c]++;
}
for (i = 2; i < maxclass; i++)
count[i] += count[i - 1];
for (i = 0; i < n; i++) {
dst[count[class[i] - 1]++] = src[i];
src[i] = NULL;
}
}
/* Rule for xfrm_state:
*
* rule 1: select IPsec transport except AH
* rule 2: select MIPv6 RO or inbound trigger
* rule 3: select IPsec transport AH
* rule 4: select IPsec tunnel
* rule 5: others
*/
static int __xfrm6_state_sort_cmp(const void *p)
{
const struct xfrm_state *v = p;
switch (v->props.mode) {
case XFRM_MODE_TRANSPORT:
if (v->id.proto != IPPROTO_AH)
return 1;
else
return 3;
#if IS_ENABLED(CONFIG_IPV6_MIP6)
case XFRM_MODE_ROUTEOPTIMIZATION:
case XFRM_MODE_IN_TRIGGER:
return 2;
#endif
case XFRM_MODE_TUNNEL:
case XFRM_MODE_BEET:
return 4;
}
return 5;
}
/* Rule for xfrm_tmpl:
*
* rule 1: select IPsec transport
* rule 2: select MIPv6 RO or inbound trigger
* rule 3: select IPsec tunnel
* rule 4: others
*/
static int __xfrm6_tmpl_sort_cmp(const void *p)
{
const struct xfrm_tmpl *v = p;
switch (v->mode) {
case XFRM_MODE_TRANSPORT:
return 1;
#if IS_ENABLED(CONFIG_IPV6_MIP6)
case XFRM_MODE_ROUTEOPTIMIZATION:
case XFRM_MODE_IN_TRIGGER:
return 2;
#endif
case XFRM_MODE_TUNNEL:
case XFRM_MODE_BEET:
return 3;
}
return 4;
}
#else
static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; }
static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; }
static inline void
__xfrm6_sort(void **dst, void **src, int n,
int (*cmp)(const void *p), int maxclass)
{
int i;
for (i = 0; i < n; i++)
dst[i] = src[i];
}
#endif /* CONFIG_IPV6 */
void
xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
unsigned short family)
{
int i;
if (family == AF_INET6)
__xfrm6_sort((void **)dst, (void **)src, n,
__xfrm6_tmpl_sort_cmp, 5);
else
for (i = 0; i < n; i++)
dst[i] = src[i];
}
void
xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
unsigned short family)
{
int i;
if (family == AF_INET6)
__xfrm6_sort((void **)dst, (void **)src, n,
__xfrm6_state_sort_cmp, 6);
else
for (i = 0; i < n; i++)
dst[i] = src[i];
}
#endif
/* Silly enough, but I'm lazy to build resolution list */
static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
{
int i;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct xfrm_state *x;
hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
if (x->km.seq == seq &&
(mark & x->mark.m) == x->mark.v &&
x->km.state == XFRM_STATE_ACQ) {
xfrm_state_hold(x);
return x;
}
}
}
return NULL;
}
struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
{
struct xfrm_state *x;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x = __xfrm_find_acq_byseq(net, mark, seq);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_find_acq_byseq);
u32 xfrm_get_acqseq(void)
{
u32 res;
static atomic_t acqseq;
do {
res = atomic_inc_return(&acqseq);
} while (!res);
return res;
}
EXPORT_SYMBOL(xfrm_get_acqseq);
int verify_spi_info(u8 proto, u32 min, u32 max)
{
switch (proto) {
case IPPROTO_AH:
case IPPROTO_ESP:
break;
case IPPROTO_COMP:
/* IPCOMP spi is 16-bits. */
if (max >= 0x10000)
return -EINVAL;
break;
default:
return -EINVAL;
}
if (min > max)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL(verify_spi_info);
int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high)
{
struct net *net = xs_net(x);
unsigned int h;
struct xfrm_state *x0;
int err = -ENOENT;
__be32 minspi = htonl(low);
__be32 maxspi = htonl(high);
__be32 newspi = 0;
u32 mark = x->mark.v & x->mark.m;
spin_lock_bh(&x->lock);
if (x->km.state == XFRM_STATE_DEAD)
goto unlock;
err = 0;
if (x->id.spi)
goto unlock;
err = -ENOENT;
if (minspi == maxspi) {
x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family);
if (x0) {
xfrm_state_put(x0);
goto unlock;
}
newspi = minspi;
} else {
u32 spi = 0;
for (h = 0; h < high-low+1; h++) {
spi = low + prandom_u32()%(high-low+1);
x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
if (x0 == NULL) {
newspi = htonl(spi);
break;
}
xfrm_state_put(x0);
}
}
if (newspi) {
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x->id.spi = newspi;
h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
err = 0;
}
unlock:
spin_unlock_bh(&x->lock);
return err;
}
EXPORT_SYMBOL(xfrm_alloc_spi);
static bool __xfrm_state_filter_match(struct xfrm_state *x,
struct xfrm_address_filter *filter)
{
if (filter) {
if ((filter->family == AF_INET ||
filter->family == AF_INET6) &&
x->props.family != filter->family)
return false;
return addr_match(&x->props.saddr, &filter->saddr,
filter->splen) &&
addr_match(&x->id.daddr, &filter->daddr,
filter->dplen);
}
return true;
}
int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
int (*func)(struct xfrm_state *, int, void*),
void *data)
{
struct xfrm_state *state;
struct xfrm_state_walk *x;
int err = 0;
if (walk->seq != 0 && list_empty(&walk->all))
return 0;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
if (list_empty(&walk->all))
x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
else
x = list_first_entry(&walk->all, struct xfrm_state_walk, all);
list_for_each_entry_from(x, &net->xfrm.state_all, all) {
if (x->state == XFRM_STATE_DEAD)
continue;
state = container_of(x, struct xfrm_state, km);
if (!xfrm_id_proto_match(state->id.proto, walk->proto))
continue;
if (!__xfrm_state_filter_match(state, walk->filter))
continue;
err = func(state, walk->seq, data);
if (err) {
list_move_tail(&walk->all, &x->all);
goto out;
}
walk->seq++;
}
if (walk->seq == 0) {
err = -ENOENT;
goto out;
}
list_del_init(&walk->all);
out:
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return err;
}
EXPORT_SYMBOL(xfrm_state_walk);
void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto,
struct xfrm_address_filter *filter)
{
INIT_LIST_HEAD(&walk->all);
walk->proto = proto;
walk->state = XFRM_STATE_DEAD;
walk->seq = 0;
walk->filter = filter;
}
EXPORT_SYMBOL(xfrm_state_walk_init);
void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net)
{
kfree(walk->filter);
if (list_empty(&walk->all))
return;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
list_del(&walk->all);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_state_walk_done);
static void xfrm_replay_timer_handler(struct timer_list *t)
{
struct xfrm_state *x = from_timer(x, t, rtimer);
spin_lock(&x->lock);
if (x->km.state == XFRM_STATE_VALID) {
if (xfrm_aevent_is_on(xs_net(x)))
x->repl->notify(x, XFRM_REPLAY_TIMEOUT);
else
x->xflags |= XFRM_TIME_DEFER;
}
spin_unlock(&x->lock);
}
static LIST_HEAD(xfrm_km_list);
void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
{
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list)
if (km->notify_policy)
km->notify_policy(xp, dir, c);
rcu_read_unlock();
}
void km_state_notify(struct xfrm_state *x, const struct km_event *c)
{
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list)
if (km->notify)
km->notify(x, c);
rcu_read_unlock();
}
EXPORT_SYMBOL(km_policy_notify);
EXPORT_SYMBOL(km_state_notify);
void km_state_expired(struct xfrm_state *x, int hard, u32 portid)
{
struct km_event c;
c.data.hard = hard;
c.portid = portid;
c.event = XFRM_MSG_EXPIRE;
km_state_notify(x, &c);
}
EXPORT_SYMBOL(km_state_expired);
/*
* We send to all registered managers regardless of failure
* We are happy with one success
*/
int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
{
int err = -EINVAL, acqret;
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
acqret = km->acquire(x, t, pol);
if (!acqret)
err = acqret;
}
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(km_query);
int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
{
int err = -EINVAL;
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
if (km->new_mapping)
err = km->new_mapping(x, ipaddr, sport);
if (!err)
break;
}
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(km_new_mapping);
void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid)
{
struct km_event c;
c.data.hard = hard;
c.portid = portid;
c.event = XFRM_MSG_POLEXPIRE;
km_policy_notify(pol, dir, &c);
}
EXPORT_SYMBOL(km_policy_expired);
#ifdef CONFIG_XFRM_MIGRATE
int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
const struct xfrm_migrate *m, int num_migrate,
const struct xfrm_kmaddress *k,
const struct xfrm_encap_tmpl *encap)
{
int err = -EINVAL;
int ret;
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
if (km->migrate) {
ret = km->migrate(sel, dir, type, m, num_migrate, k,
encap);
if (!ret)
err = ret;
}
}
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(km_migrate);
#endif
int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
{
int err = -EINVAL;
int ret;
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
if (km->report) {
ret = km->report(net, proto, sel, addr);
if (!ret)
err = ret;
}
}
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(km_report);
static bool km_is_alive(const struct km_event *c)
{
struct xfrm_mgr *km;
bool is_alive = false;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
if (km->is_alive && km->is_alive(c)) {
is_alive = true;
break;
}
}
rcu_read_unlock();
return is_alive;
}
#if IS_ENABLED(CONFIG_XFRM_USER_COMPAT)
static DEFINE_SPINLOCK(xfrm_translator_lock);
static struct xfrm_translator __rcu *xfrm_translator;
struct xfrm_translator *xfrm_get_translator(void)
{
struct xfrm_translator *xtr;
rcu_read_lock();
xtr = rcu_dereference(xfrm_translator);
if (unlikely(!xtr))
goto out;
if (!try_module_get(xtr->owner))
xtr = NULL;
out:
rcu_read_unlock();
return xtr;
}
EXPORT_SYMBOL_GPL(xfrm_get_translator);
void xfrm_put_translator(struct xfrm_translator *xtr)
{
module_put(xtr->owner);
}
EXPORT_SYMBOL_GPL(xfrm_put_translator);
int xfrm_register_translator(struct xfrm_translator *xtr)
{
int err = 0;
spin_lock_bh(&xfrm_translator_lock);
if (unlikely(xfrm_translator != NULL))
err = -EEXIST;
else
rcu_assign_pointer(xfrm_translator, xtr);
spin_unlock_bh(&xfrm_translator_lock);
return err;
}
EXPORT_SYMBOL_GPL(xfrm_register_translator);
int xfrm_unregister_translator(struct xfrm_translator *xtr)
{
int err = 0;
spin_lock_bh(&xfrm_translator_lock);
if (likely(xfrm_translator != NULL)) {
if (rcu_access_pointer(xfrm_translator) != xtr)
err = -EINVAL;
else
RCU_INIT_POINTER(xfrm_translator, NULL);
}
spin_unlock_bh(&xfrm_translator_lock);
synchronize_rcu();
return err;
}
EXPORT_SYMBOL_GPL(xfrm_unregister_translator);
#endif
int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen)
{
int err;
u8 *data;
struct xfrm_mgr *km;
struct xfrm_policy *pol = NULL;
if (sockptr_is_null(optval) && !optlen) {
xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL);
xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL);
__sk_dst_reset(sk);
return 0;
}
if (optlen <= 0 || optlen > PAGE_SIZE)
return -EMSGSIZE;
data = memdup_sockptr(optval, optlen);
if (IS_ERR(data))
return PTR_ERR(data);
if (in_compat_syscall()) {
struct xfrm_translator *xtr = xfrm_get_translator();
if (!xtr)
return -EOPNOTSUPP;
err = xtr->xlate_user_policy_sockptr(&data, optlen);
xfrm_put_translator(xtr);
if (err) {
kfree(data);
return err;
}
}
err = -EINVAL;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
pol = km->compile_policy(sk, optname, data,
optlen, &err);
if (err >= 0)
break;
}
rcu_read_unlock();
if (err >= 0) {
xfrm_sk_policy_insert(sk, err, pol);
xfrm_pol_put(pol);
__sk_dst_reset(sk);
err = 0;
}
kfree(data);
return err;
}
EXPORT_SYMBOL(xfrm_user_policy);
static DEFINE_SPINLOCK(xfrm_km_lock);
int xfrm_register_km(struct xfrm_mgr *km)
{
spin_lock_bh(&xfrm_km_lock);
list_add_tail_rcu(&km->list, &xfrm_km_list);
spin_unlock_bh(&xfrm_km_lock);
return 0;
}
EXPORT_SYMBOL(xfrm_register_km);
int xfrm_unregister_km(struct xfrm_mgr *km)
{
spin_lock_bh(&xfrm_km_lock);
list_del_rcu(&km->list);
spin_unlock_bh(&xfrm_km_lock);
synchronize_rcu();
return 0;
}
EXPORT_SYMBOL(xfrm_unregister_km);
int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
{
int err = 0;
if (WARN_ON(afinfo->family >= NPROTO))
return -EAFNOSUPPORT;
spin_lock_bh(&xfrm_state_afinfo_lock);
if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
err = -EEXIST;
else
rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo);
spin_unlock_bh(&xfrm_state_afinfo_lock);
return err;
}
EXPORT_SYMBOL(xfrm_state_register_afinfo);
int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
{
int err = 0, family = afinfo->family;
if (WARN_ON(family >= NPROTO))
return -EAFNOSUPPORT;
spin_lock_bh(&xfrm_state_afinfo_lock);
if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo)
err = -EINVAL;
else
RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL);
}
spin_unlock_bh(&xfrm_state_afinfo_lock);
synchronize_rcu();
return err;
}
EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family)
{
if (unlikely(family >= NPROTO))
return NULL;
return rcu_dereference(xfrm_state_afinfo[family]);
}
EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu);
struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
{
struct xfrm_state_afinfo *afinfo;
if (unlikely(family >= NPROTO))
return NULL;
rcu_read_lock();
afinfo = rcu_dereference(xfrm_state_afinfo[family]);
if (unlikely(!afinfo))
rcu_read_unlock();
return afinfo;
}
void xfrm_flush_gc(void)
{
flush_work(&xfrm_state_gc_work);
}
EXPORT_SYMBOL(xfrm_flush_gc);
/* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
void xfrm_state_delete_tunnel(struct xfrm_state *x)
{
if (x->tunnel) {
struct xfrm_state *t = x->tunnel;
if (atomic_read(&t->tunnel_users) == 2)
xfrm_state_delete(t);
atomic_dec(&t->tunnel_users);
xfrm_state_put_sync(t);
x->tunnel = NULL;
}
}
EXPORT_SYMBOL(xfrm_state_delete_tunnel);
u32 xfrm_state_mtu(struct xfrm_state *x, int mtu)
{
const struct xfrm_type *type = READ_ONCE(x->type);
struct crypto_aead *aead;
u32 blksize, net_adj = 0;
if (x->km.state != XFRM_STATE_VALID ||
!type || type->proto != IPPROTO_ESP)
return mtu - x->props.header_len;
aead = x->data;
blksize = ALIGN(crypto_aead_blocksize(aead), 4);
switch (x->props.mode) {
case XFRM_MODE_TRANSPORT:
case XFRM_MODE_BEET:
if (x->props.family == AF_INET)
net_adj = sizeof(struct iphdr);
else if (x->props.family == AF_INET6)
net_adj = sizeof(struct ipv6hdr);
break;
case XFRM_MODE_TUNNEL:
break;
default:
WARN_ON_ONCE(1);
break;
}
return ((mtu - x->props.header_len - crypto_aead_authsize(aead) -
net_adj) & ~(blksize - 1)) + net_adj - 2;
}
EXPORT_SYMBOL_GPL(xfrm_state_mtu);
int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload)
{
const struct xfrm_mode *inner_mode;
const struct xfrm_mode *outer_mode;
int family = x->props.family;
int err;
if (family == AF_INET &&
xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc)
x->props.flags |= XFRM_STATE_NOPMTUDISC;
err = -EPROTONOSUPPORT;
if (x->sel.family != AF_UNSPEC) {
inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
if (inner_mode == NULL)
goto error;
if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
family != x->sel.family)
goto error;
x->inner_mode = *inner_mode;
} else {
const struct xfrm_mode *inner_mode_iaf;
int iafamily = AF_INET;
inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
if (inner_mode == NULL)
goto error;
if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL))
goto error;
x->inner_mode = *inner_mode;
if (x->props.family == AF_INET)
iafamily = AF_INET6;
inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
if (inner_mode_iaf) {
if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
x->inner_mode_iaf = *inner_mode_iaf;
}
}
x->type = xfrm_get_type(x->id.proto, family);
if (x->type == NULL)
goto error;
x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload);
err = x->type->init_state(x);
if (err)
goto error;
outer_mode = xfrm_get_mode(x->props.mode, family);
if (!outer_mode) {
err = -EPROTONOSUPPORT;
goto error;
}
x->outer_mode = *outer_mode;
if (init_replay) {
err = xfrm_init_replay(x);
if (err)
goto error;
}
error:
return err;
}
EXPORT_SYMBOL(__xfrm_init_state);
int xfrm_init_state(struct xfrm_state *x)
{
int err;
err = __xfrm_init_state(x, true, false);
if (!err)
x->km.state = XFRM_STATE_VALID;
return err;
}
EXPORT_SYMBOL(xfrm_init_state);
int __net_init xfrm_state_init(struct net *net)
{
unsigned int sz;
if (net_eq(net, &init_net))
xfrm_state_cache = KMEM_CACHE(xfrm_state,
SLAB_HWCACHE_ALIGN | SLAB_PANIC);
INIT_LIST_HEAD(&net->xfrm.state_all);
sz = sizeof(struct hlist_head) * 8;
net->xfrm.state_bydst = xfrm_hash_alloc(sz);
if (!net->xfrm.state_bydst)
goto out_bydst;
net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
if (!net->xfrm.state_bysrc)
goto out_bysrc;
net->xfrm.state_byspi = xfrm_hash_alloc(sz);
if (!net->xfrm.state_byspi)
goto out_byspi;
net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);
net->xfrm.state_num = 0;
INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
spin_lock_init(&net->xfrm.xfrm_state_lock);
return 0;
out_byspi:
xfrm_hash_free(net->xfrm.state_bysrc, sz);
out_bysrc:
xfrm_hash_free(net->xfrm.state_bydst, sz);
out_bydst:
return -ENOMEM;
}
void xfrm_state_fini(struct net *net)
{
unsigned int sz;
flush_work(&net->xfrm.state_hash_work);
flush_work(&xfrm_state_gc_work);
xfrm_state_flush(net, 0, false, true);
WARN_ON(!list_empty(&net->xfrm.state_all));
sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
WARN_ON(!hlist_empty(net->xfrm.state_byspi));
xfrm_hash_free(net->xfrm.state_byspi, sz);
WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
xfrm_hash_free(net->xfrm.state_bysrc, sz);
WARN_ON(!hlist_empty(net->xfrm.state_bydst));
xfrm_hash_free(net->xfrm.state_bydst, sz);
}
#ifdef CONFIG_AUDITSYSCALL
static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
struct audit_buffer *audit_buf)
{
struct xfrm_sec_ctx *ctx = x->security;
u32 spi = ntohl(x->id.spi);
if (ctx)
audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);
switch (x->props.family) {
case AF_INET:
audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
&x->props.saddr.a4, &x->id.daddr.a4);
break;
case AF_INET6:
audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
x->props.saddr.a6, x->id.daddr.a6);
break;
}
audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
}
static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
struct audit_buffer *audit_buf)
{
const struct iphdr *iph4;
const struct ipv6hdr *iph6;
switch (family) {
case AF_INET:
iph4 = ip_hdr(skb);
audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
&iph4->saddr, &iph4->daddr);
break;
case AF_INET6:
iph6 = ipv6_hdr(skb);
audit_log_format(audit_buf,
" src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
&iph6->saddr, &iph6->daddr,
iph6->flow_lbl[0] & 0x0f,
iph6->flow_lbl[1],
iph6->flow_lbl[2]);
break;
}
}
void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid)
{
struct audit_buffer *audit_buf;
audit_buf = xfrm_audit_start("SAD-add");
if (audit_buf == NULL)
return;
xfrm_audit_helper_usrinfo(task_valid, audit_buf);
xfrm_audit_helper_sainfo(x, audit_buf);
audit_log_format(audit_buf, " res=%u", result);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_add);
void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid)
{
struct audit_buffer *audit_buf;
audit_buf = xfrm_audit_start("SAD-delete");
if (audit_buf == NULL)
return;
xfrm_audit_helper_usrinfo(task_valid, audit_buf);
xfrm_audit_helper_sainfo(x, audit_buf);
audit_log_format(audit_buf, " res=%u", result);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);
void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
struct sk_buff *skb)
{
struct audit_buffer *audit_buf;
u32 spi;
audit_buf = xfrm_audit_start("SA-replay-overflow");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
/* don't record the sequence number because it's inherent in this kind
* of audit message */
spi = ntohl(x->id.spi);
audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);
void xfrm_audit_state_replay(struct xfrm_state *x,
struct sk_buff *skb, __be32 net_seq)
{
struct audit_buffer *audit_buf;
u32 spi;
audit_buf = xfrm_audit_start("SA-replayed-pkt");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
spi = ntohl(x->id.spi);
audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
spi, spi, ntohl(net_seq));
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_replay);
void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
{
struct audit_buffer *audit_buf;
audit_buf = xfrm_audit_start("SA-notfound");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, family, audit_buf);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);
void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
__be32 net_spi, __be32 net_seq)
{
struct audit_buffer *audit_buf;
u32 spi;
audit_buf = xfrm_audit_start("SA-notfound");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, family, audit_buf);
spi = ntohl(net_spi);
audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
spi, spi, ntohl(net_seq));
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);
void xfrm_audit_state_icvfail(struct xfrm_state *x,
struct sk_buff *skb, u8 proto)
{
struct audit_buffer *audit_buf;
__be32 net_spi;
__be32 net_seq;
audit_buf = xfrm_audit_start("SA-icv-failure");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
u32 spi = ntohl(net_spi);
audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
spi, spi, ntohl(net_seq));
}
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
#endif /* CONFIG_AUDITSYSCALL */