linux/drivers/gpu/drm/rockchip/inno_hdmi.c

951 lines
25 KiB
C

/*
* Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
* Zheng Yang <zhengyang@rock-chips.com>
* Yakir Yang <ykk@rock-chips.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/hdmi.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_device.h>
#include <drm/drm_of.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include "rockchip_drm_drv.h"
#include "rockchip_drm_vop.h"
#include "inno_hdmi.h"
#define to_inno_hdmi(x) container_of(x, struct inno_hdmi, x)
struct hdmi_data_info {
int vic;
bool sink_is_hdmi;
bool sink_has_audio;
unsigned int enc_in_format;
unsigned int enc_out_format;
unsigned int colorimetry;
};
struct inno_hdmi_i2c {
struct i2c_adapter adap;
u8 ddc_addr;
u8 segment_addr;
struct mutex lock;
struct completion cmp;
};
struct inno_hdmi {
struct device *dev;
struct drm_device *drm_dev;
int irq;
struct clk *pclk;
void __iomem *regs;
struct drm_connector connector;
struct drm_encoder encoder;
struct inno_hdmi_i2c *i2c;
struct i2c_adapter *ddc;
unsigned int tmds_rate;
struct hdmi_data_info hdmi_data;
struct drm_display_mode previous_mode;
};
enum {
CSC_ITU601_16_235_TO_RGB_0_255_8BIT,
CSC_ITU601_0_255_TO_RGB_0_255_8BIT,
CSC_ITU709_16_235_TO_RGB_0_255_8BIT,
CSC_RGB_0_255_TO_ITU601_16_235_8BIT,
CSC_RGB_0_255_TO_ITU709_16_235_8BIT,
CSC_RGB_0_255_TO_RGB_16_235_8BIT,
};
static const char coeff_csc[][24] = {
/*
* YUV2RGB:601 SD mode(Y[16:235], UV[16:240], RGB[0:255]):
* R = 1.164*Y + 1.596*V - 204
* G = 1.164*Y - 0.391*U - 0.813*V + 154
* B = 1.164*Y + 2.018*U - 258
*/
{
0x04, 0xa7, 0x00, 0x00, 0x06, 0x62, 0x02, 0xcc,
0x04, 0xa7, 0x11, 0x90, 0x13, 0x40, 0x00, 0x9a,
0x04, 0xa7, 0x08, 0x12, 0x00, 0x00, 0x03, 0x02
},
/*
* YUV2RGB:601 SD mode(YUV[0:255],RGB[0:255]):
* R = Y + 1.402*V - 248
* G = Y - 0.344*U - 0.714*V + 135
* B = Y + 1.772*U - 227
*/
{
0x04, 0x00, 0x00, 0x00, 0x05, 0x9b, 0x02, 0xf8,
0x04, 0x00, 0x11, 0x60, 0x12, 0xdb, 0x00, 0x87,
0x04, 0x00, 0x07, 0x16, 0x00, 0x00, 0x02, 0xe3
},
/*
* YUV2RGB:709 HD mode(Y[16:235],UV[16:240],RGB[0:255]):
* R = 1.164*Y + 1.793*V - 248
* G = 1.164*Y - 0.213*U - 0.534*V + 77
* B = 1.164*Y + 2.115*U - 289
*/
{
0x04, 0xa7, 0x00, 0x00, 0x07, 0x2c, 0x02, 0xf8,
0x04, 0xa7, 0x10, 0xda, 0x12, 0x22, 0x00, 0x4d,
0x04, 0xa7, 0x08, 0x74, 0x00, 0x00, 0x03, 0x21
},
/*
* RGB2YUV:601 SD mode:
* Cb = -0.291G - 0.148R + 0.439B + 128
* Y = 0.504G + 0.257R + 0.098B + 16
* Cr = -0.368G + 0.439R - 0.071B + 128
*/
{
0x11, 0x5f, 0x01, 0x82, 0x10, 0x23, 0x00, 0x80,
0x02, 0x1c, 0x00, 0xa1, 0x00, 0x36, 0x00, 0x1e,
0x11, 0x29, 0x10, 0x59, 0x01, 0x82, 0x00, 0x80
},
/*
* RGB2YUV:709 HD mode:
* Cb = - 0.338G - 0.101R + 0.439B + 128
* Y = 0.614G + 0.183R + 0.062B + 16
* Cr = - 0.399G + 0.439R - 0.040B + 128
*/
{
0x11, 0x98, 0x01, 0xc1, 0x10, 0x28, 0x00, 0x80,
0x02, 0x74, 0x00, 0xbb, 0x00, 0x3f, 0x00, 0x10,
0x11, 0x5a, 0x10, 0x67, 0x01, 0xc1, 0x00, 0x80
},
/*
* RGB[0:255]2RGB[16:235]:
* R' = R x (235-16)/255 + 16;
* G' = G x (235-16)/255 + 16;
* B' = B x (235-16)/255 + 16;
*/
{
0x00, 0x00, 0x03, 0x6F, 0x00, 0x00, 0x00, 0x10,
0x03, 0x6F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
0x00, 0x00, 0x00, 0x00, 0x03, 0x6F, 0x00, 0x10
},
};
static inline u8 hdmi_readb(struct inno_hdmi *hdmi, u16 offset)
{
return readl_relaxed(hdmi->regs + (offset) * 0x04);
}
static inline void hdmi_writeb(struct inno_hdmi *hdmi, u16 offset, u32 val)
{
writel_relaxed(val, hdmi->regs + (offset) * 0x04);
}
static inline void hdmi_modb(struct inno_hdmi *hdmi, u16 offset,
u32 msk, u32 val)
{
u8 temp = hdmi_readb(hdmi, offset) & ~msk;
temp |= val & msk;
hdmi_writeb(hdmi, offset, temp);
}
static void inno_hdmi_i2c_init(struct inno_hdmi *hdmi)
{
int ddc_bus_freq;
ddc_bus_freq = (hdmi->tmds_rate >> 2) / HDMI_SCL_RATE;
hdmi_writeb(hdmi, DDC_BUS_FREQ_L, ddc_bus_freq & 0xFF);
hdmi_writeb(hdmi, DDC_BUS_FREQ_H, (ddc_bus_freq >> 8) & 0xFF);
/* Clear the EDID interrupt flag and mute the interrupt */
hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, 0);
hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY);
}
static void inno_hdmi_sys_power(struct inno_hdmi *hdmi, bool enable)
{
if (enable)
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_POWER, v_PWR_ON);
else
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_POWER, v_PWR_OFF);
}
static void inno_hdmi_set_pwr_mode(struct inno_hdmi *hdmi, int mode)
{
switch (mode) {
case NORMAL:
inno_hdmi_sys_power(hdmi, false);
hdmi_writeb(hdmi, HDMI_PHY_PRE_EMPHASIS, 0x6f);
hdmi_writeb(hdmi, HDMI_PHY_DRIVER, 0xbb);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x15);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x14);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x10);
hdmi_writeb(hdmi, HDMI_PHY_CHG_PWR, 0x0f);
hdmi_writeb(hdmi, HDMI_PHY_SYNC, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_SYNC, 0x01);
inno_hdmi_sys_power(hdmi, true);
break;
case LOWER_PWR:
inno_hdmi_sys_power(hdmi, false);
hdmi_writeb(hdmi, HDMI_PHY_DRIVER, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_PRE_EMPHASIS, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_CHG_PWR, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x15);
break;
default:
dev_err(hdmi->dev, "Unknown power mode %d\n", mode);
}
}
static void inno_hdmi_reset(struct inno_hdmi *hdmi)
{
u32 val;
u32 msk;
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_RST_DIGITAL, v_NOT_RST_DIGITAL);
udelay(100);
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_RST_ANALOG, v_NOT_RST_ANALOG);
udelay(100);
msk = m_REG_CLK_INV | m_REG_CLK_SOURCE | m_POWER | m_INT_POL;
val = v_REG_CLK_INV | v_REG_CLK_SOURCE_SYS | v_PWR_ON | v_INT_POL_HIGH;
hdmi_modb(hdmi, HDMI_SYS_CTRL, msk, val);
inno_hdmi_set_pwr_mode(hdmi, NORMAL);
}
static int inno_hdmi_upload_frame(struct inno_hdmi *hdmi, int setup_rc,
union hdmi_infoframe *frame, u32 frame_index,
u32 mask, u32 disable, u32 enable)
{
if (mask)
hdmi_modb(hdmi, HDMI_PACKET_SEND_AUTO, mask, disable);
hdmi_writeb(hdmi, HDMI_CONTROL_PACKET_BUF_INDEX, frame_index);
if (setup_rc >= 0) {
u8 packed_frame[HDMI_MAXIMUM_INFO_FRAME_SIZE];
ssize_t rc, i;
rc = hdmi_infoframe_pack(frame, packed_frame,
sizeof(packed_frame));
if (rc < 0)
return rc;
for (i = 0; i < rc; i++)
hdmi_writeb(hdmi, HDMI_CONTROL_PACKET_ADDR + i,
packed_frame[i]);
if (mask)
hdmi_modb(hdmi, HDMI_PACKET_SEND_AUTO, mask, enable);
}
return setup_rc;
}
static int inno_hdmi_config_video_vsi(struct inno_hdmi *hdmi,
struct drm_display_mode *mode)
{
union hdmi_infoframe frame;
int rc;
rc = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
mode);
return inno_hdmi_upload_frame(hdmi, rc, &frame, INFOFRAME_VSI,
m_PACKET_VSI_EN, v_PACKET_VSI_EN(0), v_PACKET_VSI_EN(1));
}
static int inno_hdmi_config_video_avi(struct inno_hdmi *hdmi,
struct drm_display_mode *mode)
{
union hdmi_infoframe frame;
int rc;
rc = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode);
if (hdmi->hdmi_data.enc_out_format == HDMI_COLORSPACE_YUV444)
frame.avi.colorspace = HDMI_COLORSPACE_YUV444;
else if (hdmi->hdmi_data.enc_out_format == HDMI_COLORSPACE_YUV422)
frame.avi.colorspace = HDMI_COLORSPACE_YUV422;
else
frame.avi.colorspace = HDMI_COLORSPACE_RGB;
return inno_hdmi_upload_frame(hdmi, rc, &frame, INFOFRAME_AVI, 0, 0, 0);
}
static int inno_hdmi_config_video_csc(struct inno_hdmi *hdmi)
{
struct hdmi_data_info *data = &hdmi->hdmi_data;
int c0_c2_change = 0;
int csc_enable = 0;
int csc_mode = 0;
int auto_csc = 0;
int value;
int i;
/* Input video mode is SDR RGB24bit, data enable signal from external */
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL1, v_DE_EXTERNAL |
v_VIDEO_INPUT_FORMAT(VIDEO_INPUT_SDR_RGB444));
/* Input color hardcode to RGB, and output color hardcode to RGB888 */
value = v_VIDEO_INPUT_BITS(VIDEO_INPUT_8BITS) |
v_VIDEO_OUTPUT_COLOR(0) |
v_VIDEO_INPUT_CSP(0);
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL2, value);
if (data->enc_in_format == data->enc_out_format) {
if ((data->enc_in_format == HDMI_COLORSPACE_RGB) ||
(data->enc_in_format >= HDMI_COLORSPACE_YUV444)) {
value = v_SOF_DISABLE | v_COLOR_DEPTH_NOT_INDICATED(1);
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL3, value);
hdmi_modb(hdmi, HDMI_VIDEO_CONTRL,
m_VIDEO_AUTO_CSC | m_VIDEO_C0_C2_SWAP,
v_VIDEO_AUTO_CSC(AUTO_CSC_DISABLE) |
v_VIDEO_C0_C2_SWAP(C0_C2_CHANGE_DISABLE));
return 0;
}
}
if (data->colorimetry == HDMI_COLORIMETRY_ITU_601) {
if ((data->enc_in_format == HDMI_COLORSPACE_RGB) &&
(data->enc_out_format == HDMI_COLORSPACE_YUV444)) {
csc_mode = CSC_RGB_0_255_TO_ITU601_16_235_8BIT;
auto_csc = AUTO_CSC_DISABLE;
c0_c2_change = C0_C2_CHANGE_DISABLE;
csc_enable = v_CSC_ENABLE;
} else if ((data->enc_in_format == HDMI_COLORSPACE_YUV444) &&
(data->enc_out_format == HDMI_COLORSPACE_RGB)) {
csc_mode = CSC_ITU601_16_235_TO_RGB_0_255_8BIT;
auto_csc = AUTO_CSC_ENABLE;
c0_c2_change = C0_C2_CHANGE_DISABLE;
csc_enable = v_CSC_DISABLE;
}
} else {
if ((data->enc_in_format == HDMI_COLORSPACE_RGB) &&
(data->enc_out_format == HDMI_COLORSPACE_YUV444)) {
csc_mode = CSC_RGB_0_255_TO_ITU709_16_235_8BIT;
auto_csc = AUTO_CSC_DISABLE;
c0_c2_change = C0_C2_CHANGE_DISABLE;
csc_enable = v_CSC_ENABLE;
} else if ((data->enc_in_format == HDMI_COLORSPACE_YUV444) &&
(data->enc_out_format == HDMI_COLORSPACE_RGB)) {
csc_mode = CSC_ITU709_16_235_TO_RGB_0_255_8BIT;
auto_csc = AUTO_CSC_ENABLE;
c0_c2_change = C0_C2_CHANGE_DISABLE;
csc_enable = v_CSC_DISABLE;
}
}
for (i = 0; i < 24; i++)
hdmi_writeb(hdmi, HDMI_VIDEO_CSC_COEF + i,
coeff_csc[csc_mode][i]);
value = v_SOF_DISABLE | csc_enable | v_COLOR_DEPTH_NOT_INDICATED(1);
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL3, value);
hdmi_modb(hdmi, HDMI_VIDEO_CONTRL, m_VIDEO_AUTO_CSC |
m_VIDEO_C0_C2_SWAP, v_VIDEO_AUTO_CSC(auto_csc) |
v_VIDEO_C0_C2_SWAP(c0_c2_change));
return 0;
}
static int inno_hdmi_config_video_timing(struct inno_hdmi *hdmi,
struct drm_display_mode *mode)
{
int value;
/* Set detail external video timing polarity and interlace mode */
value = v_EXTERANL_VIDEO(1);
value |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
v_HSYNC_POLARITY(1) : v_HSYNC_POLARITY(0);
value |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
v_VSYNC_POLARITY(1) : v_VSYNC_POLARITY(0);
value |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
v_INETLACE(1) : v_INETLACE(0);
hdmi_writeb(hdmi, HDMI_VIDEO_TIMING_CTL, value);
/* Set detail external video timing */
value = mode->htotal;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HTOTAL_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HTOTAL_H, (value >> 8) & 0xFF);
value = mode->htotal - mode->hdisplay;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HBLANK_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HBLANK_H, (value >> 8) & 0xFF);
value = mode->hsync_start - mode->hdisplay;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDELAY_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDELAY_H, (value >> 8) & 0xFF);
value = mode->hsync_end - mode->hsync_start;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDURATION_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDURATION_H, (value >> 8) & 0xFF);
value = mode->vtotal;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VTOTAL_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VTOTAL_H, (value >> 8) & 0xFF);
value = mode->vtotal - mode->vdisplay;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VBLANK, value & 0xFF);
value = mode->vsync_start - mode->vdisplay;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VDELAY, value & 0xFF);
value = mode->vsync_end - mode->vsync_start;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VDURATION, value & 0xFF);
hdmi_writeb(hdmi, HDMI_PHY_PRE_DIV_RATIO, 0x1e);
hdmi_writeb(hdmi, HDMI_PHY_FEEDBACK_DIV_RATIO_LOW, 0x2c);
hdmi_writeb(hdmi, HDMI_PHY_FEEDBACK_DIV_RATIO_HIGH, 0x01);
return 0;
}
static int inno_hdmi_setup(struct inno_hdmi *hdmi,
struct drm_display_mode *mode)
{
hdmi->hdmi_data.vic = drm_match_cea_mode(mode);
hdmi->hdmi_data.enc_in_format = HDMI_COLORSPACE_RGB;
hdmi->hdmi_data.enc_out_format = HDMI_COLORSPACE_RGB;
if ((hdmi->hdmi_data.vic == 6) || (hdmi->hdmi_data.vic == 7) ||
(hdmi->hdmi_data.vic == 21) || (hdmi->hdmi_data.vic == 22) ||
(hdmi->hdmi_data.vic == 2) || (hdmi->hdmi_data.vic == 3) ||
(hdmi->hdmi_data.vic == 17) || (hdmi->hdmi_data.vic == 18))
hdmi->hdmi_data.colorimetry = HDMI_COLORIMETRY_ITU_601;
else
hdmi->hdmi_data.colorimetry = HDMI_COLORIMETRY_ITU_709;
/* Mute video and audio output */
hdmi_modb(hdmi, HDMI_AV_MUTE, m_AUDIO_MUTE | m_VIDEO_BLACK,
v_AUDIO_MUTE(1) | v_VIDEO_MUTE(1));
/* Set HDMI Mode */
hdmi_writeb(hdmi, HDMI_HDCP_CTRL,
v_HDMI_DVI(hdmi->hdmi_data.sink_is_hdmi));
inno_hdmi_config_video_timing(hdmi, mode);
inno_hdmi_config_video_csc(hdmi);
if (hdmi->hdmi_data.sink_is_hdmi) {
inno_hdmi_config_video_avi(hdmi, mode);
inno_hdmi_config_video_vsi(hdmi, mode);
}
/*
* When IP controller have configured to an accurate video
* timing, then the TMDS clock source would be switched to
* DCLK_LCDC, so we need to init the TMDS rate to mode pixel
* clock rate, and reconfigure the DDC clock.
*/
hdmi->tmds_rate = mode->clock * 1000;
inno_hdmi_i2c_init(hdmi);
/* Unmute video and audio output */
hdmi_modb(hdmi, HDMI_AV_MUTE, m_AUDIO_MUTE | m_VIDEO_BLACK,
v_AUDIO_MUTE(0) | v_VIDEO_MUTE(0));
return 0;
}
static void inno_hdmi_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
struct inno_hdmi *hdmi = to_inno_hdmi(encoder);
inno_hdmi_setup(hdmi, adj_mode);
/* Store the display mode for plugin/DPMS poweron events */
memcpy(&hdmi->previous_mode, adj_mode, sizeof(hdmi->previous_mode));
}
static void inno_hdmi_encoder_enable(struct drm_encoder *encoder)
{
struct inno_hdmi *hdmi = to_inno_hdmi(encoder);
inno_hdmi_set_pwr_mode(hdmi, NORMAL);
}
static void inno_hdmi_encoder_disable(struct drm_encoder *encoder)
{
struct inno_hdmi *hdmi = to_inno_hdmi(encoder);
inno_hdmi_set_pwr_mode(hdmi, LOWER_PWR);
}
static bool inno_hdmi_encoder_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
return true;
}
static int
inno_hdmi_encoder_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc_state);
s->output_mode = ROCKCHIP_OUT_MODE_P888;
s->output_type = DRM_MODE_CONNECTOR_HDMIA;
return 0;
}
static struct drm_encoder_helper_funcs inno_hdmi_encoder_helper_funcs = {
.enable = inno_hdmi_encoder_enable,
.disable = inno_hdmi_encoder_disable,
.mode_fixup = inno_hdmi_encoder_mode_fixup,
.mode_set = inno_hdmi_encoder_mode_set,
.atomic_check = inno_hdmi_encoder_atomic_check,
};
static struct drm_encoder_funcs inno_hdmi_encoder_funcs = {
.destroy = drm_encoder_cleanup,
};
static enum drm_connector_status
inno_hdmi_connector_detect(struct drm_connector *connector, bool force)
{
struct inno_hdmi *hdmi = to_inno_hdmi(connector);
return (hdmi_readb(hdmi, HDMI_STATUS) & m_HOTPLUG) ?
connector_status_connected : connector_status_disconnected;
}
static int inno_hdmi_connector_get_modes(struct drm_connector *connector)
{
struct inno_hdmi *hdmi = to_inno_hdmi(connector);
struct edid *edid;
int ret = 0;
if (!hdmi->ddc)
return 0;
edid = drm_get_edid(connector, hdmi->ddc);
if (edid) {
hdmi->hdmi_data.sink_is_hdmi = drm_detect_hdmi_monitor(edid);
hdmi->hdmi_data.sink_has_audio = drm_detect_monitor_audio(edid);
drm_mode_connector_update_edid_property(connector, edid);
ret = drm_add_edid_modes(connector, edid);
kfree(edid);
}
return ret;
}
static enum drm_mode_status
inno_hdmi_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
return MODE_OK;
}
static struct drm_encoder *
inno_hdmi_connector_best_encoder(struct drm_connector *connector)
{
struct inno_hdmi *hdmi = to_inno_hdmi(connector);
return &hdmi->encoder;
}
static int
inno_hdmi_probe_single_connector_modes(struct drm_connector *connector,
uint32_t maxX, uint32_t maxY)
{
return drm_helper_probe_single_connector_modes(connector, 1920, 1080);
}
static void inno_hdmi_connector_destroy(struct drm_connector *connector)
{
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
}
static struct drm_connector_funcs inno_hdmi_connector_funcs = {
.dpms = drm_atomic_helper_connector_dpms,
.fill_modes = inno_hdmi_probe_single_connector_modes,
.detect = inno_hdmi_connector_detect,
.destroy = inno_hdmi_connector_destroy,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static struct drm_connector_helper_funcs inno_hdmi_connector_helper_funcs = {
.get_modes = inno_hdmi_connector_get_modes,
.mode_valid = inno_hdmi_connector_mode_valid,
.best_encoder = inno_hdmi_connector_best_encoder,
};
static int inno_hdmi_register(struct drm_device *drm, struct inno_hdmi *hdmi)
{
struct drm_encoder *encoder = &hdmi->encoder;
struct device *dev = hdmi->dev;
encoder->possible_crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
/*
* If we failed to find the CRTC(s) which this encoder is
* supposed to be connected to, it's because the CRTC has
* not been registered yet. Defer probing, and hope that
* the required CRTC is added later.
*/
if (encoder->possible_crtcs == 0)
return -EPROBE_DEFER;
drm_encoder_helper_add(encoder, &inno_hdmi_encoder_helper_funcs);
drm_encoder_init(drm, encoder, &inno_hdmi_encoder_funcs,
DRM_MODE_ENCODER_TMDS, NULL);
hdmi->connector.polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_helper_add(&hdmi->connector,
&inno_hdmi_connector_helper_funcs);
drm_connector_init(drm, &hdmi->connector, &inno_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
drm_mode_connector_attach_encoder(&hdmi->connector, encoder);
return 0;
}
static irqreturn_t inno_hdmi_i2c_irq(struct inno_hdmi *hdmi)
{
struct inno_hdmi_i2c *i2c = hdmi->i2c;
u8 stat;
stat = hdmi_readb(hdmi, HDMI_INTERRUPT_STATUS1);
if (!(stat & m_INT_EDID_READY))
return IRQ_NONE;
/* Clear HDMI EDID interrupt flag */
hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY);
complete(&i2c->cmp);
return IRQ_HANDLED;
}
static irqreturn_t inno_hdmi_hardirq(int irq, void *dev_id)
{
struct inno_hdmi *hdmi = dev_id;
irqreturn_t ret = IRQ_NONE;
u8 interrupt;
if (hdmi->i2c)
ret = inno_hdmi_i2c_irq(hdmi);
interrupt = hdmi_readb(hdmi, HDMI_STATUS);
if (interrupt & m_INT_HOTPLUG) {
hdmi_modb(hdmi, HDMI_STATUS, m_INT_HOTPLUG, m_INT_HOTPLUG);
ret = IRQ_WAKE_THREAD;
}
return ret;
}
static irqreturn_t inno_hdmi_irq(int irq, void *dev_id)
{
struct inno_hdmi *hdmi = dev_id;
drm_helper_hpd_irq_event(hdmi->connector.dev);
return IRQ_HANDLED;
}
static int inno_hdmi_i2c_read(struct inno_hdmi *hdmi, struct i2c_msg *msgs)
{
int length = msgs->len;
u8 *buf = msgs->buf;
int ret;
ret = wait_for_completion_timeout(&hdmi->i2c->cmp, HZ / 10);
if (!ret)
return -EAGAIN;
while (length--)
*buf++ = hdmi_readb(hdmi, HDMI_EDID_FIFO_ADDR);
return 0;
}
static int inno_hdmi_i2c_write(struct inno_hdmi *hdmi, struct i2c_msg *msgs)
{
/*
* The DDC module only support read EDID message, so
* we assume that each word write to this i2c adapter
* should be the offset of EDID word address.
*/
if ((msgs->len != 1) ||
((msgs->addr != DDC_ADDR) && (msgs->addr != DDC_SEGMENT_ADDR)))
return -EINVAL;
reinit_completion(&hdmi->i2c->cmp);
if (msgs->addr == DDC_SEGMENT_ADDR)
hdmi->i2c->segment_addr = msgs->buf[0];
if (msgs->addr == DDC_ADDR)
hdmi->i2c->ddc_addr = msgs->buf[0];
/* Set edid fifo first addr */
hdmi_writeb(hdmi, HDMI_EDID_FIFO_OFFSET, 0x00);
/* Set edid word address 0x00/0x80 */
hdmi_writeb(hdmi, HDMI_EDID_WORD_ADDR, hdmi->i2c->ddc_addr);
/* Set edid segment pointer */
hdmi_writeb(hdmi, HDMI_EDID_SEGMENT_POINTER, hdmi->i2c->segment_addr);
return 0;
}
static int inno_hdmi_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{
struct inno_hdmi *hdmi = i2c_get_adapdata(adap);
struct inno_hdmi_i2c *i2c = hdmi->i2c;
int i, ret = 0;
mutex_lock(&i2c->lock);
/* Clear the EDID interrupt flag and unmute the interrupt */
hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, m_INT_EDID_READY);
hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY);
for (i = 0; i < num; i++) {
dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n",
i + 1, num, msgs[i].len, msgs[i].flags);
if (msgs[i].flags & I2C_M_RD)
ret = inno_hdmi_i2c_read(hdmi, &msgs[i]);
else
ret = inno_hdmi_i2c_write(hdmi, &msgs[i]);
if (ret < 0)
break;
}
if (!ret)
ret = num;
/* Mute HDMI EDID interrupt */
hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, 0);
mutex_unlock(&i2c->lock);
return ret;
}
static u32 inno_hdmi_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm inno_hdmi_algorithm = {
.master_xfer = inno_hdmi_i2c_xfer,
.functionality = inno_hdmi_i2c_func,
};
static struct i2c_adapter *inno_hdmi_i2c_adapter(struct inno_hdmi *hdmi)
{
struct i2c_adapter *adap;
struct inno_hdmi_i2c *i2c;
int ret;
i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return ERR_PTR(-ENOMEM);
mutex_init(&i2c->lock);
init_completion(&i2c->cmp);
adap = &i2c->adap;
adap->class = I2C_CLASS_DDC;
adap->owner = THIS_MODULE;
adap->dev.parent = hdmi->dev;
adap->dev.of_node = hdmi->dev->of_node;
adap->algo = &inno_hdmi_algorithm;
strlcpy(adap->name, "Inno HDMI", sizeof(adap->name));
i2c_set_adapdata(adap, hdmi);
ret = i2c_add_adapter(adap);
if (ret) {
dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
devm_kfree(hdmi->dev, i2c);
return ERR_PTR(ret);
}
hdmi->i2c = i2c;
dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name);
return adap;
}
static int inno_hdmi_bind(struct device *dev, struct device *master,
void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = data;
struct inno_hdmi *hdmi;
struct resource *iores;
int irq;
int ret;
hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
if (!hdmi)
return -ENOMEM;
hdmi->dev = dev;
hdmi->drm_dev = drm;
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!iores)
return -ENXIO;
hdmi->regs = devm_ioremap_resource(dev, iores);
if (IS_ERR(hdmi->regs))
return PTR_ERR(hdmi->regs);
hdmi->pclk = devm_clk_get(hdmi->dev, "pclk");
if (IS_ERR(hdmi->pclk)) {
dev_err(hdmi->dev, "Unable to get HDMI pclk clk\n");
return PTR_ERR(hdmi->pclk);
}
ret = clk_prepare_enable(hdmi->pclk);
if (ret) {
dev_err(hdmi->dev, "Cannot enable HDMI pclk clock: %d\n", ret);
return ret;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
inno_hdmi_reset(hdmi);
hdmi->ddc = inno_hdmi_i2c_adapter(hdmi);
if (IS_ERR(hdmi->ddc)) {
ret = PTR_ERR(hdmi->ddc);
hdmi->ddc = NULL;
return ret;
}
/*
* When IP controller haven't configured to an accurate video
* timing, then the TMDS clock source would be switched to
* PCLK_HDMI, so we need to init the TMDS rate to PCLK rate,
* and reconfigure the DDC clock.
*/
hdmi->tmds_rate = clk_get_rate(hdmi->pclk);
inno_hdmi_i2c_init(hdmi);
ret = inno_hdmi_register(drm, hdmi);
if (ret)
return ret;
dev_set_drvdata(dev, hdmi);
/* Unmute hotplug interrupt */
hdmi_modb(hdmi, HDMI_STATUS, m_MASK_INT_HOTPLUG, v_MASK_INT_HOTPLUG(1));
ret = devm_request_threaded_irq(dev, irq, inno_hdmi_hardirq,
inno_hdmi_irq, IRQF_SHARED,
dev_name(dev), hdmi);
return ret;
}
static void inno_hdmi_unbind(struct device *dev, struct device *master,
void *data)
{
struct inno_hdmi *hdmi = dev_get_drvdata(dev);
hdmi->connector.funcs->destroy(&hdmi->connector);
hdmi->encoder.funcs->destroy(&hdmi->encoder);
clk_disable_unprepare(hdmi->pclk);
i2c_put_adapter(hdmi->ddc);
}
static const struct component_ops inno_hdmi_ops = {
.bind = inno_hdmi_bind,
.unbind = inno_hdmi_unbind,
};
static int inno_hdmi_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &inno_hdmi_ops);
}
static int inno_hdmi_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &inno_hdmi_ops);
return 0;
}
static const struct of_device_id inno_hdmi_dt_ids[] = {
{ .compatible = "rockchip,rk3036-inno-hdmi",
},
{},
};
MODULE_DEVICE_TABLE(of, inno_hdmi_dt_ids);
static struct platform_driver inno_hdmi_driver = {
.probe = inno_hdmi_probe,
.remove = inno_hdmi_remove,
.driver = {
.name = "innohdmi-rockchip",
.of_match_table = inno_hdmi_dt_ids,
},
};
module_platform_driver(inno_hdmi_driver);
MODULE_AUTHOR("Zheng Yang <zhengyang@rock-chips.com>");
MODULE_AUTHOR("Yakir Yang <ykk@rock-chips.com>");
MODULE_DESCRIPTION("Rockchip Specific INNO-HDMI Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:innohdmi-rockchip");