mirror of https://gitee.com/openkylin/linux.git
1655 lines
46 KiB
C
1655 lines
46 KiB
C
/*
|
|
* Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
|
|
*
|
|
* Author: Timur Tabi <timur@freescale.com>
|
|
*
|
|
* Copyright 2007-2010 Freescale Semiconductor, Inc.
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public License
|
|
* version 2. This program is licensed "as is" without any warranty of any
|
|
* kind, whether express or implied.
|
|
*
|
|
*
|
|
* Some notes why imx-pcm-fiq is used instead of DMA on some boards:
|
|
*
|
|
* The i.MX SSI core has some nasty limitations in AC97 mode. While most
|
|
* sane processor vendors have a FIFO per AC97 slot, the i.MX has only
|
|
* one FIFO which combines all valid receive slots. We cannot even select
|
|
* which slots we want to receive. The WM9712 with which this driver
|
|
* was developed with always sends GPIO status data in slot 12 which
|
|
* we receive in our (PCM-) data stream. The only chance we have is to
|
|
* manually skip this data in the FIQ handler. With sampling rates different
|
|
* from 48000Hz not every frame has valid receive data, so the ratio
|
|
* between pcm data and GPIO status data changes. Our FIQ handler is not
|
|
* able to handle this, hence this driver only works with 48000Hz sampling
|
|
* rate.
|
|
* Reading and writing AC97 registers is another challenge. The core
|
|
* provides us status bits when the read register is updated with *another*
|
|
* value. When we read the same register two times (and the register still
|
|
* contains the same value) these status bits are not set. We work
|
|
* around this by not polling these bits but only wait a fixed delay.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_platform.h>
|
|
|
|
#include <sound/core.h>
|
|
#include <sound/pcm.h>
|
|
#include <sound/pcm_params.h>
|
|
#include <sound/initval.h>
|
|
#include <sound/soc.h>
|
|
#include <sound/dmaengine_pcm.h>
|
|
|
|
#include "fsl_ssi.h"
|
|
#include "imx-pcm.h"
|
|
|
|
/**
|
|
* FSLSSI_I2S_RATES: sample rates supported by the I2S
|
|
*
|
|
* This driver currently only supports the SSI running in I2S slave mode,
|
|
* which means the codec determines the sample rate. Therefore, we tell
|
|
* ALSA that we support all rates and let the codec driver decide what rates
|
|
* are really supported.
|
|
*/
|
|
#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
|
|
|
|
/**
|
|
* FSLSSI_I2S_FORMATS: audio formats supported by the SSI
|
|
*
|
|
* The SSI has a limitation in that the samples must be in the same byte
|
|
* order as the host CPU. This is because when multiple bytes are written
|
|
* to the STX register, the bytes and bits must be written in the same
|
|
* order. The STX is a shift register, so all the bits need to be aligned
|
|
* (bit-endianness must match byte-endianness). Processors typically write
|
|
* the bits within a byte in the same order that the bytes of a word are
|
|
* written in. So if the host CPU is big-endian, then only big-endian
|
|
* samples will be written to STX properly.
|
|
*/
|
|
#ifdef __BIG_ENDIAN
|
|
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
|
|
SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
|
|
SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
|
|
#else
|
|
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
|
|
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
|
|
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
|
|
#endif
|
|
|
|
#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
|
|
CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
|
|
CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
|
|
#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
|
|
CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
|
|
CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
|
|
|
|
enum fsl_ssi_type {
|
|
FSL_SSI_MCP8610,
|
|
FSL_SSI_MX21,
|
|
FSL_SSI_MX35,
|
|
FSL_SSI_MX51,
|
|
};
|
|
|
|
struct fsl_ssi_reg_val {
|
|
u32 sier;
|
|
u32 srcr;
|
|
u32 stcr;
|
|
u32 scr;
|
|
};
|
|
|
|
struct fsl_ssi_rxtx_reg_val {
|
|
struct fsl_ssi_reg_val rx;
|
|
struct fsl_ssi_reg_val tx;
|
|
};
|
|
|
|
static const struct reg_default fsl_ssi_reg_defaults[] = {
|
|
{CCSR_SSI_SCR, 0x00000000},
|
|
{CCSR_SSI_SIER, 0x00003003},
|
|
{CCSR_SSI_STCR, 0x00000200},
|
|
{CCSR_SSI_SRCR, 0x00000200},
|
|
{CCSR_SSI_STCCR, 0x00040000},
|
|
{CCSR_SSI_SRCCR, 0x00040000},
|
|
{CCSR_SSI_SACNT, 0x00000000},
|
|
{CCSR_SSI_STMSK, 0x00000000},
|
|
{CCSR_SSI_SRMSK, 0x00000000},
|
|
{CCSR_SSI_SACCEN, 0x00000000},
|
|
{CCSR_SSI_SACCDIS, 0x00000000},
|
|
};
|
|
|
|
static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
|
|
{
|
|
switch (reg) {
|
|
case CCSR_SSI_SACCEN:
|
|
case CCSR_SSI_SACCDIS:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
|
|
{
|
|
switch (reg) {
|
|
case CCSR_SSI_STX0:
|
|
case CCSR_SSI_STX1:
|
|
case CCSR_SSI_SRX0:
|
|
case CCSR_SSI_SRX1:
|
|
case CCSR_SSI_SISR:
|
|
case CCSR_SSI_SFCSR:
|
|
case CCSR_SSI_SACNT:
|
|
case CCSR_SSI_SACADD:
|
|
case CCSR_SSI_SACDAT:
|
|
case CCSR_SSI_SATAG:
|
|
case CCSR_SSI_SACCST:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
|
|
{
|
|
switch (reg) {
|
|
case CCSR_SSI_SRX0:
|
|
case CCSR_SSI_SRX1:
|
|
case CCSR_SSI_SISR:
|
|
case CCSR_SSI_SACADD:
|
|
case CCSR_SSI_SACDAT:
|
|
case CCSR_SSI_SATAG:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
|
|
{
|
|
switch (reg) {
|
|
case CCSR_SSI_SRX0:
|
|
case CCSR_SSI_SRX1:
|
|
case CCSR_SSI_SACCST:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static const struct regmap_config fsl_ssi_regconfig = {
|
|
.max_register = CCSR_SSI_SACCDIS,
|
|
.reg_bits = 32,
|
|
.val_bits = 32,
|
|
.reg_stride = 4,
|
|
.val_format_endian = REGMAP_ENDIAN_NATIVE,
|
|
.reg_defaults = fsl_ssi_reg_defaults,
|
|
.num_reg_defaults = ARRAY_SIZE(fsl_ssi_reg_defaults),
|
|
.readable_reg = fsl_ssi_readable_reg,
|
|
.volatile_reg = fsl_ssi_volatile_reg,
|
|
.precious_reg = fsl_ssi_precious_reg,
|
|
.writeable_reg = fsl_ssi_writeable_reg,
|
|
.cache_type = REGCACHE_RBTREE,
|
|
};
|
|
|
|
struct fsl_ssi_soc_data {
|
|
bool imx;
|
|
bool offline_config;
|
|
u32 sisr_write_mask;
|
|
};
|
|
|
|
/**
|
|
* fsl_ssi_private: per-SSI private data
|
|
*
|
|
* @reg: Pointer to the regmap registers
|
|
* @irq: IRQ of this SSI
|
|
* @cpu_dai_drv: CPU DAI driver for this device
|
|
*
|
|
* @dai_fmt: DAI configuration this device is currently used with
|
|
* @i2s_mode: i2s and network mode configuration of the device. Is used to
|
|
* switch between normal and i2s/network mode
|
|
* mode depending on the number of channels
|
|
* @use_dma: DMA is used or FIQ with stream filter
|
|
* @use_dual_fifo: DMA with support for both FIFOs used
|
|
* @fifo_deph: Depth of the SSI FIFOs
|
|
* @rxtx_reg_val: Specific register settings for receive/transmit configuration
|
|
*
|
|
* @clk: SSI clock
|
|
* @baudclk: SSI baud clock for master mode
|
|
* @baudclk_streams: Active streams that are using baudclk
|
|
* @bitclk_freq: bitclock frequency set by .set_dai_sysclk
|
|
*
|
|
* @dma_params_tx: DMA transmit parameters
|
|
* @dma_params_rx: DMA receive parameters
|
|
* @ssi_phys: physical address of the SSI registers
|
|
*
|
|
* @fiq_params: FIQ stream filtering parameters
|
|
*
|
|
* @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
|
|
*
|
|
* @dbg_stats: Debugging statistics
|
|
*
|
|
* @soc: SoC specific data
|
|
*/
|
|
struct fsl_ssi_private {
|
|
struct regmap *regs;
|
|
int irq;
|
|
struct snd_soc_dai_driver cpu_dai_drv;
|
|
|
|
unsigned int dai_fmt;
|
|
u8 i2s_mode;
|
|
bool use_dma;
|
|
bool use_dual_fifo;
|
|
bool has_ipg_clk_name;
|
|
unsigned int fifo_depth;
|
|
struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
|
|
|
|
struct clk *clk;
|
|
struct clk *baudclk;
|
|
unsigned int baudclk_streams;
|
|
unsigned int bitclk_freq;
|
|
|
|
/* regcache for volatile regs */
|
|
u32 regcache_sfcsr;
|
|
u32 regcache_sacnt;
|
|
|
|
/* DMA params */
|
|
struct snd_dmaengine_dai_dma_data dma_params_tx;
|
|
struct snd_dmaengine_dai_dma_data dma_params_rx;
|
|
dma_addr_t ssi_phys;
|
|
|
|
/* params for non-dma FIQ stream filtered mode */
|
|
struct imx_pcm_fiq_params fiq_params;
|
|
|
|
/* Used when using fsl-ssi as sound-card. This is only used by ppc and
|
|
* should be replaced with simple-sound-card. */
|
|
struct platform_device *pdev;
|
|
|
|
struct fsl_ssi_dbg dbg_stats;
|
|
|
|
const struct fsl_ssi_soc_data *soc;
|
|
};
|
|
|
|
/*
|
|
* imx51 and later SoCs have a slightly different IP that allows the
|
|
* SSI configuration while the SSI unit is running.
|
|
*
|
|
* More important, it is necessary on those SoCs to configure the
|
|
* sperate TX/RX DMA bits just before starting the stream
|
|
* (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
|
|
* sends any DMA requests to the SDMA unit, otherwise it is not defined
|
|
* how the SDMA unit handles the DMA request.
|
|
*
|
|
* SDMA units are present on devices starting at imx35 but the imx35
|
|
* reference manual states that the DMA bits should not be changed
|
|
* while the SSI unit is running (SSIEN). So we support the necessary
|
|
* online configuration of fsl-ssi starting at imx51.
|
|
*/
|
|
|
|
static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
|
|
.imx = false,
|
|
.offline_config = true,
|
|
.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
|
|
CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
|
|
CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
|
|
};
|
|
|
|
static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
|
|
.imx = true,
|
|
.offline_config = true,
|
|
.sisr_write_mask = 0,
|
|
};
|
|
|
|
static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
|
|
.imx = true,
|
|
.offline_config = true,
|
|
.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
|
|
CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
|
|
CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
|
|
};
|
|
|
|
static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
|
|
.imx = true,
|
|
.offline_config = false,
|
|
.sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
|
|
CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
|
|
};
|
|
|
|
static const struct of_device_id fsl_ssi_ids[] = {
|
|
{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
|
|
{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
|
|
{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
|
|
{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
|
|
|
|
static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
return (ssi_private->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
|
|
SND_SOC_DAIFMT_AC97;
|
|
}
|
|
|
|
static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
|
|
SND_SOC_DAIFMT_CBS_CFS;
|
|
}
|
|
|
|
static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
|
|
SND_SOC_DAIFMT_CBM_CFS;
|
|
}
|
|
/**
|
|
* fsl_ssi_isr: SSI interrupt handler
|
|
*
|
|
* Although it's possible to use the interrupt handler to send and receive
|
|
* data to/from the SSI, we use the DMA instead. Programming is more
|
|
* complicated, but the performance is much better.
|
|
*
|
|
* This interrupt handler is used only to gather statistics.
|
|
*
|
|
* @irq: IRQ of the SSI device
|
|
* @dev_id: pointer to the ssi_private structure for this SSI device
|
|
*/
|
|
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = dev_id;
|
|
struct regmap *regs = ssi_private->regs;
|
|
__be32 sisr;
|
|
__be32 sisr2;
|
|
|
|
/* We got an interrupt, so read the status register to see what we
|
|
were interrupted for. We mask it with the Interrupt Enable register
|
|
so that we only check for events that we're interested in.
|
|
*/
|
|
regmap_read(regs, CCSR_SSI_SISR, &sisr);
|
|
|
|
sisr2 = sisr & ssi_private->soc->sisr_write_mask;
|
|
/* Clear the bits that we set */
|
|
if (sisr2)
|
|
regmap_write(regs, CCSR_SSI_SISR, sisr2);
|
|
|
|
fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Enable/Disable all rx/tx config flags at once.
|
|
*/
|
|
static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
|
|
bool enable)
|
|
{
|
|
struct regmap *regs = ssi_private->regs;
|
|
struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
|
|
|
|
if (enable) {
|
|
regmap_update_bits(regs, CCSR_SSI_SIER,
|
|
vals->rx.sier | vals->tx.sier,
|
|
vals->rx.sier | vals->tx.sier);
|
|
regmap_update_bits(regs, CCSR_SSI_SRCR,
|
|
vals->rx.srcr | vals->tx.srcr,
|
|
vals->rx.srcr | vals->tx.srcr);
|
|
regmap_update_bits(regs, CCSR_SSI_STCR,
|
|
vals->rx.stcr | vals->tx.stcr,
|
|
vals->rx.stcr | vals->tx.stcr);
|
|
} else {
|
|
regmap_update_bits(regs, CCSR_SSI_SRCR,
|
|
vals->rx.srcr | vals->tx.srcr, 0);
|
|
regmap_update_bits(regs, CCSR_SSI_STCR,
|
|
vals->rx.stcr | vals->tx.stcr, 0);
|
|
regmap_update_bits(regs, CCSR_SSI_SIER,
|
|
vals->rx.sier | vals->tx.sier, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the bits that have to be disabled for the current stream that is
|
|
* getting disabled. This keeps the bits enabled that are necessary for the
|
|
* second stream to work if 'stream_active' is true.
|
|
*
|
|
* Detailed calculation:
|
|
* These are the values that need to be active after disabling. For non-active
|
|
* second stream, this is 0:
|
|
* vals_stream * !!stream_active
|
|
*
|
|
* The following computes the overall differences between the setup for the
|
|
* to-disable stream and the active stream, a simple XOR:
|
|
* vals_disable ^ (vals_stream * !!(stream_active))
|
|
*
|
|
* The full expression adds a mask on all values we care about
|
|
*/
|
|
#define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
|
|
((vals_disable) & \
|
|
((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
|
|
|
|
/*
|
|
* Enable/Disable a ssi configuration. You have to pass either
|
|
* ssi_private->rxtx_reg_val.rx or tx as vals parameter.
|
|
*/
|
|
static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
|
|
struct fsl_ssi_reg_val *vals)
|
|
{
|
|
struct regmap *regs = ssi_private->regs;
|
|
struct fsl_ssi_reg_val *avals;
|
|
int nr_active_streams;
|
|
u32 scr_val;
|
|
int keep_active;
|
|
|
|
regmap_read(regs, CCSR_SSI_SCR, &scr_val);
|
|
|
|
nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
|
|
!!(scr_val & CCSR_SSI_SCR_RE);
|
|
|
|
if (nr_active_streams - 1 > 0)
|
|
keep_active = 1;
|
|
else
|
|
keep_active = 0;
|
|
|
|
/* Find the other direction values rx or tx which we do not want to
|
|
* modify */
|
|
if (&ssi_private->rxtx_reg_val.rx == vals)
|
|
avals = &ssi_private->rxtx_reg_val.tx;
|
|
else
|
|
avals = &ssi_private->rxtx_reg_val.rx;
|
|
|
|
/* If vals should be disabled, start with disabling the unit */
|
|
if (!enable) {
|
|
u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
|
|
keep_active);
|
|
regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
|
|
}
|
|
|
|
/*
|
|
* We are running on a SoC which does not support online SSI
|
|
* reconfiguration, so we have to enable all necessary flags at once
|
|
* even if we do not use them later (capture and playback configuration)
|
|
*/
|
|
if (ssi_private->soc->offline_config) {
|
|
if ((enable && !nr_active_streams) ||
|
|
(!enable && !keep_active))
|
|
fsl_ssi_rxtx_config(ssi_private, enable);
|
|
|
|
goto config_done;
|
|
}
|
|
|
|
/*
|
|
* Configure single direction units while the SSI unit is running
|
|
* (online configuration)
|
|
*/
|
|
if (enable) {
|
|
regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
|
|
regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
|
|
regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
|
|
} else {
|
|
u32 sier;
|
|
u32 srcr;
|
|
u32 stcr;
|
|
|
|
/*
|
|
* Disabling the necessary flags for one of rx/tx while the
|
|
* other stream is active is a little bit more difficult. We
|
|
* have to disable only those flags that differ between both
|
|
* streams (rx XOR tx) and that are set in the stream that is
|
|
* disabled now. Otherwise we could alter flags of the other
|
|
* stream
|
|
*/
|
|
|
|
/* These assignments are simply vals without bits set in avals*/
|
|
sier = fsl_ssi_disable_val(vals->sier, avals->sier,
|
|
keep_active);
|
|
srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
|
|
keep_active);
|
|
stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
|
|
keep_active);
|
|
|
|
regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
|
|
regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
|
|
regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
|
|
}
|
|
|
|
config_done:
|
|
/* Enabling of subunits is done after configuration */
|
|
if (enable)
|
|
regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
|
|
}
|
|
|
|
|
|
static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
|
|
{
|
|
fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
|
|
}
|
|
|
|
static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
|
|
{
|
|
fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
|
|
}
|
|
|
|
/*
|
|
* Setup rx/tx register values used to enable/disable the streams. These will
|
|
* be used later in fsl_ssi_config to setup the streams without the need to
|
|
* check for all different SSI modes.
|
|
*/
|
|
static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
|
|
|
|
reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
|
|
reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
|
|
reg->rx.scr = 0;
|
|
reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
|
|
reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
|
|
reg->tx.scr = 0;
|
|
|
|
if (!fsl_ssi_is_ac97(ssi_private)) {
|
|
reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
|
|
reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
|
|
reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
|
|
reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
|
|
}
|
|
|
|
if (ssi_private->use_dma) {
|
|
reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
|
|
reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
|
|
} else {
|
|
reg->rx.sier |= CCSR_SSI_SIER_RIE;
|
|
reg->tx.sier |= CCSR_SSI_SIER_TIE;
|
|
}
|
|
|
|
reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
|
|
reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
|
|
}
|
|
|
|
static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
|
|
{
|
|
struct regmap *regs = ssi_private->regs;
|
|
|
|
/*
|
|
* Setup the clock control register
|
|
*/
|
|
regmap_write(regs, CCSR_SSI_STCCR,
|
|
CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
|
|
regmap_write(regs, CCSR_SSI_SRCCR,
|
|
CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
|
|
|
|
/*
|
|
* Enable AC97 mode and startup the SSI
|
|
*/
|
|
regmap_write(regs, CCSR_SSI_SACNT,
|
|
CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
|
|
regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
|
|
regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
|
|
|
|
/*
|
|
* Enable SSI, Transmit and Receive. AC97 has to communicate with the
|
|
* codec before a stream is started.
|
|
*/
|
|
regmap_update_bits(regs, CCSR_SSI_SCR,
|
|
CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
|
|
CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
|
|
|
|
regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_startup: create a new substream
|
|
*
|
|
* This is the first function called when a stream is opened.
|
|
*
|
|
* If this is the first stream open, then grab the IRQ and program most of
|
|
* the SSI registers.
|
|
*/
|
|
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private =
|
|
snd_soc_dai_get_drvdata(rtd->cpu_dai);
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(ssi_private->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* When using dual fifo mode, it is safer to ensure an even period
|
|
* size. If appearing to an odd number while DMA always starts its
|
|
* task from fifo0, fifo1 would be neglected at the end of each
|
|
* period. But SSI would still access fifo1 with an invalid data.
|
|
*/
|
|
if (ssi_private->use_dual_fifo)
|
|
snd_pcm_hw_constraint_step(substream->runtime, 0,
|
|
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_shutdown: shutdown the SSI
|
|
*
|
|
*/
|
|
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private =
|
|
snd_soc_dai_get_drvdata(rtd->cpu_dai);
|
|
|
|
clk_disable_unprepare(ssi_private->clk);
|
|
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
|
|
*
|
|
* Note: This function can be only called when using SSI as DAI master
|
|
*
|
|
* Quick instruction for parameters:
|
|
* freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
|
|
* dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
|
|
*/
|
|
static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *cpu_dai,
|
|
struct snd_pcm_hw_params *hw_params)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
|
|
struct regmap *regs = ssi_private->regs;
|
|
int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
|
|
u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
|
|
unsigned long clkrate, baudrate, tmprate;
|
|
u64 sub, savesub = 100000;
|
|
unsigned int freq;
|
|
bool baudclk_is_used;
|
|
|
|
/* Prefer the explicitly set bitclock frequency */
|
|
if (ssi_private->bitclk_freq)
|
|
freq = ssi_private->bitclk_freq;
|
|
else
|
|
freq = params_channels(hw_params) * 32 * params_rate(hw_params);
|
|
|
|
/* Don't apply it to any non-baudclk circumstance */
|
|
if (IS_ERR(ssi_private->baudclk))
|
|
return -EINVAL;
|
|
|
|
baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
|
|
|
|
/* It should be already enough to divide clock by setting pm alone */
|
|
psr = 0;
|
|
div2 = 0;
|
|
|
|
factor = (div2 + 1) * (7 * psr + 1) * 2;
|
|
|
|
for (i = 0; i < 255; i++) {
|
|
tmprate = freq * factor * (i + 1);
|
|
|
|
if (baudclk_is_used)
|
|
clkrate = clk_get_rate(ssi_private->baudclk);
|
|
else
|
|
clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
|
|
|
|
/*
|
|
* Hardware limitation: The bclk rate must be
|
|
* never greater than 1/5 IPG clock rate
|
|
*/
|
|
if (clkrate * 5 > clk_get_rate(ssi_private->clk))
|
|
continue;
|
|
|
|
clkrate /= factor;
|
|
afreq = clkrate / (i + 1);
|
|
|
|
if (freq == afreq)
|
|
sub = 0;
|
|
else if (freq / afreq == 1)
|
|
sub = freq - afreq;
|
|
else if (afreq / freq == 1)
|
|
sub = afreq - freq;
|
|
else
|
|
continue;
|
|
|
|
/* Calculate the fraction */
|
|
sub *= 100000;
|
|
do_div(sub, freq);
|
|
|
|
if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
|
|
baudrate = tmprate;
|
|
savesub = sub;
|
|
pm = i;
|
|
}
|
|
|
|
/* We are lucky */
|
|
if (savesub == 0)
|
|
break;
|
|
}
|
|
|
|
/* No proper pm found if it is still remaining the initial value */
|
|
if (pm == 999) {
|
|
dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
|
|
(psr ? CCSR_SSI_SxCCR_PSR : 0);
|
|
mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
|
|
CCSR_SSI_SxCCR_PSR;
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
|
|
regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
|
|
else
|
|
regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
|
|
|
|
if (!baudclk_is_used) {
|
|
ret = clk_set_rate(ssi_private->baudclk, baudrate);
|
|
if (ret) {
|
|
dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
|
|
int clk_id, unsigned int freq, int dir)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
|
|
|
|
ssi_private->bitclk_freq = freq;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_hw_params - program the sample size
|
|
*
|
|
* Most of the SSI registers have been programmed in the startup function,
|
|
* but the word length must be programmed here. Unfortunately, programming
|
|
* the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
|
|
* cause a problem with supporting simultaneous playback and capture. If
|
|
* the SSI is already playing a stream, then that stream may be temporarily
|
|
* stopped when you start capture.
|
|
*
|
|
* Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
|
|
* clock master.
|
|
*/
|
|
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
|
|
struct regmap *regs = ssi_private->regs;
|
|
unsigned int channels = params_channels(hw_params);
|
|
unsigned int sample_size = params_width(hw_params);
|
|
u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
|
|
int ret;
|
|
u32 scr_val;
|
|
int enabled;
|
|
|
|
regmap_read(regs, CCSR_SSI_SCR, &scr_val);
|
|
enabled = scr_val & CCSR_SSI_SCR_SSIEN;
|
|
|
|
/*
|
|
* If we're in synchronous mode, and the SSI is already enabled,
|
|
* then STCCR is already set properly.
|
|
*/
|
|
if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
|
|
return 0;
|
|
|
|
if (fsl_ssi_is_i2s_master(ssi_private)) {
|
|
ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Do not enable the clock if it is already enabled */
|
|
if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
|
|
ret = clk_prepare_enable(ssi_private->baudclk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ssi_private->baudclk_streams |= BIT(substream->stream);
|
|
}
|
|
}
|
|
|
|
if (!fsl_ssi_is_ac97(ssi_private)) {
|
|
u8 i2smode;
|
|
/*
|
|
* Switch to normal net mode in order to have a frame sync
|
|
* signal every 32 bits instead of 16 bits
|
|
*/
|
|
if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
|
|
i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
|
|
CCSR_SSI_SCR_NET;
|
|
else
|
|
i2smode = ssi_private->i2s_mode;
|
|
|
|
regmap_update_bits(regs, CCSR_SSI_SCR,
|
|
CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
|
|
channels == 1 ? 0 : i2smode);
|
|
}
|
|
|
|
/*
|
|
* FIXME: The documentation says that SxCCR[WL] should not be
|
|
* modified while the SSI is enabled. The only time this can
|
|
* happen is if we're trying to do simultaneous playback and
|
|
* capture in asynchronous mode. Unfortunately, I have been enable
|
|
* to get that to work at all on the P1022DS. Therefore, we don't
|
|
* bother to disable/enable the SSI when setting SxCCR[WL], because
|
|
* the SSI will stop anyway. Maybe one day, this will get fixed.
|
|
*/
|
|
|
|
/* In synchronous mode, the SSI uses STCCR for capture */
|
|
if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
|
|
ssi_private->cpu_dai_drv.symmetric_rates)
|
|
regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
|
|
wl);
|
|
else
|
|
regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
|
|
wl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
|
|
struct snd_soc_dai *cpu_dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private =
|
|
snd_soc_dai_get_drvdata(rtd->cpu_dai);
|
|
|
|
if (fsl_ssi_is_i2s_master(ssi_private) &&
|
|
ssi_private->baudclk_streams & BIT(substream->stream)) {
|
|
clk_disable_unprepare(ssi_private->baudclk);
|
|
ssi_private->baudclk_streams &= ~BIT(substream->stream);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _fsl_ssi_set_dai_fmt(struct device *dev,
|
|
struct fsl_ssi_private *ssi_private,
|
|
unsigned int fmt)
|
|
{
|
|
struct regmap *regs = ssi_private->regs;
|
|
u32 strcr = 0, stcr, srcr, scr, mask;
|
|
u8 wm;
|
|
|
|
ssi_private->dai_fmt = fmt;
|
|
|
|
if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
|
|
dev_err(dev, "baudclk is missing which is necessary for master mode\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
fsl_ssi_setup_reg_vals(ssi_private);
|
|
|
|
regmap_read(regs, CCSR_SSI_SCR, &scr);
|
|
scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
|
|
scr |= CCSR_SSI_SCR_SYNC_TX_FS;
|
|
|
|
mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
|
|
CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
|
|
CCSR_SSI_STCR_TEFS;
|
|
regmap_read(regs, CCSR_SSI_STCR, &stcr);
|
|
regmap_read(regs, CCSR_SSI_SRCR, &srcr);
|
|
stcr &= ~mask;
|
|
srcr &= ~mask;
|
|
|
|
ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
|
|
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
|
|
case SND_SOC_DAIFMT_I2S:
|
|
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
|
|
case SND_SOC_DAIFMT_CBM_CFS:
|
|
case SND_SOC_DAIFMT_CBS_CFS:
|
|
ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
|
|
regmap_update_bits(regs, CCSR_SSI_STCCR,
|
|
CCSR_SSI_SxCCR_DC_MASK,
|
|
CCSR_SSI_SxCCR_DC(2));
|
|
regmap_update_bits(regs, CCSR_SSI_SRCCR,
|
|
CCSR_SSI_SxCCR_DC_MASK,
|
|
CCSR_SSI_SxCCR_DC(2));
|
|
break;
|
|
case SND_SOC_DAIFMT_CBM_CFM:
|
|
ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Data on rising edge of bclk, frame low, 1clk before data */
|
|
strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
|
|
CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
|
|
break;
|
|
case SND_SOC_DAIFMT_LEFT_J:
|
|
/* Data on rising edge of bclk, frame high */
|
|
strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
|
|
break;
|
|
case SND_SOC_DAIFMT_DSP_A:
|
|
/* Data on rising edge of bclk, frame high, 1clk before data */
|
|
strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
|
|
CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
|
|
break;
|
|
case SND_SOC_DAIFMT_DSP_B:
|
|
/* Data on rising edge of bclk, frame high */
|
|
strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
|
|
CCSR_SSI_STCR_TXBIT0;
|
|
break;
|
|
case SND_SOC_DAIFMT_AC97:
|
|
ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
scr |= ssi_private->i2s_mode;
|
|
|
|
/* DAI clock inversion */
|
|
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
|
|
case SND_SOC_DAIFMT_NB_NF:
|
|
/* Nothing to do for both normal cases */
|
|
break;
|
|
case SND_SOC_DAIFMT_IB_NF:
|
|
/* Invert bit clock */
|
|
strcr ^= CCSR_SSI_STCR_TSCKP;
|
|
break;
|
|
case SND_SOC_DAIFMT_NB_IF:
|
|
/* Invert frame clock */
|
|
strcr ^= CCSR_SSI_STCR_TFSI;
|
|
break;
|
|
case SND_SOC_DAIFMT_IB_IF:
|
|
/* Invert both clocks */
|
|
strcr ^= CCSR_SSI_STCR_TSCKP;
|
|
strcr ^= CCSR_SSI_STCR_TFSI;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* DAI clock master masks */
|
|
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
|
|
case SND_SOC_DAIFMT_CBS_CFS:
|
|
strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
|
|
scr |= CCSR_SSI_SCR_SYS_CLK_EN;
|
|
break;
|
|
case SND_SOC_DAIFMT_CBM_CFM:
|
|
scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
|
|
break;
|
|
case SND_SOC_DAIFMT_CBM_CFS:
|
|
strcr &= ~CCSR_SSI_STCR_TXDIR;
|
|
strcr |= CCSR_SSI_STCR_TFDIR;
|
|
scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
|
|
break;
|
|
default:
|
|
if (!fsl_ssi_is_ac97(ssi_private))
|
|
return -EINVAL;
|
|
}
|
|
|
|
stcr |= strcr;
|
|
srcr |= strcr;
|
|
|
|
if (ssi_private->cpu_dai_drv.symmetric_rates
|
|
|| fsl_ssi_is_ac97(ssi_private)) {
|
|
/* Need to clear RXDIR when using SYNC or AC97 mode */
|
|
srcr &= ~CCSR_SSI_SRCR_RXDIR;
|
|
scr |= CCSR_SSI_SCR_SYN;
|
|
}
|
|
|
|
regmap_write(regs, CCSR_SSI_STCR, stcr);
|
|
regmap_write(regs, CCSR_SSI_SRCR, srcr);
|
|
regmap_write(regs, CCSR_SSI_SCR, scr);
|
|
|
|
/*
|
|
* Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
|
|
* use FIFO 1. We program the transmit water to signal a DMA transfer
|
|
* if there are only two (or fewer) elements left in the FIFO. Two
|
|
* elements equals one frame (left channel, right channel). This value,
|
|
* however, depends on the depth of the transmit buffer.
|
|
*
|
|
* We set the watermark on the same level as the DMA burstsize. For
|
|
* fiq it is probably better to use the biggest possible watermark
|
|
* size.
|
|
*/
|
|
if (ssi_private->use_dma)
|
|
wm = ssi_private->fifo_depth - 2;
|
|
else
|
|
wm = ssi_private->fifo_depth;
|
|
|
|
regmap_write(regs, CCSR_SSI_SFCSR,
|
|
CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
|
|
CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
|
|
|
|
if (ssi_private->use_dual_fifo) {
|
|
regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
|
|
CCSR_SSI_SRCR_RFEN1);
|
|
regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
|
|
CCSR_SSI_STCR_TFEN1);
|
|
regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
|
|
CCSR_SSI_SCR_TCH_EN);
|
|
}
|
|
|
|
if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_AC97)
|
|
fsl_ssi_setup_ac97(ssi_private);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
|
|
*/
|
|
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
|
|
|
|
return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_set_dai_tdm_slot - set TDM slot number
|
|
*
|
|
* Note: This function can be only called when using SSI as DAI master
|
|
*/
|
|
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
|
|
u32 rx_mask, int slots, int slot_width)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
|
|
struct regmap *regs = ssi_private->regs;
|
|
u32 val;
|
|
|
|
/* The slot number should be >= 2 if using Network mode or I2S mode */
|
|
regmap_read(regs, CCSR_SSI_SCR, &val);
|
|
val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
|
|
if (val && slots < 2) {
|
|
dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
|
|
CCSR_SSI_SxCCR_DC(slots));
|
|
regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
|
|
CCSR_SSI_SxCCR_DC(slots));
|
|
|
|
/* The register SxMSKs needs SSI to provide essential clock due to
|
|
* hardware design. So we here temporarily enable SSI to set them.
|
|
*/
|
|
regmap_read(regs, CCSR_SSI_SCR, &val);
|
|
val &= CCSR_SSI_SCR_SSIEN;
|
|
regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
|
|
CCSR_SSI_SCR_SSIEN);
|
|
|
|
regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
|
|
regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
|
|
|
|
regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_ssi_trigger: start and stop the DMA transfer.
|
|
*
|
|
* This function is called by ALSA to start, stop, pause, and resume the DMA
|
|
* transfer of data.
|
|
*
|
|
* The DMA channel is in external master start and pause mode, which
|
|
* means the SSI completely controls the flow of data.
|
|
*/
|
|
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
|
|
struct snd_soc_dai *dai)
|
|
{
|
|
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
|
|
struct regmap *regs = ssi_private->regs;
|
|
|
|
switch (cmd) {
|
|
case SNDRV_PCM_TRIGGER_START:
|
|
case SNDRV_PCM_TRIGGER_RESUME:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
fsl_ssi_tx_config(ssi_private, true);
|
|
else
|
|
fsl_ssi_rx_config(ssi_private, true);
|
|
break;
|
|
|
|
case SNDRV_PCM_TRIGGER_STOP:
|
|
case SNDRV_PCM_TRIGGER_SUSPEND:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
fsl_ssi_tx_config(ssi_private, false);
|
|
else
|
|
fsl_ssi_rx_config(ssi_private, false);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fsl_ssi_is_ac97(ssi_private)) {
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
|
|
else
|
|
regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
|
|
|
|
if (ssi_private->soc->imx && ssi_private->use_dma) {
|
|
dai->playback_dma_data = &ssi_private->dma_params_tx;
|
|
dai->capture_dma_data = &ssi_private->dma_params_rx;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
|
|
.startup = fsl_ssi_startup,
|
|
.shutdown = fsl_ssi_shutdown,
|
|
.hw_params = fsl_ssi_hw_params,
|
|
.hw_free = fsl_ssi_hw_free,
|
|
.set_fmt = fsl_ssi_set_dai_fmt,
|
|
.set_sysclk = fsl_ssi_set_dai_sysclk,
|
|
.set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
|
|
.trigger = fsl_ssi_trigger,
|
|
};
|
|
|
|
/* Template for the CPU dai driver structure */
|
|
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
|
|
.probe = fsl_ssi_dai_probe,
|
|
.playback = {
|
|
.stream_name = "CPU-Playback",
|
|
.channels_min = 1,
|
|
.channels_max = 2,
|
|
.rates = FSLSSI_I2S_RATES,
|
|
.formats = FSLSSI_I2S_FORMATS,
|
|
},
|
|
.capture = {
|
|
.stream_name = "CPU-Capture",
|
|
.channels_min = 1,
|
|
.channels_max = 2,
|
|
.rates = FSLSSI_I2S_RATES,
|
|
.formats = FSLSSI_I2S_FORMATS,
|
|
},
|
|
.ops = &fsl_ssi_dai_ops,
|
|
};
|
|
|
|
static const struct snd_soc_component_driver fsl_ssi_component = {
|
|
.name = "fsl-ssi",
|
|
};
|
|
|
|
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
|
|
.bus_control = true,
|
|
.probe = fsl_ssi_dai_probe,
|
|
.playback = {
|
|
.stream_name = "AC97 Playback",
|
|
.channels_min = 2,
|
|
.channels_max = 2,
|
|
.rates = SNDRV_PCM_RATE_8000_48000,
|
|
.formats = SNDRV_PCM_FMTBIT_S16_LE,
|
|
},
|
|
.capture = {
|
|
.stream_name = "AC97 Capture",
|
|
.channels_min = 2,
|
|
.channels_max = 2,
|
|
.rates = SNDRV_PCM_RATE_48000,
|
|
.formats = SNDRV_PCM_FMTBIT_S16_LE,
|
|
},
|
|
.ops = &fsl_ssi_dai_ops,
|
|
};
|
|
|
|
|
|
static struct fsl_ssi_private *fsl_ac97_data;
|
|
|
|
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
|
|
unsigned short val)
|
|
{
|
|
struct regmap *regs = fsl_ac97_data->regs;
|
|
unsigned int lreg;
|
|
unsigned int lval;
|
|
int ret;
|
|
|
|
if (reg > 0x7f)
|
|
return;
|
|
|
|
ret = clk_prepare_enable(fsl_ac97_data->clk);
|
|
if (ret) {
|
|
pr_err("ac97 write clk_prepare_enable failed: %d\n",
|
|
ret);
|
|
return;
|
|
}
|
|
|
|
lreg = reg << 12;
|
|
regmap_write(regs, CCSR_SSI_SACADD, lreg);
|
|
|
|
lval = val << 4;
|
|
regmap_write(regs, CCSR_SSI_SACDAT, lval);
|
|
|
|
regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
|
|
CCSR_SSI_SACNT_WR);
|
|
udelay(100);
|
|
|
|
clk_disable_unprepare(fsl_ac97_data->clk);
|
|
}
|
|
|
|
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
|
|
unsigned short reg)
|
|
{
|
|
struct regmap *regs = fsl_ac97_data->regs;
|
|
|
|
unsigned short val = -1;
|
|
u32 reg_val;
|
|
unsigned int lreg;
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(fsl_ac97_data->clk);
|
|
if (ret) {
|
|
pr_err("ac97 read clk_prepare_enable failed: %d\n",
|
|
ret);
|
|
return -1;
|
|
}
|
|
|
|
lreg = (reg & 0x7f) << 12;
|
|
regmap_write(regs, CCSR_SSI_SACADD, lreg);
|
|
regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
|
|
CCSR_SSI_SACNT_RD);
|
|
|
|
udelay(100);
|
|
|
|
regmap_read(regs, CCSR_SSI_SACDAT, ®_val);
|
|
val = (reg_val >> 4) & 0xffff;
|
|
|
|
clk_disable_unprepare(fsl_ac97_data->clk);
|
|
|
|
return val;
|
|
}
|
|
|
|
static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
|
|
.read = fsl_ssi_ac97_read,
|
|
.write = fsl_ssi_ac97_write,
|
|
};
|
|
|
|
/**
|
|
* Make every character in a string lower-case
|
|
*/
|
|
static void make_lowercase(char *s)
|
|
{
|
|
char *p = s;
|
|
char c;
|
|
|
|
while ((c = *p)) {
|
|
if ((c >= 'A') && (c <= 'Z'))
|
|
*p = c + ('a' - 'A');
|
|
p++;
|
|
}
|
|
}
|
|
|
|
static int fsl_ssi_imx_probe(struct platform_device *pdev,
|
|
struct fsl_ssi_private *ssi_private, void __iomem *iomem)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
u32 dmas[4];
|
|
int ret;
|
|
|
|
if (ssi_private->has_ipg_clk_name)
|
|
ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
|
|
else
|
|
ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(ssi_private->clk)) {
|
|
ret = PTR_ERR(ssi_private->clk);
|
|
dev_err(&pdev->dev, "could not get clock: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (!ssi_private->has_ipg_clk_name) {
|
|
ret = clk_prepare_enable(ssi_private->clk);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* For those SLAVE implementations, we ignore non-baudclk cases
|
|
* and, instead, abandon MASTER mode that needs baud clock.
|
|
*/
|
|
ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
|
|
if (IS_ERR(ssi_private->baudclk))
|
|
dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
|
|
PTR_ERR(ssi_private->baudclk));
|
|
|
|
/*
|
|
* We have burstsize be "fifo_depth - 2" to match the SSI
|
|
* watermark setting in fsl_ssi_startup().
|
|
*/
|
|
ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
|
|
ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
|
|
ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
|
|
ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
|
|
|
|
ret = of_property_read_u32_array(np, "dmas", dmas, 4);
|
|
if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
|
|
ssi_private->use_dual_fifo = true;
|
|
/* When using dual fifo mode, we need to keep watermark
|
|
* as even numbers due to dma script limitation.
|
|
*/
|
|
ssi_private->dma_params_tx.maxburst &= ~0x1;
|
|
ssi_private->dma_params_rx.maxburst &= ~0x1;
|
|
}
|
|
|
|
if (!ssi_private->use_dma) {
|
|
|
|
/*
|
|
* Some boards use an incompatible codec. To get it
|
|
* working, we are using imx-fiq-pcm-audio, that
|
|
* can handle those codecs. DMA is not possible in this
|
|
* situation.
|
|
*/
|
|
|
|
ssi_private->fiq_params.irq = ssi_private->irq;
|
|
ssi_private->fiq_params.base = iomem;
|
|
ssi_private->fiq_params.dma_params_rx =
|
|
&ssi_private->dma_params_rx;
|
|
ssi_private->fiq_params.dma_params_tx =
|
|
&ssi_private->dma_params_tx;
|
|
|
|
ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
|
|
if (ret)
|
|
goto error_pcm;
|
|
} else {
|
|
ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
|
|
if (ret)
|
|
goto error_pcm;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error_pcm:
|
|
|
|
if (!ssi_private->has_ipg_clk_name)
|
|
clk_disable_unprepare(ssi_private->clk);
|
|
return ret;
|
|
}
|
|
|
|
static void fsl_ssi_imx_clean(struct platform_device *pdev,
|
|
struct fsl_ssi_private *ssi_private)
|
|
{
|
|
if (!ssi_private->use_dma)
|
|
imx_pcm_fiq_exit(pdev);
|
|
if (!ssi_private->has_ipg_clk_name)
|
|
clk_disable_unprepare(ssi_private->clk);
|
|
}
|
|
|
|
static int fsl_ssi_probe(struct platform_device *pdev)
|
|
{
|
|
struct fsl_ssi_private *ssi_private;
|
|
int ret = 0;
|
|
struct device_node *np = pdev->dev.of_node;
|
|
const struct of_device_id *of_id;
|
|
const char *p, *sprop;
|
|
const uint32_t *iprop;
|
|
struct resource *res;
|
|
void __iomem *iomem;
|
|
char name[64];
|
|
|
|
of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
|
|
if (!of_id || !of_id->data)
|
|
return -EINVAL;
|
|
|
|
ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
|
|
GFP_KERNEL);
|
|
if (!ssi_private) {
|
|
dev_err(&pdev->dev, "could not allocate DAI object\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ssi_private->soc = of_id->data;
|
|
|
|
sprop = of_get_property(np, "fsl,mode", NULL);
|
|
if (sprop) {
|
|
if (!strcmp(sprop, "ac97-slave"))
|
|
ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
|
|
}
|
|
|
|
ssi_private->use_dma = !of_property_read_bool(np,
|
|
"fsl,fiq-stream-filter");
|
|
|
|
if (fsl_ssi_is_ac97(ssi_private)) {
|
|
memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
|
|
sizeof(fsl_ssi_ac97_dai));
|
|
|
|
fsl_ac97_data = ssi_private;
|
|
|
|
ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "could not set AC'97 ops\n");
|
|
return ret;
|
|
}
|
|
} else {
|
|
/* Initialize this copy of the CPU DAI driver structure */
|
|
memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
|
|
sizeof(fsl_ssi_dai_template));
|
|
}
|
|
ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
iomem = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(iomem))
|
|
return PTR_ERR(iomem);
|
|
ssi_private->ssi_phys = res->start;
|
|
|
|
ret = of_property_match_string(np, "clock-names", "ipg");
|
|
if (ret < 0) {
|
|
ssi_private->has_ipg_clk_name = false;
|
|
ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
|
|
&fsl_ssi_regconfig);
|
|
} else {
|
|
ssi_private->has_ipg_clk_name = true;
|
|
ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
|
|
"ipg", iomem, &fsl_ssi_regconfig);
|
|
}
|
|
if (IS_ERR(ssi_private->regs)) {
|
|
dev_err(&pdev->dev, "Failed to init register map\n");
|
|
return PTR_ERR(ssi_private->regs);
|
|
}
|
|
|
|
ssi_private->irq = platform_get_irq(pdev, 0);
|
|
if (ssi_private->irq < 0) {
|
|
dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
|
|
return ssi_private->irq;
|
|
}
|
|
|
|
/* Are the RX and the TX clocks locked? */
|
|
if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
|
|
if (!fsl_ssi_is_ac97(ssi_private))
|
|
ssi_private->cpu_dai_drv.symmetric_rates = 1;
|
|
|
|
ssi_private->cpu_dai_drv.symmetric_channels = 1;
|
|
ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
|
|
}
|
|
|
|
/* Determine the FIFO depth. */
|
|
iprop = of_get_property(np, "fsl,fifo-depth", NULL);
|
|
if (iprop)
|
|
ssi_private->fifo_depth = be32_to_cpup(iprop);
|
|
else
|
|
/* Older 8610 DTs didn't have the fifo-depth property */
|
|
ssi_private->fifo_depth = 8;
|
|
|
|
dev_set_drvdata(&pdev->dev, ssi_private);
|
|
|
|
if (ssi_private->soc->imx) {
|
|
ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = devm_snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
|
|
&ssi_private->cpu_dai_drv, 1);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
|
|
goto error_asoc_register;
|
|
}
|
|
|
|
if (ssi_private->use_dma) {
|
|
ret = devm_request_irq(&pdev->dev, ssi_private->irq,
|
|
fsl_ssi_isr, 0, dev_name(&pdev->dev),
|
|
ssi_private);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "could not claim irq %u\n",
|
|
ssi_private->irq);
|
|
goto error_asoc_register;
|
|
}
|
|
}
|
|
|
|
ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
|
|
if (ret)
|
|
goto error_asoc_register;
|
|
|
|
/*
|
|
* If codec-handle property is missing from SSI node, we assume
|
|
* that the machine driver uses new binding which does not require
|
|
* SSI driver to trigger machine driver's probe.
|
|
*/
|
|
if (!of_get_property(np, "codec-handle", NULL))
|
|
goto done;
|
|
|
|
/* Trigger the machine driver's probe function. The platform driver
|
|
* name of the machine driver is taken from /compatible property of the
|
|
* device tree. We also pass the address of the CPU DAI driver
|
|
* structure.
|
|
*/
|
|
sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
|
|
/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
|
|
p = strrchr(sprop, ',');
|
|
if (p)
|
|
sprop = p + 1;
|
|
snprintf(name, sizeof(name), "snd-soc-%s", sprop);
|
|
make_lowercase(name);
|
|
|
|
ssi_private->pdev =
|
|
platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
|
|
if (IS_ERR(ssi_private->pdev)) {
|
|
ret = PTR_ERR(ssi_private->pdev);
|
|
dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
|
|
goto error_sound_card;
|
|
}
|
|
|
|
done:
|
|
if (ssi_private->dai_fmt)
|
|
_fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
|
|
ssi_private->dai_fmt);
|
|
|
|
if (fsl_ssi_is_ac97(ssi_private)) {
|
|
u32 ssi_idx;
|
|
|
|
ret = of_property_read_u32(np, "cell-index", &ssi_idx);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "cannot get SSI index property\n");
|
|
goto error_sound_card;
|
|
}
|
|
|
|
ssi_private->pdev =
|
|
platform_device_register_data(NULL,
|
|
"ac97-codec", ssi_idx, NULL, 0);
|
|
if (IS_ERR(ssi_private->pdev)) {
|
|
ret = PTR_ERR(ssi_private->pdev);
|
|
dev_err(&pdev->dev,
|
|
"failed to register AC97 codec platform: %d\n",
|
|
ret);
|
|
goto error_sound_card;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
error_sound_card:
|
|
fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
|
|
|
|
error_asoc_register:
|
|
if (ssi_private->soc->imx)
|
|
fsl_ssi_imx_clean(pdev, ssi_private);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fsl_ssi_remove(struct platform_device *pdev)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
|
|
|
|
fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
|
|
|
|
if (ssi_private->pdev)
|
|
platform_device_unregister(ssi_private->pdev);
|
|
|
|
if (ssi_private->soc->imx)
|
|
fsl_ssi_imx_clean(pdev, ssi_private);
|
|
|
|
if (fsl_ssi_is_ac97(ssi_private))
|
|
snd_soc_set_ac97_ops(NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int fsl_ssi_suspend(struct device *dev)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
|
|
struct regmap *regs = ssi_private->regs;
|
|
|
|
regmap_read(regs, CCSR_SSI_SFCSR,
|
|
&ssi_private->regcache_sfcsr);
|
|
regmap_read(regs, CCSR_SSI_SACNT,
|
|
&ssi_private->regcache_sacnt);
|
|
|
|
regcache_cache_only(regs, true);
|
|
regcache_mark_dirty(regs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_ssi_resume(struct device *dev)
|
|
{
|
|
struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
|
|
struct regmap *regs = ssi_private->regs;
|
|
|
|
regcache_cache_only(regs, false);
|
|
|
|
regmap_update_bits(regs, CCSR_SSI_SFCSR,
|
|
CCSR_SSI_SFCSR_RFWM1_MASK | CCSR_SSI_SFCSR_TFWM1_MASK |
|
|
CCSR_SSI_SFCSR_RFWM0_MASK | CCSR_SSI_SFCSR_TFWM0_MASK,
|
|
ssi_private->regcache_sfcsr);
|
|
regmap_write(regs, CCSR_SSI_SACNT,
|
|
ssi_private->regcache_sacnt);
|
|
|
|
return regcache_sync(regs);
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static const struct dev_pm_ops fsl_ssi_pm = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
|
|
};
|
|
|
|
static struct platform_driver fsl_ssi_driver = {
|
|
.driver = {
|
|
.name = "fsl-ssi-dai",
|
|
.of_match_table = fsl_ssi_ids,
|
|
.pm = &fsl_ssi_pm,
|
|
},
|
|
.probe = fsl_ssi_probe,
|
|
.remove = fsl_ssi_remove,
|
|
};
|
|
|
|
module_platform_driver(fsl_ssi_driver);
|
|
|
|
MODULE_ALIAS("platform:fsl-ssi-dai");
|
|
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
|
|
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
|
|
MODULE_LICENSE("GPL v2");
|