linux/drivers/net/wireless/rtlwifi/rtl8192cu/rf.c

494 lines
15 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2010 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
static bool _rtl92c_phy_rf6052_config_parafile(struct ieee80211_hw *hw);
void rtl92cu_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw, u8 bandwidth)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
switch (bandwidth) {
case HT_CHANNEL_WIDTH_20:
rtlphy->rfreg_chnlval[0] = ((rtlphy->rfreg_chnlval[0] &
0xfffff3ff) | 0x0400);
rtl_set_rfreg(hw, RF90_PATH_A, RF_CHNLBW, RFREG_OFFSET_MASK,
rtlphy->rfreg_chnlval[0]);
break;
case HT_CHANNEL_WIDTH_20_40:
rtlphy->rfreg_chnlval[0] = ((rtlphy->rfreg_chnlval[0] &
0xfffff3ff));
rtl_set_rfreg(hw, RF90_PATH_A, RF_CHNLBW, RFREG_OFFSET_MASK,
rtlphy->rfreg_chnlval[0]);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("unknown bandwidth: %#X\n", bandwidth));
break;
}
}
void rtl92cu_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw,
u8 *ppowerlevel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u32 tx_agc[2] = { 0, 0 }, tmpval = 0;
bool turbo_scanoff = false;
u8 idx1, idx2;
u8 *ptr;
if (rtlhal->interface == INTF_PCI) {
if (rtlefuse->eeprom_regulatory != 0)
turbo_scanoff = true;
} else {
if ((rtlefuse->eeprom_regulatory != 0) ||
(rtlefuse->external_pa))
turbo_scanoff = true;
}
if (mac->act_scanning == true) {
tx_agc[RF90_PATH_A] = 0x3f3f3f3f;
tx_agc[RF90_PATH_B] = 0x3f3f3f3f;
if (turbo_scanoff) {
for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
tx_agc[idx1] = ppowerlevel[idx1] |
(ppowerlevel[idx1] << 8) |
(ppowerlevel[idx1] << 16) |
(ppowerlevel[idx1] << 24);
if (rtlhal->interface == INTF_USB) {
if (tx_agc[idx1] > 0x20 &&
rtlefuse->external_pa)
tx_agc[idx1] = 0x20;
}
}
}
} else {
if (rtlpriv->dm.dynamic_txhighpower_lvl ==
TXHIGHPWRLEVEL_LEVEL1) {
tx_agc[RF90_PATH_A] = 0x10101010;
tx_agc[RF90_PATH_B] = 0x10101010;
} else if (rtlpriv->dm.dynamic_txhighpower_lvl ==
TXHIGHPWRLEVEL_LEVEL1) {
tx_agc[RF90_PATH_A] = 0x00000000;
tx_agc[RF90_PATH_B] = 0x00000000;
} else{
for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
tx_agc[idx1] = ppowerlevel[idx1] |
(ppowerlevel[idx1] << 8) |
(ppowerlevel[idx1] << 16) |
(ppowerlevel[idx1] << 24);
}
if (rtlefuse->eeprom_regulatory == 0) {
tmpval = (rtlphy->mcs_txpwrlevel_origoffset
[0][6]) +
(rtlphy->mcs_txpwrlevel_origoffset
[0][7] << 8);
tx_agc[RF90_PATH_A] += tmpval;
tmpval = (rtlphy->mcs_txpwrlevel_origoffset
[0][14]) +
(rtlphy->mcs_txpwrlevel_origoffset
[0][15] << 24);
tx_agc[RF90_PATH_B] += tmpval;
}
}
}
for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
ptr = (u8 *) (&(tx_agc[idx1]));
for (idx2 = 0; idx2 < 4; idx2++) {
if (*ptr > RF6052_MAX_TX_PWR)
*ptr = RF6052_MAX_TX_PWR;
ptr++;
}
}
tmpval = tx_agc[RF90_PATH_A] & 0xff;
rtl_set_bbreg(hw, RTXAGC_A_CCK1_MCS32, MASKBYTE1, tmpval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("CCK PWR 1M (rf-A) = 0x%x (reg 0x%x)\n", tmpval,
RTXAGC_A_CCK1_MCS32));
tmpval = tx_agc[RF90_PATH_A] >> 8;
if (mac->mode == WIRELESS_MODE_B)
tmpval = tmpval & 0xff00ffff;
rtl_set_bbreg(hw, RTXAGC_B_CCK11_A_CCK2_11, 0xffffff00, tmpval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("CCK PWR 2~11M (rf-A) = 0x%x (reg 0x%x)\n", tmpval,
RTXAGC_B_CCK11_A_CCK2_11));
tmpval = tx_agc[RF90_PATH_B] >> 24;
rtl_set_bbreg(hw, RTXAGC_B_CCK11_A_CCK2_11, MASKBYTE0, tmpval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("CCK PWR 11M (rf-B) = 0x%x (reg 0x%x)\n", tmpval,
RTXAGC_B_CCK11_A_CCK2_11));
tmpval = tx_agc[RF90_PATH_B] & 0x00ffffff;
rtl_set_bbreg(hw, RTXAGC_B_CCK1_55_MCS32, 0xffffff00, tmpval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("CCK PWR 1~5.5M (rf-B) = 0x%x (reg 0x%x)\n", tmpval,
RTXAGC_B_CCK1_55_MCS32));
}
static void rtl92c_phy_get_power_base(struct ieee80211_hw *hw,
u8 *ppowerlevel, u8 channel,
u32 *ofdmbase, u32 *mcsbase)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u32 powerBase0, powerBase1;
u8 legacy_pwrdiff = 0, ht20_pwrdiff = 0;
u8 i, powerlevel[2];
for (i = 0; i < 2; i++) {
powerlevel[i] = ppowerlevel[i];
legacy_pwrdiff = rtlefuse->txpwr_legacyhtdiff[i][channel - 1];
powerBase0 = powerlevel[i] + legacy_pwrdiff;
powerBase0 = (powerBase0 << 24) | (powerBase0 << 16) |
(powerBase0 << 8) | powerBase0;
*(ofdmbase + i) = powerBase0;
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
(" [OFDM power base index rf(%c) = 0x%x]\n",
((i == 0) ? 'A' : 'B'), *(ofdmbase + i)));
}
for (i = 0; i < 2; i++) {
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20) {
ht20_pwrdiff = rtlefuse->txpwr_ht20diff[i][channel - 1];
powerlevel[i] += ht20_pwrdiff;
}
powerBase1 = powerlevel[i];
powerBase1 = (powerBase1 << 24) |
(powerBase1 << 16) | (powerBase1 << 8) | powerBase1;
*(mcsbase + i) = powerBase1;
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
(" [MCS power base index rf(%c) = 0x%x]\n",
((i == 0) ? 'A' : 'B'), *(mcsbase + i)));
}
}
static void _rtl92c_get_txpower_writeval_by_regulatory(struct ieee80211_hw *hw,
u8 channel, u8 index,
u32 *powerBase0,
u32 *powerBase1,
u32 *p_outwriteval)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 i, chnlgroup = 0, pwr_diff_limit[4];
u32 writeVal, customer_limit, rf;
for (rf = 0; rf < 2; rf++) {
switch (rtlefuse->eeprom_regulatory) {
case 0:
chnlgroup = 0;
writeVal = rtlphy->mcs_txpwrlevel_origoffset
[chnlgroup][index + (rf ? 8 : 0)]
+ ((index < 2) ? powerBase0[rf] : powerBase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("RTK better performance,writeVal(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'), writeVal));
break;
case 1:
if (rtlphy->pwrgroup_cnt == 1)
chnlgroup = 0;
if (rtlphy->pwrgroup_cnt >= 3) {
if (channel <= 3)
chnlgroup = 0;
else if (channel >= 4 && channel <= 9)
chnlgroup = 1;
else if (channel > 9)
chnlgroup = 2;
if (rtlphy->current_chan_bw ==
HT_CHANNEL_WIDTH_20)
chnlgroup++;
else
chnlgroup += 4;
}
writeVal = rtlphy->mcs_txpwrlevel_origoffset
[chnlgroup][index +
(rf ? 8 : 0)] +
((index < 2) ? powerBase0[rf] :
powerBase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("Realtek regulatory, 20MHz, "
"writeVal(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'), writeVal));
break;
case 2:
writeVal = ((index < 2) ? powerBase0[rf] :
powerBase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("Better regulatory,writeVal(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'), writeVal));
break;
case 3:
chnlgroup = 0;
if (rtlphy->current_chan_bw ==
HT_CHANNEL_WIDTH_20_40) {
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("customer's limit, 40MHzrf(%c) = "
"0x%x\n", ((rf == 0) ? 'A' : 'B'),
rtlefuse->pwrgroup_ht40[rf]
[channel - 1]));
} else {
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("customer's limit, 20MHz rf(%c) = "
"0x%x\n", ((rf == 0) ? 'A' : 'B'),
rtlefuse->pwrgroup_ht20[rf]
[channel - 1]));
}
for (i = 0; i < 4; i++) {
pwr_diff_limit[i] =
(u8) ((rtlphy->mcs_txpwrlevel_origoffset
[chnlgroup][index + (rf ? 8 : 0)]
& (0x7f << (i * 8))) >> (i * 8));
if (rtlphy->current_chan_bw ==
HT_CHANNEL_WIDTH_20_40) {
if (pwr_diff_limit[i] >
rtlefuse->pwrgroup_ht40[rf]
[channel - 1])
pwr_diff_limit[i] = rtlefuse->
pwrgroup_ht40[rf]
[channel - 1];
} else {
if (pwr_diff_limit[i] >
rtlefuse->pwrgroup_ht20[rf]
[channel - 1])
pwr_diff_limit[i] =
rtlefuse->pwrgroup_ht20[rf]
[channel - 1];
}
}
customer_limit = (pwr_diff_limit[3] << 24) |
(pwr_diff_limit[2] << 16) |
(pwr_diff_limit[1] << 8) | (pwr_diff_limit[0]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("Customer's limit rf(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'), customer_limit));
writeVal = customer_limit + ((index < 2) ?
powerBase0[rf] : powerBase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("Customer, writeVal rf(%c)= 0x%x\n",
((rf == 0) ? 'A' : 'B'), writeVal));
break;
default:
chnlgroup = 0;
writeVal = rtlphy->mcs_txpwrlevel_origoffset[chnlgroup]
[index + (rf ? 8 : 0)] + ((index < 2) ?
powerBase0[rf] : powerBase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR, ("RTK better "
"performance, writeValrf(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'), writeVal));
break;
}
if (rtlpriv->dm.dynamic_txhighpower_lvl ==
TXHIGHPWRLEVEL_LEVEL1)
writeVal = 0x14141414;
else if (rtlpriv->dm.dynamic_txhighpower_lvl ==
TXHIGHPWRLEVEL_LEVEL2)
writeVal = 0x00000000;
if (rtlpriv->dm.dynamic_txhighpower_lvl == TXHIGHPWRLEVEL_BT1)
writeVal = writeVal - 0x06060606;
else if (rtlpriv->dm.dynamic_txhighpower_lvl ==
TXHIGHPWRLEVEL_BT2)
writeVal = writeVal;
*(p_outwriteval + rf) = writeVal;
}
}
static void _rtl92c_write_ofdm_power_reg(struct ieee80211_hw *hw,
u8 index, u32 *pValue)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u16 regoffset_a[6] = {
RTXAGC_A_RATE18_06, RTXAGC_A_RATE54_24,
RTXAGC_A_MCS03_MCS00, RTXAGC_A_MCS07_MCS04,
RTXAGC_A_MCS11_MCS08, RTXAGC_A_MCS15_MCS12
};
u16 regoffset_b[6] = {
RTXAGC_B_RATE18_06, RTXAGC_B_RATE54_24,
RTXAGC_B_MCS03_MCS00, RTXAGC_B_MCS07_MCS04,
RTXAGC_B_MCS11_MCS08, RTXAGC_B_MCS15_MCS12
};
u8 i, rf, pwr_val[4];
u32 writeVal;
u16 regoffset;
for (rf = 0; rf < 2; rf++) {
writeVal = pValue[rf];
for (i = 0; i < 4; i++) {
pwr_val[i] = (u8)((writeVal & (0x7f << (i * 8))) >>
(i * 8));
if (pwr_val[i] > RF6052_MAX_TX_PWR)
pwr_val[i] = RF6052_MAX_TX_PWR;
}
writeVal = (pwr_val[3] << 24) | (pwr_val[2] << 16) |
(pwr_val[1] << 8) | pwr_val[0];
if (rf == 0)
regoffset = regoffset_a[index];
else
regoffset = regoffset_b[index];
rtl_set_bbreg(hw, regoffset, MASKDWORD, writeVal);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
("Set 0x%x = %08x\n", regoffset, writeVal));
if (((get_rf_type(rtlphy) == RF_2T2R) &&
(regoffset == RTXAGC_A_MCS15_MCS12 ||
regoffset == RTXAGC_B_MCS15_MCS12)) ||
((get_rf_type(rtlphy) != RF_2T2R) &&
(regoffset == RTXAGC_A_MCS07_MCS04 ||
regoffset == RTXAGC_B_MCS07_MCS04))) {
writeVal = pwr_val[3];
if (regoffset == RTXAGC_A_MCS15_MCS12 ||
regoffset == RTXAGC_A_MCS07_MCS04)
regoffset = 0xc90;
if (regoffset == RTXAGC_B_MCS15_MCS12 ||
regoffset == RTXAGC_B_MCS07_MCS04)
regoffset = 0xc98;
for (i = 0; i < 3; i++) {
writeVal = (writeVal > 6) ? (writeVal - 6) : 0;
rtl_write_byte(rtlpriv, (u32)(regoffset + i),
(u8)writeVal);
}
}
}
}
void rtl92cu_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw,
u8 *ppowerlevel, u8 channel)
{
u32 writeVal[2], powerBase0[2], powerBase1[2];
u8 index = 0;
rtl92c_phy_get_power_base(hw, ppowerlevel,
channel, &powerBase0[0], &powerBase1[0]);
for (index = 0; index < 6; index++) {
_rtl92c_get_txpower_writeval_by_regulatory(hw,
channel, index,
&powerBase0[0],
&powerBase1[0],
&writeVal[0]);
_rtl92c_write_ofdm_power_reg(hw, index, &writeVal[0]);
}
}
bool rtl92cu_phy_rf6052_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
bool rtstatus = true;
u8 b_reg_hwparafile = 1;
if (rtlphy->rf_type == RF_1T1R)
rtlphy->num_total_rfpath = 1;
else
rtlphy->num_total_rfpath = 2;
if (b_reg_hwparafile == 1)
rtstatus = _rtl92c_phy_rf6052_config_parafile(hw);
return rtstatus;
}
static bool _rtl92c_phy_rf6052_config_parafile(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u32 u4_regvalue = 0;
u8 rfpath;
bool rtstatus = true;
struct bb_reg_def *pphyreg;
for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) {
pphyreg = &rtlphy->phyreg_def[rfpath];
switch (rfpath) {
case RF90_PATH_A:
case RF90_PATH_C:
u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs,
BRFSI_RFENV);
break;
case RF90_PATH_B:
case RF90_PATH_D:
u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs,
BRFSI_RFENV << 16);
break;
}
rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1);
udelay(1);
rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1);
udelay(1);
rtl_set_bbreg(hw, pphyreg->rfhssi_para2,
B3WIREADDREAALENGTH, 0x0);
udelay(1);
rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0);
udelay(1);
switch (rfpath) {
case RF90_PATH_A:
rtstatus = rtl92cu_phy_config_rf_with_headerfile(hw,
(enum radio_path) rfpath);
break;
case RF90_PATH_B:
rtstatus = rtl92cu_phy_config_rf_with_headerfile(hw,
(enum radio_path) rfpath);
break;
case RF90_PATH_C:
break;
case RF90_PATH_D:
break;
}
switch (rfpath) {
case RF90_PATH_A:
case RF90_PATH_C:
rtl_set_bbreg(hw, pphyreg->rfintfs,
BRFSI_RFENV, u4_regvalue);
break;
case RF90_PATH_B:
case RF90_PATH_D:
rtl_set_bbreg(hw, pphyreg->rfintfs,
BRFSI_RFENV << 16, u4_regvalue);
break;
}
if (rtstatus != true) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
("Radio[%d] Fail!!", rfpath));
goto phy_rf_cfg_fail;
}
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, ("<---\n"));
return rtstatus;
phy_rf_cfg_fail:
return rtstatus;
}