linux/drivers/net/wireless/ath/ath10k/wmi.c

2082 lines
57 KiB
C

/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/skbuff.h>
#include "core.h"
#include "htc.h"
#include "debug.h"
#include "wmi.h"
#include "mac.h"
void ath10k_wmi_flush_tx(struct ath10k *ar)
{
int ret;
ret = wait_event_timeout(ar->wmi.wq,
atomic_read(&ar->wmi.pending_tx_count) == 0,
5*HZ);
if (atomic_read(&ar->wmi.pending_tx_count) == 0)
return;
if (ret == 0)
ret = -ETIMEDOUT;
if (ret < 0)
ath10k_warn("wmi flush failed (%d)\n", ret);
}
int ath10k_wmi_wait_for_service_ready(struct ath10k *ar)
{
int ret;
ret = wait_for_completion_timeout(&ar->wmi.service_ready,
WMI_SERVICE_READY_TIMEOUT_HZ);
return ret;
}
int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar)
{
int ret;
ret = wait_for_completion_timeout(&ar->wmi.unified_ready,
WMI_UNIFIED_READY_TIMEOUT_HZ);
return ret;
}
static struct sk_buff *ath10k_wmi_alloc_skb(u32 len)
{
struct sk_buff *skb;
u32 round_len = roundup(len, 4);
skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len);
if (!skb)
return NULL;
skb_reserve(skb, WMI_SKB_HEADROOM);
if (!IS_ALIGNED((unsigned long)skb->data, 4))
ath10k_warn("Unaligned WMI skb\n");
skb_put(skb, round_len);
memset(skb->data, 0, round_len);
return skb;
}
static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
{
dev_kfree_skb(skb);
if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0)
wake_up(&ar->wmi.wq);
}
/* WMI command API */
static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb,
enum wmi_cmd_id cmd_id)
{
struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
struct wmi_cmd_hdr *cmd_hdr;
int status;
u32 cmd = 0;
if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
return -ENOMEM;
cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID);
cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
cmd_hdr->cmd_id = __cpu_to_le32(cmd);
if (atomic_add_return(1, &ar->wmi.pending_tx_count) >
WMI_MAX_PENDING_TX_COUNT) {
/* avoid using up memory when FW hangs */
atomic_dec(&ar->wmi.pending_tx_count);
return -EBUSY;
}
memset(skb_cb, 0, sizeof(*skb_cb));
trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len);
status = ath10k_htc_send(ar->htc, ar->wmi.eid, skb);
if (status) {
dev_kfree_skb_any(skb);
atomic_dec(&ar->wmi.pending_tx_count);
return status;
}
return 0;
}
static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb)
{
struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data;
enum wmi_scan_event_type event_type;
enum wmi_scan_completion_reason reason;
u32 freq;
u32 req_id;
u32 scan_id;
u32 vdev_id;
event_type = __le32_to_cpu(event->event_type);
reason = __le32_to_cpu(event->reason);
freq = __le32_to_cpu(event->channel_freq);
req_id = __le32_to_cpu(event->scan_req_id);
scan_id = __le32_to_cpu(event->scan_id);
vdev_id = __le32_to_cpu(event->vdev_id);
ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n");
ath10k_dbg(ATH10K_DBG_WMI,
"scan event type %d reason %d freq %d req_id %d "
"scan_id %d vdev_id %d\n",
event_type, reason, freq, req_id, scan_id, vdev_id);
spin_lock_bh(&ar->data_lock);
switch (event_type) {
case WMI_SCAN_EVENT_STARTED:
ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n");
if (ar->scan.in_progress && ar->scan.is_roc)
ieee80211_ready_on_channel(ar->hw);
complete(&ar->scan.started);
break;
case WMI_SCAN_EVENT_COMPLETED:
ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n");
switch (reason) {
case WMI_SCAN_REASON_COMPLETED:
ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n");
break;
case WMI_SCAN_REASON_CANCELLED:
ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n");
break;
case WMI_SCAN_REASON_PREEMPTED:
ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n");
break;
case WMI_SCAN_REASON_TIMEDOUT:
ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n");
break;
default:
break;
}
ar->scan_channel = NULL;
if (!ar->scan.in_progress) {
ath10k_warn("no scan requested, ignoring\n");
break;
}
if (ar->scan.is_roc) {
ath10k_offchan_tx_purge(ar);
if (!ar->scan.aborting)
ieee80211_remain_on_channel_expired(ar->hw);
} else {
ieee80211_scan_completed(ar->hw, ar->scan.aborting);
}
del_timer(&ar->scan.timeout);
complete_all(&ar->scan.completed);
ar->scan.in_progress = false;
break;
case WMI_SCAN_EVENT_BSS_CHANNEL:
ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n");
ar->scan_channel = NULL;
break;
case WMI_SCAN_EVENT_FOREIGN_CHANNEL:
ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n");
ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq);
if (ar->scan.in_progress && ar->scan.is_roc &&
ar->scan.roc_freq == freq) {
complete(&ar->scan.on_channel);
}
break;
case WMI_SCAN_EVENT_DEQUEUED:
ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n");
break;
case WMI_SCAN_EVENT_PREEMPTED:
ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n");
break;
case WMI_SCAN_EVENT_START_FAILED:
ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n");
break;
default:
break;
}
spin_unlock_bh(&ar->data_lock);
return 0;
}
static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
{
enum ieee80211_band band;
switch (phy_mode) {
case MODE_11A:
case MODE_11NA_HT20:
case MODE_11NA_HT40:
case MODE_11AC_VHT20:
case MODE_11AC_VHT40:
case MODE_11AC_VHT80:
band = IEEE80211_BAND_5GHZ;
break;
case MODE_11G:
case MODE_11B:
case MODE_11GONLY:
case MODE_11NG_HT20:
case MODE_11NG_HT40:
case MODE_11AC_VHT20_2G:
case MODE_11AC_VHT40_2G:
case MODE_11AC_VHT80_2G:
default:
band = IEEE80211_BAND_2GHZ;
}
return band;
}
static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band)
{
u8 rate_idx = 0;
/* rate in Kbps */
switch (rate) {
case 1000:
rate_idx = 0;
break;
case 2000:
rate_idx = 1;
break;
case 5500:
rate_idx = 2;
break;
case 11000:
rate_idx = 3;
break;
case 6000:
rate_idx = 4;
break;
case 9000:
rate_idx = 5;
break;
case 12000:
rate_idx = 6;
break;
case 18000:
rate_idx = 7;
break;
case 24000:
rate_idx = 8;
break;
case 36000:
rate_idx = 9;
break;
case 48000:
rate_idx = 10;
break;
case 54000:
rate_idx = 11;
break;
default:
break;
}
if (band == IEEE80211_BAND_5GHZ) {
if (rate_idx > 3)
/* Omit CCK rates */
rate_idx -= 4;
else
rate_idx = 0;
}
return rate_idx;
}
static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb)
{
struct wmi_mgmt_rx_event *event = (struct wmi_mgmt_rx_event *)skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr;
u32 rx_status;
u32 channel;
u32 phy_mode;
u32 snr;
u32 rate;
u32 buf_len;
u16 fc;
channel = __le32_to_cpu(event->hdr.channel);
buf_len = __le32_to_cpu(event->hdr.buf_len);
rx_status = __le32_to_cpu(event->hdr.status);
snr = __le32_to_cpu(event->hdr.snr);
phy_mode = __le32_to_cpu(event->hdr.phy_mode);
rate = __le32_to_cpu(event->hdr.rate);
memset(status, 0, sizeof(*status));
ath10k_dbg(ATH10K_DBG_MGMT,
"event mgmt rx status %08x\n", rx_status);
if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) {
dev_kfree_skb(skb);
return 0;
}
if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) {
dev_kfree_skb(skb);
return 0;
}
if (rx_status & WMI_RX_STATUS_ERR_CRC)
status->flag |= RX_FLAG_FAILED_FCS_CRC;
if (rx_status & WMI_RX_STATUS_ERR_MIC)
status->flag |= RX_FLAG_MMIC_ERROR;
status->band = phy_mode_to_band(phy_mode);
status->freq = ieee80211_channel_to_frequency(channel, status->band);
status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR;
status->rate_idx = get_rate_idx(rate, status->band);
skb_pull(skb, sizeof(event->hdr));
hdr = (struct ieee80211_hdr *)skb->data;
fc = le16_to_cpu(hdr->frame_control);
if (fc & IEEE80211_FCTL_PROTECTED) {
status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED |
RX_FLAG_MMIC_STRIPPED;
hdr->frame_control = __cpu_to_le16(fc &
~IEEE80211_FCTL_PROTECTED);
}
ath10k_dbg(ATH10K_DBG_MGMT,
"event mgmt rx skb %p len %d ftype %02x stype %02x\n",
skb, skb->len,
fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE);
ath10k_dbg(ATH10K_DBG_MGMT,
"event mgmt rx freq %d band %d snr %d, rate_idx %d\n",
status->freq, status->band, status->signal,
status->rate_idx);
/*
* packets from HTC come aligned to 4byte boundaries
* because they can originally come in along with a trailer
*/
skb_trim(skb, buf_len);
ieee80211_rx(ar->hw, skb);
return 0;
}
static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_CHAN_INFO_EVENTID\n");
}
static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n");
}
static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n");
}
static void ath10k_wmi_event_update_stats(struct ath10k *ar,
struct sk_buff *skb)
{
struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data;
ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n");
ath10k_debug_read_target_stats(ar, ev);
}
static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar,
struct sk_buff *skb)
{
struct wmi_vdev_start_response_event *ev;
ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n");
ev = (struct wmi_vdev_start_response_event *)skb->data;
if (WARN_ON(__le32_to_cpu(ev->status)))
return;
complete(&ar->vdev_setup_done);
}
static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n");
complete(&ar->vdev_setup_done);
}
static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n");
}
/*
* FIXME
*
* We don't report to mac80211 sleep state of connected
* stations. Due to this mac80211 can't fill in TIM IE
* correctly.
*
* I know of no way of getting nullfunc frames that contain
* sleep transition from connected stations - these do not
* seem to be sent from the target to the host. There also
* doesn't seem to be a dedicated event for that. So the
* only way left to do this would be to read tim_bitmap
* during SWBA.
*
* We could probably try using tim_bitmap from SWBA to tell
* mac80211 which stations are asleep and which are not. The
* problem here is calling mac80211 functions so many times
* could take too long and make us miss the time to submit
* the beacon to the target.
*
* So as a workaround we try to extend the TIM IE if there
* is unicast buffered for stations with aid > 7 and fill it
* in ourselves.
*/
static void ath10k_wmi_update_tim(struct ath10k *ar,
struct ath10k_vif *arvif,
struct sk_buff *bcn,
struct wmi_bcn_info *bcn_info)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data;
struct ieee80211_tim_ie *tim;
u8 *ies, *ie;
u8 ie_len, pvm_len;
/* if next SWBA has no tim_changed the tim_bitmap is garbage.
* we must copy the bitmap upon change and reuse it later */
if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) {
int i;
BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) !=
sizeof(bcn_info->tim_info.tim_bitmap));
for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) {
__le32 t = bcn_info->tim_info.tim_bitmap[i / 4];
u32 v = __le32_to_cpu(t);
arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF;
}
/* FW reports either length 0 or 16
* so we calculate this on our own */
arvif->u.ap.tim_len = 0;
for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++)
if (arvif->u.ap.tim_bitmap[i])
arvif->u.ap.tim_len = i;
arvif->u.ap.tim_len++;
}
ies = bcn->data;
ies += ieee80211_hdrlen(hdr->frame_control);
ies += 12; /* fixed parameters */
ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies,
(u8 *)skb_tail_pointer(bcn) - ies);
if (!ie) {
/* highly unlikely for mac80211 */
ath10k_warn("no tim ie found;\n");
return;
}
tim = (void *)ie + 2;
ie_len = ie[1];
pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */
if (pvm_len < arvif->u.ap.tim_len) {
int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len;
int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len);
void *next_ie = ie + 2 + ie_len;
if (skb_put(bcn, expand_size)) {
memmove(next_ie + expand_size, next_ie, move_size);
ie[1] += expand_size;
ie_len += expand_size;
pvm_len += expand_size;
} else {
ath10k_warn("tim expansion failed\n");
}
}
if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) {
ath10k_warn("tim pvm length is too great (%d)\n", pvm_len);
return;
}
tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast);
memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len);
ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n",
tim->dtim_count, tim->dtim_period,
tim->bitmap_ctrl, pvm_len);
}
static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len,
struct wmi_p2p_noa_info *noa)
{
struct ieee80211_p2p_noa_attr *noa_attr;
u8 ctwindow_oppps = noa->ctwindow_oppps;
u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET;
bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT);
__le16 *noa_attr_len;
u16 attr_len;
u8 noa_descriptors = noa->num_descriptors;
int i;
/* P2P IE */
data[0] = WLAN_EID_VENDOR_SPECIFIC;
data[1] = len - 2;
data[2] = (WLAN_OUI_WFA >> 16) & 0xff;
data[3] = (WLAN_OUI_WFA >> 8) & 0xff;
data[4] = (WLAN_OUI_WFA >> 0) & 0xff;
data[5] = WLAN_OUI_TYPE_WFA_P2P;
/* NOA ATTR */
data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE;
noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */
noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9];
noa_attr->index = noa->index;
noa_attr->oppps_ctwindow = ctwindow;
if (oppps)
noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT;
for (i = 0; i < noa_descriptors; i++) {
noa_attr->desc[i].count =
__le32_to_cpu(noa->descriptors[i].type_count);
noa_attr->desc[i].duration = noa->descriptors[i].duration;
noa_attr->desc[i].interval = noa->descriptors[i].interval;
noa_attr->desc[i].start_time = noa->descriptors[i].start_time;
}
attr_len = 2; /* index + oppps_ctwindow */
attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
*noa_attr_len = __cpu_to_le16(attr_len);
}
static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa)
{
u32 len = 0;
u8 noa_descriptors = noa->num_descriptors;
u8 opp_ps_info = noa->ctwindow_oppps;
bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT);
if (!noa_descriptors && !opps_enabled)
return len;
len += 1 + 1 + 4; /* EID + len + OUI */
len += 1 + 2; /* noa attr + attr len */
len += 1 + 1; /* index + oppps_ctwindow */
len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
return len;
}
static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif,
struct sk_buff *bcn,
struct wmi_bcn_info *bcn_info)
{
struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info;
u8 *new_data, *old_data = arvif->u.ap.noa_data;
u32 new_len;
if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
return;
ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed);
if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) {
new_len = ath10k_p2p_calc_noa_ie_len(noa);
if (!new_len)
goto cleanup;
new_data = kmalloc(new_len, GFP_ATOMIC);
if (!new_data)
goto cleanup;
ath10k_p2p_fill_noa_ie(new_data, new_len, noa);
spin_lock_bh(&ar->data_lock);
arvif->u.ap.noa_data = new_data;
arvif->u.ap.noa_len = new_len;
spin_unlock_bh(&ar->data_lock);
kfree(old_data);
}
if (arvif->u.ap.noa_data)
if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC))
memcpy(skb_put(bcn, arvif->u.ap.noa_len),
arvif->u.ap.noa_data,
arvif->u.ap.noa_len);
return;
cleanup:
spin_lock_bh(&ar->data_lock);
arvif->u.ap.noa_data = NULL;
arvif->u.ap.noa_len = 0;
spin_unlock_bh(&ar->data_lock);
kfree(old_data);
}
static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb)
{
struct wmi_host_swba_event *ev;
u32 map;
int i = -1;
struct wmi_bcn_info *bcn_info;
struct ath10k_vif *arvif;
struct wmi_bcn_tx_arg arg;
struct sk_buff *bcn;
int vdev_id = 0;
int ret;
ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n");
ev = (struct wmi_host_swba_event *)skb->data;
map = __le32_to_cpu(ev->vdev_map);
ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n"
"-vdev map 0x%x\n",
ev->vdev_map);
for (; map; map >>= 1, vdev_id++) {
if (!(map & 0x1))
continue;
i++;
if (i >= WMI_MAX_AP_VDEV) {
ath10k_warn("swba has corrupted vdev map\n");
break;
}
bcn_info = &ev->bcn_info[i];
ath10k_dbg(ATH10K_DBG_MGMT,
"-bcn_info[%d]:\n"
"--tim_len %d\n"
"--tim_mcast %d\n"
"--tim_changed %d\n"
"--tim_num_ps_pending %d\n"
"--tim_bitmap 0x%08x%08x%08x%08x\n",
i,
__le32_to_cpu(bcn_info->tim_info.tim_len),
__le32_to_cpu(bcn_info->tim_info.tim_mcast),
__le32_to_cpu(bcn_info->tim_info.tim_changed),
__le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending),
__le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]),
__le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]),
__le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]),
__le32_to_cpu(bcn_info->tim_info.tim_bitmap[0]));
arvif = ath10k_get_arvif(ar, vdev_id);
if (arvif == NULL) {
ath10k_warn("no vif for vdev_id %d found\n", vdev_id);
continue;
}
bcn = ieee80211_beacon_get(ar->hw, arvif->vif);
if (!bcn) {
ath10k_warn("could not get mac80211 beacon\n");
continue;
}
ath10k_tx_h_seq_no(bcn);
ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info);
ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info);
arg.vdev_id = arvif->vdev_id;
arg.tx_rate = 0;
arg.tx_power = 0;
arg.bcn = bcn->data;
arg.bcn_len = bcn->len;
ret = ath10k_wmi_beacon_send(ar, &arg);
if (ret)
ath10k_warn("could not send beacon (%d)\n", ret);
dev_kfree_skb_any(bcn);
}
}
static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n");
}
static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n");
}
static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n");
}
static void ath10k_wmi_event_profile_match(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n");
}
static void ath10k_wmi_event_debug_print(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n");
}
static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n");
}
static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n");
}
static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n");
}
static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n");
}
static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n");
}
static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n");
}
static void ath10k_wmi_event_dcs_interference(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n");
}
static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n");
}
static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n");
}
static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n");
}
static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n");
}
static void ath10k_wmi_event_delba_complete(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n");
}
static void ath10k_wmi_event_addba_complete(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n");
}
static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar,
struct sk_buff *skb)
{
ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n");
}
static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar,
struct sk_buff *skb)
{
struct wmi_service_ready_event *ev = (void *)skb->data;
if (skb->len < sizeof(*ev)) {
ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n",
skb->len, sizeof(*ev));
return;
}
ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power);
ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power);
ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info);
ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info);
ar->fw_version_major =
(__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24;
ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff);
ar->fw_version_release =
(__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16;
ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff);
ar->phy_capability = __le32_to_cpu(ev->phy_capability);
ar->ath_common.regulatory.current_rd =
__le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd);
ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap,
sizeof(ev->wmi_service_bitmap));
if (strlen(ar->hw->wiphy->fw_version) == 0) {
snprintf(ar->hw->wiphy->fw_version,
sizeof(ar->hw->wiphy->fw_version),
"%u.%u.%u.%u",
ar->fw_version_major,
ar->fw_version_minor,
ar->fw_version_release,
ar->fw_version_build);
}
/* FIXME: it probably should be better to support this */
if (__le32_to_cpu(ev->num_mem_reqs) > 0) {
ath10k_warn("target requested %d memory chunks; ignoring\n",
__le32_to_cpu(ev->num_mem_reqs));
}
ath10k_dbg(ATH10K_DBG_WMI,
"wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u\n",
__le32_to_cpu(ev->sw_version),
__le32_to_cpu(ev->sw_version_1),
__le32_to_cpu(ev->abi_version),
__le32_to_cpu(ev->phy_capability),
__le32_to_cpu(ev->ht_cap_info),
__le32_to_cpu(ev->vht_cap_info),
__le32_to_cpu(ev->vht_supp_mcs),
__le32_to_cpu(ev->sys_cap_info),
__le32_to_cpu(ev->num_mem_reqs));
complete(&ar->wmi.service_ready);
}
static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb)
{
struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data;
if (WARN_ON(skb->len < sizeof(*ev)))
return -EINVAL;
memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n",
__le32_to_cpu(ev->sw_version),
__le32_to_cpu(ev->abi_version),
ev->mac_addr.addr,
__le32_to_cpu(ev->status));
complete(&ar->wmi.unified_ready);
return 0;
}
static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb)
{
struct wmi_cmd_hdr *cmd_hdr;
enum wmi_event_id id;
u16 len;
cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
return;
len = skb->len;
trace_ath10k_wmi_event(id, skb->data, skb->len);
switch (id) {
case WMI_MGMT_RX_EVENTID:
ath10k_wmi_event_mgmt_rx(ar, skb);
/* mgmt_rx() owns the skb now! */
return;
case WMI_SCAN_EVENTID:
ath10k_wmi_event_scan(ar, skb);
break;
case WMI_CHAN_INFO_EVENTID:
ath10k_wmi_event_chan_info(ar, skb);
break;
case WMI_ECHO_EVENTID:
ath10k_wmi_event_echo(ar, skb);
break;
case WMI_DEBUG_MESG_EVENTID:
ath10k_wmi_event_debug_mesg(ar, skb);
break;
case WMI_UPDATE_STATS_EVENTID:
ath10k_wmi_event_update_stats(ar, skb);
break;
case WMI_VDEV_START_RESP_EVENTID:
ath10k_wmi_event_vdev_start_resp(ar, skb);
break;
case WMI_VDEV_STOPPED_EVENTID:
ath10k_wmi_event_vdev_stopped(ar, skb);
break;
case WMI_PEER_STA_KICKOUT_EVENTID:
ath10k_wmi_event_peer_sta_kickout(ar, skb);
break;
case WMI_HOST_SWBA_EVENTID:
ath10k_wmi_event_host_swba(ar, skb);
break;
case WMI_TBTTOFFSET_UPDATE_EVENTID:
ath10k_wmi_event_tbttoffset_update(ar, skb);
break;
case WMI_PHYERR_EVENTID:
ath10k_wmi_event_phyerr(ar, skb);
break;
case WMI_ROAM_EVENTID:
ath10k_wmi_event_roam(ar, skb);
break;
case WMI_PROFILE_MATCH:
ath10k_wmi_event_profile_match(ar, skb);
break;
case WMI_DEBUG_PRINT_EVENTID:
ath10k_wmi_event_debug_print(ar, skb);
break;
case WMI_PDEV_QVIT_EVENTID:
ath10k_wmi_event_pdev_qvit(ar, skb);
break;
case WMI_WLAN_PROFILE_DATA_EVENTID:
ath10k_wmi_event_wlan_profile_data(ar, skb);
break;
case WMI_RTT_MEASUREMENT_REPORT_EVENTID:
ath10k_wmi_event_rtt_measurement_report(ar, skb);
break;
case WMI_TSF_MEASUREMENT_REPORT_EVENTID:
ath10k_wmi_event_tsf_measurement_report(ar, skb);
break;
case WMI_RTT_ERROR_REPORT_EVENTID:
ath10k_wmi_event_rtt_error_report(ar, skb);
break;
case WMI_WOW_WAKEUP_HOST_EVENTID:
ath10k_wmi_event_wow_wakeup_host(ar, skb);
break;
case WMI_DCS_INTERFERENCE_EVENTID:
ath10k_wmi_event_dcs_interference(ar, skb);
break;
case WMI_PDEV_TPC_CONFIG_EVENTID:
ath10k_wmi_event_pdev_tpc_config(ar, skb);
break;
case WMI_PDEV_FTM_INTG_EVENTID:
ath10k_wmi_event_pdev_ftm_intg(ar, skb);
break;
case WMI_GTK_OFFLOAD_STATUS_EVENTID:
ath10k_wmi_event_gtk_offload_status(ar, skb);
break;
case WMI_GTK_REKEY_FAIL_EVENTID:
ath10k_wmi_event_gtk_rekey_fail(ar, skb);
break;
case WMI_TX_DELBA_COMPLETE_EVENTID:
ath10k_wmi_event_delba_complete(ar, skb);
break;
case WMI_TX_ADDBA_COMPLETE_EVENTID:
ath10k_wmi_event_addba_complete(ar, skb);
break;
case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID:
ath10k_wmi_event_vdev_install_key_complete(ar, skb);
break;
case WMI_SERVICE_READY_EVENTID:
ath10k_wmi_service_ready_event_rx(ar, skb);
break;
case WMI_READY_EVENTID:
ath10k_wmi_ready_event_rx(ar, skb);
break;
default:
ath10k_warn("Unknown eventid: %d\n", id);
break;
}
dev_kfree_skb(skb);
}
static void ath10k_wmi_event_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k,
wmi.wmi_event_work);
struct sk_buff *skb;
for (;;) {
skb = skb_dequeue(&ar->wmi.wmi_event_list);
if (!skb)
break;
ath10k_wmi_event_process(ar, skb);
}
}
static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb)
{
struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
enum wmi_event_id event_id;
event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
/* some events require to be handled ASAP
* thus can't be defered to a worker thread */
switch (event_id) {
case WMI_HOST_SWBA_EVENTID:
case WMI_MGMT_RX_EVENTID:
ath10k_wmi_event_process(ar, skb);
return;
default:
break;
}
skb_queue_tail(&ar->wmi.wmi_event_list, skb);
queue_work(ar->workqueue, &ar->wmi.wmi_event_work);
}
/* WMI Initialization functions */
int ath10k_wmi_attach(struct ath10k *ar)
{
init_completion(&ar->wmi.service_ready);
init_completion(&ar->wmi.unified_ready);
init_waitqueue_head(&ar->wmi.wq);
skb_queue_head_init(&ar->wmi.wmi_event_list);
INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work);
return 0;
}
void ath10k_wmi_detach(struct ath10k *ar)
{
/* HTC should've drained the packets already */
if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0))
ath10k_warn("there are still pending packets\n");
cancel_work_sync(&ar->wmi.wmi_event_work);
skb_queue_purge(&ar->wmi.wmi_event_list);
}
int ath10k_wmi_connect_htc_service(struct ath10k *ar)
{
int status;
struct ath10k_htc_svc_conn_req conn_req;
struct ath10k_htc_svc_conn_resp conn_resp;
memset(&conn_req, 0, sizeof(conn_req));
memset(&conn_resp, 0, sizeof(conn_resp));
/* these fields are the same for all service endpoints */
conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete;
conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx;
/* connect to control service */
conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL;
status = ath10k_htc_connect_service(ar->htc, &conn_req, &conn_resp);
if (status) {
ath10k_warn("failed to connect to WMI CONTROL service status: %d\n",
status);
return status;
}
ar->wmi.eid = conn_resp.eid;
return 0;
}
int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g,
u16 rd5g, u16 ctl2g, u16 ctl5g)
{
struct wmi_pdev_set_regdomain_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data;
cmd->reg_domain = __cpu_to_le32(rd);
cmd->reg_domain_2G = __cpu_to_le32(rd2g);
cmd->reg_domain_5G = __cpu_to_le32(rd5g);
cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g);
cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n",
rd, rd2g, rd5g, ctl2g, ctl5g);
return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID);
}
int ath10k_wmi_pdev_set_channel(struct ath10k *ar,
const struct wmi_channel_arg *arg)
{
struct wmi_set_channel_cmd *cmd;
struct sk_buff *skb;
if (arg->passive)
return -EINVAL;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_channel_cmd *)skb->data;
cmd->chan.mhz = __cpu_to_le32(arg->freq);
cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq);
cmd->chan.mode = arg->mode;
cmd->chan.min_power = arg->min_power;
cmd->chan.max_power = arg->max_power;
cmd->chan.reg_power = arg->max_reg_power;
cmd->chan.reg_classid = arg->reg_class_id;
cmd->chan.antenna_max = arg->max_antenna_gain;
ath10k_dbg(ATH10K_DBG_WMI,
"wmi set channel mode %d freq %d\n",
arg->mode, arg->freq);
return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID);
}
int ath10k_wmi_pdev_suspend_target(struct ath10k *ar)
{
struct wmi_pdev_suspend_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_pdev_suspend_cmd *)skb->data;
cmd->suspend_opt = WMI_PDEV_SUSPEND;
return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID);
}
int ath10k_wmi_pdev_resume_target(struct ath10k *ar)
{
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(0);
if (skb == NULL)
return -ENOMEM;
return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID);
}
int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id,
u32 value)
{
struct wmi_pdev_set_param_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_pdev_set_param_cmd *)skb->data;
cmd->param_id = __cpu_to_le32(id);
cmd->param_value = __cpu_to_le32(value);
ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n",
id, value);
return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID);
}
int ath10k_wmi_cmd_init(struct ath10k *ar)
{
struct wmi_init_cmd *cmd;
struct sk_buff *buf;
struct wmi_resource_config config = {};
u32 val;
config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS);
config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS);
config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS);
config.num_offload_reorder_bufs =
__cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS);
config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS);
config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS);
config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT);
config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK);
config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK);
config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI);
config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE);
config.scan_max_pending_reqs =
__cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS);
config.bmiss_offload_max_vdev =
__cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV);
config.roam_offload_max_vdev =
__cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV);
config.roam_offload_max_ap_profiles =
__cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES);
config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS);
config.num_mcast_table_elems =
__cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS);
config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE);
config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE);
config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES);
config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE);
config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM);
val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK;
config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val);
config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG);
config.gtk_offload_max_vdev =
__cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV);
config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC);
config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES);
buf = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!buf)
return -ENOMEM;
cmd = (struct wmi_init_cmd *)buf->data;
cmd->num_host_mem_chunks = 0;
memcpy(&cmd->resource_config, &config, sizeof(config));
ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n");
return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID);
}
static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg)
{
int len;
len = sizeof(struct wmi_start_scan_cmd);
if (arg->ie_len) {
if (!arg->ie)
return -EINVAL;
if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN)
return -EINVAL;
len += sizeof(struct wmi_ie_data);
len += roundup(arg->ie_len, 4);
}
if (arg->n_channels) {
if (!arg->channels)
return -EINVAL;
if (arg->n_channels > ARRAY_SIZE(arg->channels))
return -EINVAL;
len += sizeof(struct wmi_chan_list);
len += sizeof(__le32) * arg->n_channels;
}
if (arg->n_ssids) {
if (!arg->ssids)
return -EINVAL;
if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID)
return -EINVAL;
len += sizeof(struct wmi_ssid_list);
len += sizeof(struct wmi_ssid) * arg->n_ssids;
}
if (arg->n_bssids) {
if (!arg->bssids)
return -EINVAL;
if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID)
return -EINVAL;
len += sizeof(struct wmi_bssid_list);
len += sizeof(struct wmi_mac_addr) * arg->n_bssids;
}
return len;
}
int ath10k_wmi_start_scan(struct ath10k *ar,
const struct wmi_start_scan_arg *arg)
{
struct wmi_start_scan_cmd *cmd;
struct sk_buff *skb;
struct wmi_ie_data *ie;
struct wmi_chan_list *channels;
struct wmi_ssid_list *ssids;
struct wmi_bssid_list *bssids;
u32 scan_id;
u32 scan_req_id;
int off;
int len = 0;
int i;
len = ath10k_wmi_start_scan_calc_len(arg);
if (len < 0)
return len; /* len contains error code here */
skb = ath10k_wmi_alloc_skb(len);
if (!skb)
return -ENOMEM;
scan_id = WMI_HOST_SCAN_REQ_ID_PREFIX;
scan_id |= arg->scan_id;
scan_req_id = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
scan_req_id |= arg->scan_req_id;
cmd = (struct wmi_start_scan_cmd *)skb->data;
cmd->scan_id = __cpu_to_le32(scan_id);
cmd->scan_req_id = __cpu_to_le32(scan_req_id);
cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
cmd->scan_priority = __cpu_to_le32(arg->scan_priority);
cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events);
cmd->dwell_time_active = __cpu_to_le32(arg->dwell_time_active);
cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive);
cmd->min_rest_time = __cpu_to_le32(arg->min_rest_time);
cmd->max_rest_time = __cpu_to_le32(arg->max_rest_time);
cmd->repeat_probe_time = __cpu_to_le32(arg->repeat_probe_time);
cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time);
cmd->idle_time = __cpu_to_le32(arg->idle_time);
cmd->max_scan_time = __cpu_to_le32(arg->max_scan_time);
cmd->probe_delay = __cpu_to_le32(arg->probe_delay);
cmd->scan_ctrl_flags = __cpu_to_le32(arg->scan_ctrl_flags);
/* TLV list starts after fields included in the struct */
off = sizeof(*cmd);
if (arg->n_channels) {
channels = (void *)skb->data + off;
channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG);
channels->num_chan = __cpu_to_le32(arg->n_channels);
for (i = 0; i < arg->n_channels; i++)
channels->channel_list[i] =
__cpu_to_le32(arg->channels[i]);
off += sizeof(*channels);
off += sizeof(__le32) * arg->n_channels;
}
if (arg->n_ssids) {
ssids = (void *)skb->data + off;
ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG);
ssids->num_ssids = __cpu_to_le32(arg->n_ssids);
for (i = 0; i < arg->n_ssids; i++) {
ssids->ssids[i].ssid_len =
__cpu_to_le32(arg->ssids[i].len);
memcpy(&ssids->ssids[i].ssid,
arg->ssids[i].ssid,
arg->ssids[i].len);
}
off += sizeof(*ssids);
off += sizeof(struct wmi_ssid) * arg->n_ssids;
}
if (arg->n_bssids) {
bssids = (void *)skb->data + off;
bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG);
bssids->num_bssid = __cpu_to_le32(arg->n_bssids);
for (i = 0; i < arg->n_bssids; i++)
memcpy(&bssids->bssid_list[i],
arg->bssids[i].bssid,
ETH_ALEN);
off += sizeof(*bssids);
off += sizeof(struct wmi_mac_addr) * arg->n_bssids;
}
if (arg->ie_len) {
ie = (void *)skb->data + off;
ie->tag = __cpu_to_le32(WMI_IE_TAG);
ie->ie_len = __cpu_to_le32(arg->ie_len);
memcpy(ie->ie_data, arg->ie, arg->ie_len);
off += sizeof(*ie);
off += roundup(arg->ie_len, 4);
}
if (off != skb->len) {
dev_kfree_skb(skb);
return -EINVAL;
}
ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n");
return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID);
}
void ath10k_wmi_start_scan_init(struct ath10k *ar,
struct wmi_start_scan_arg *arg)
{
/* setup commonly used values */
arg->scan_req_id = 1;
arg->scan_priority = WMI_SCAN_PRIORITY_LOW;
arg->dwell_time_active = 50;
arg->dwell_time_passive = 150;
arg->min_rest_time = 50;
arg->max_rest_time = 500;
arg->repeat_probe_time = 0;
arg->probe_spacing_time = 0;
arg->idle_time = 0;
arg->max_scan_time = 5000;
arg->probe_delay = 5;
arg->notify_scan_events = WMI_SCAN_EVENT_STARTED
| WMI_SCAN_EVENT_COMPLETED
| WMI_SCAN_EVENT_BSS_CHANNEL
| WMI_SCAN_EVENT_FOREIGN_CHANNEL
| WMI_SCAN_EVENT_DEQUEUED;
arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES;
arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT;
arg->n_bssids = 1;
arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF";
}
int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg)
{
struct wmi_stop_scan_cmd *cmd;
struct sk_buff *skb;
u32 scan_id;
u32 req_id;
if (arg->req_id > 0xFFF)
return -EINVAL;
if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF)
return -EINVAL;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
scan_id = arg->u.scan_id;
scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX;
req_id = arg->req_id;
req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
cmd = (struct wmi_stop_scan_cmd *)skb->data;
cmd->req_type = __cpu_to_le32(arg->req_type);
cmd->vdev_id = __cpu_to_le32(arg->u.vdev_id);
cmd->scan_id = __cpu_to_le32(scan_id);
cmd->scan_req_id = __cpu_to_le32(req_id);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi stop scan reqid %d req_type %d vdev/scan_id %d\n",
arg->req_id, arg->req_type, arg->u.scan_id);
return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID);
}
int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id,
enum wmi_vdev_type type,
enum wmi_vdev_subtype subtype,
const u8 macaddr[ETH_ALEN])
{
struct wmi_vdev_create_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_vdev_create_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
cmd->vdev_type = __cpu_to_le32(type);
cmd->vdev_subtype = __cpu_to_le32(subtype);
memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN);
ath10k_dbg(ATH10K_DBG_WMI,
"WMI vdev create: id %d type %d subtype %d macaddr %pM\n",
vdev_id, type, subtype, macaddr);
return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID);
}
int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id)
{
struct wmi_vdev_delete_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_vdev_delete_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
ath10k_dbg(ATH10K_DBG_WMI,
"WMI vdev delete id %d\n", vdev_id);
return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID);
}
static int ath10k_wmi_vdev_start_restart(struct ath10k *ar,
const struct wmi_vdev_start_request_arg *arg,
enum wmi_cmd_id cmd_id)
{
struct wmi_vdev_start_request_cmd *cmd;
struct sk_buff *skb;
const char *cmdname;
u32 flags = 0;
if (cmd_id != WMI_VDEV_START_REQUEST_CMDID &&
cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID)
return -EINVAL;
if (WARN_ON(arg->ssid && arg->ssid_len == 0))
return -EINVAL;
if (WARN_ON(arg->hidden_ssid && !arg->ssid))
return -EINVAL;
if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid)))
return -EINVAL;
if (cmd_id == WMI_VDEV_START_REQUEST_CMDID)
cmdname = "start";
else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID)
cmdname = "restart";
else
return -EINVAL; /* should not happen, we already check cmd_id */
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
if (arg->hidden_ssid)
flags |= WMI_VDEV_START_HIDDEN_SSID;
if (arg->pmf_enabled)
flags |= WMI_VDEV_START_PMF_ENABLED;
cmd = (struct wmi_vdev_start_request_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
cmd->disable_hw_ack = __cpu_to_le32(arg->disable_hw_ack);
cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval);
cmd->dtim_period = __cpu_to_le32(arg->dtim_period);
cmd->flags = __cpu_to_le32(flags);
cmd->bcn_tx_rate = __cpu_to_le32(arg->bcn_tx_rate);
cmd->bcn_tx_power = __cpu_to_le32(arg->bcn_tx_power);
if (arg->ssid) {
cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len);
memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len);
}
cmd->chan.mhz = __cpu_to_le32(arg->channel.freq);
cmd->chan.band_center_freq1 =
__cpu_to_le32(arg->channel.band_center_freq1);
cmd->chan.mode = arg->channel.mode;
cmd->chan.min_power = arg->channel.min_power;
cmd->chan.max_power = arg->channel.max_power;
cmd->chan.reg_power = arg->channel.max_reg_power;
cmd->chan.reg_classid = arg->channel.reg_class_id;
cmd->chan.antenna_max = arg->channel.max_antenna_gain;
ath10k_dbg(ATH10K_DBG_WMI,
"wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X,"
"max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq,
arg->channel.mode, flags, arg->channel.max_power);
return ath10k_wmi_cmd_send(ar, skb, cmd_id);
}
int ath10k_wmi_vdev_start(struct ath10k *ar,
const struct wmi_vdev_start_request_arg *arg)
{
return ath10k_wmi_vdev_start_restart(ar, arg,
WMI_VDEV_START_REQUEST_CMDID);
}
int ath10k_wmi_vdev_restart(struct ath10k *ar,
const struct wmi_vdev_start_request_arg *arg)
{
return ath10k_wmi_vdev_start_restart(ar, arg,
WMI_VDEV_RESTART_REQUEST_CMDID);
}
int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id)
{
struct wmi_vdev_stop_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_vdev_stop_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id);
return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID);
}
int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid)
{
struct wmi_vdev_up_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_vdev_up_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
cmd->vdev_assoc_id = __cpu_to_le32(aid);
memcpy(&cmd->vdev_bssid.addr, bssid, 6);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n",
vdev_id, aid, bssid);
return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID);
}
int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id)
{
struct wmi_vdev_down_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_vdev_down_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi mgmt vdev down id 0x%x\n", vdev_id);
return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID);
}
int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id,
enum wmi_vdev_param param_id, u32 param_value)
{
struct wmi_vdev_set_param_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_vdev_set_param_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
cmd->param_id = __cpu_to_le32(param_id);
cmd->param_value = __cpu_to_le32(param_value);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi vdev id 0x%x set param %d value %d\n",
vdev_id, param_id, param_value);
return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID);
}
int ath10k_wmi_vdev_install_key(struct ath10k *ar,
const struct wmi_vdev_install_key_arg *arg)
{
struct wmi_vdev_install_key_cmd *cmd;
struct sk_buff *skb;
if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL)
return -EINVAL;
if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL)
return -EINVAL;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len);
if (!skb)
return -ENOMEM;
cmd = (struct wmi_vdev_install_key_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
cmd->key_idx = __cpu_to_le32(arg->key_idx);
cmd->key_flags = __cpu_to_le32(arg->key_flags);
cmd->key_cipher = __cpu_to_le32(arg->key_cipher);
cmd->key_len = __cpu_to_le32(arg->key_len);
cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len);
cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len);
if (arg->macaddr)
memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN);
if (arg->key_data)
memcpy(cmd->key_data, arg->key_data, arg->key_len);
return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID);
}
int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id,
const u8 peer_addr[ETH_ALEN])
{
struct wmi_peer_create_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_peer_create_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi peer create vdev_id %d peer_addr %pM\n",
vdev_id, peer_addr);
return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID);
}
int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id,
const u8 peer_addr[ETH_ALEN])
{
struct wmi_peer_delete_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_peer_delete_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi peer delete vdev_id %d peer_addr %pM\n",
vdev_id, peer_addr);
return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID);
}
int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id,
const u8 peer_addr[ETH_ALEN], u32 tid_bitmap)
{
struct wmi_peer_flush_tids_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_peer_flush_tids_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap);
memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi peer flush vdev_id %d peer_addr %pM tids %08x\n",
vdev_id, peer_addr, tid_bitmap);
return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID);
}
int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id,
const u8 *peer_addr, enum wmi_peer_param param_id,
u32 param_value)
{
struct wmi_peer_set_param_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_peer_set_param_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
cmd->param_id = __cpu_to_le32(param_id);
cmd->param_value = __cpu_to_le32(param_value);
memcpy(&cmd->peer_macaddr.addr, peer_addr, 6);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi vdev %d peer 0x%pM set param %d value %d\n",
vdev_id, peer_addr, param_id, param_value);
return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID);
}
int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id,
enum wmi_sta_ps_mode psmode)
{
struct wmi_sta_powersave_mode_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
cmd->sta_ps_mode = __cpu_to_le32(psmode);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi set powersave id 0x%x mode %d\n",
vdev_id, psmode);
return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID);
}
int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id,
enum wmi_sta_powersave_param param_id,
u32 value)
{
struct wmi_sta_powersave_param_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_sta_powersave_param_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
cmd->param_id = __cpu_to_le32(param_id);
cmd->param_value = __cpu_to_le32(value);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi sta ps param vdev_id 0x%x param %d value %d\n",
vdev_id, param_id, value);
return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID);
}
int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac,
enum wmi_ap_ps_peer_param param_id, u32 value)
{
struct wmi_ap_ps_peer_cmd *cmd;
struct sk_buff *skb;
if (!mac)
return -EINVAL;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_ap_ps_peer_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(vdev_id);
cmd->param_id = __cpu_to_le32(param_id);
cmd->param_value = __cpu_to_le32(value);
memcpy(&cmd->peer_macaddr, mac, ETH_ALEN);
ath10k_dbg(ATH10K_DBG_WMI,
"wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n",
vdev_id, param_id, value, mac);
return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID);
}
int ath10k_wmi_scan_chan_list(struct ath10k *ar,
const struct wmi_scan_chan_list_arg *arg)
{
struct wmi_scan_chan_list_cmd *cmd;
struct sk_buff *skb;
struct wmi_channel_arg *ch;
struct wmi_channel *ci;
int len;
int i;
len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel);
skb = ath10k_wmi_alloc_skb(len);
if (!skb)
return -EINVAL;
cmd = (struct wmi_scan_chan_list_cmd *)skb->data;
cmd->num_scan_chans = __cpu_to_le32(arg->n_channels);
for (i = 0; i < arg->n_channels; i++) {
u32 flags = 0;
ch = &arg->channels[i];
ci = &cmd->chan_info[i];
if (ch->passive)
flags |= WMI_CHAN_FLAG_PASSIVE;
if (ch->allow_ibss)
flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED;
if (ch->allow_ht)
flags |= WMI_CHAN_FLAG_ALLOW_HT;
if (ch->allow_vht)
flags |= WMI_CHAN_FLAG_ALLOW_VHT;
if (ch->ht40plus)
flags |= WMI_CHAN_FLAG_HT40_PLUS;
ci->mhz = __cpu_to_le32(ch->freq);
ci->band_center_freq1 = __cpu_to_le32(ch->freq);
ci->band_center_freq2 = 0;
ci->min_power = ch->min_power;
ci->max_power = ch->max_power;
ci->reg_power = ch->max_reg_power;
ci->antenna_max = ch->max_antenna_gain;
ci->antenna_max = 0;
/* mode & flags share storage */
ci->mode = ch->mode;
ci->flags |= __cpu_to_le32(flags);
}
return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID);
}
int ath10k_wmi_peer_assoc(struct ath10k *ar,
const struct wmi_peer_assoc_complete_arg *arg)
{
struct wmi_peer_assoc_complete_cmd *cmd;
struct sk_buff *skb;
if (arg->peer_mpdu_density > 16)
return -EINVAL;
if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES)
return -EINVAL;
if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES)
return -EINVAL;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data;
cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
cmd->peer_new_assoc = __cpu_to_le32(arg->peer_reassoc ? 0 : 1);
cmd->peer_associd = __cpu_to_le32(arg->peer_aid);
cmd->peer_flags = __cpu_to_le32(arg->peer_flags);
cmd->peer_caps = __cpu_to_le32(arg->peer_caps);
cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval);
cmd->peer_ht_caps = __cpu_to_le32(arg->peer_ht_caps);
cmd->peer_max_mpdu = __cpu_to_le32(arg->peer_max_mpdu);
cmd->peer_mpdu_density = __cpu_to_le32(arg->peer_mpdu_density);
cmd->peer_rate_caps = __cpu_to_le32(arg->peer_rate_caps);
cmd->peer_nss = __cpu_to_le32(arg->peer_num_spatial_streams);
cmd->peer_vht_caps = __cpu_to_le32(arg->peer_vht_caps);
cmd->peer_phymode = __cpu_to_le32(arg->peer_phymode);
memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN);
cmd->peer_legacy_rates.num_rates =
__cpu_to_le32(arg->peer_legacy_rates.num_rates);
memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates,
arg->peer_legacy_rates.num_rates);
cmd->peer_ht_rates.num_rates =
__cpu_to_le32(arg->peer_ht_rates.num_rates);
memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates,
arg->peer_ht_rates.num_rates);
cmd->peer_vht_rates.rx_max_rate =
__cpu_to_le32(arg->peer_vht_rates.rx_max_rate);
cmd->peer_vht_rates.rx_mcs_set =
__cpu_to_le32(arg->peer_vht_rates.rx_mcs_set);
cmd->peer_vht_rates.tx_max_rate =
__cpu_to_le32(arg->peer_vht_rates.tx_max_rate);
cmd->peer_vht_rates.tx_mcs_set =
__cpu_to_le32(arg->peer_vht_rates.tx_mcs_set);
return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID);
}
int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg)
{
struct wmi_bcn_tx_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len);
if (!skb)
return -ENOMEM;
cmd = (struct wmi_bcn_tx_cmd *)skb->data;
cmd->hdr.vdev_id = __cpu_to_le32(arg->vdev_id);
cmd->hdr.tx_rate = __cpu_to_le32(arg->tx_rate);
cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power);
cmd->hdr.bcn_len = __cpu_to_le32(arg->bcn_len);
memcpy(cmd->bcn, arg->bcn, arg->bcn_len);
return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID);
}
static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params,
const struct wmi_wmm_params_arg *arg)
{
params->cwmin = __cpu_to_le32(arg->cwmin);
params->cwmax = __cpu_to_le32(arg->cwmax);
params->aifs = __cpu_to_le32(arg->aifs);
params->txop = __cpu_to_le32(arg->txop);
params->acm = __cpu_to_le32(arg->acm);
params->no_ack = __cpu_to_le32(arg->no_ack);
}
int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar,
const struct wmi_pdev_set_wmm_params_arg *arg)
{
struct wmi_pdev_set_wmm_params *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_pdev_set_wmm_params *)skb->data;
ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be);
ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk);
ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi);
ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo);
ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n");
return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID);
}
int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id)
{
struct wmi_request_stats_cmd *cmd;
struct sk_buff *skb;
skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_request_stats_cmd *)skb->data;
cmd->stats_id = __cpu_to_le32(stats_id);
ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id);
return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID);
}