linux/drivers/video/msm/mddi.c

828 lines
22 KiB
C

/*
* MSM MDDI Transport
*
* Copyright (C) 2007 Google Incorporated
* Copyright (C) 2007 QUALCOMM Incorporated
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/sched.h>
#include <mach/msm_iomap.h>
#include <mach/irqs.h>
#include <mach/board.h>
#include <mach/msm_fb.h>
#include "mddi_hw.h"
#define FLAG_DISABLE_HIBERNATION 0x0001
#define FLAG_HAVE_CAPS 0x0002
#define FLAG_HAS_VSYNC_IRQ 0x0004
#define FLAG_HAVE_STATUS 0x0008
#define CMD_GET_CLIENT_CAP 0x0601
#define CMD_GET_CLIENT_STATUS 0x0602
union mddi_rev {
unsigned char raw[MDDI_REV_BUFFER_SIZE];
struct mddi_rev_packet hdr;
struct mddi_client_status status;
struct mddi_client_caps caps;
struct mddi_register_access reg;
};
struct reg_read_info {
struct completion done;
uint32_t reg;
uint32_t status;
uint32_t result;
};
struct mddi_info {
uint16_t flags;
uint16_t version;
char __iomem *base;
int irq;
struct clk *clk;
struct msm_mddi_client_data client_data;
/* buffer for rev encap packets */
void *rev_data;
dma_addr_t rev_addr;
struct mddi_llentry *reg_write_data;
dma_addr_t reg_write_addr;
struct mddi_llentry *reg_read_data;
dma_addr_t reg_read_addr;
size_t rev_data_curr;
spinlock_t int_lock;
uint32_t int_enable;
uint32_t got_int;
wait_queue_head_t int_wait;
struct mutex reg_write_lock;
struct mutex reg_read_lock;
struct reg_read_info *reg_read;
struct mddi_client_caps caps;
struct mddi_client_status status;
void (*power_client)(struct msm_mddi_client_data *, int);
/* client device published to bind us to the
* appropriate mddi_client driver
*/
char client_name[20];
struct platform_device client_pdev;
};
static void mddi_init_rev_encap(struct mddi_info *mddi);
#define mddi_readl(r) readl(mddi->base + (MDDI_##r))
#define mddi_writel(v, r) writel((v), mddi->base + (MDDI_##r))
void mddi_activate_link(struct msm_mddi_client_data *cdata)
{
struct mddi_info *mddi = container_of(cdata, struct mddi_info,
client_data);
mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
}
static void mddi_handle_link_list_done(struct mddi_info *mddi)
{
}
static void mddi_reset_rev_encap_ptr(struct mddi_info *mddi)
{
printk(KERN_INFO "mddi: resetting rev ptr\n");
mddi->rev_data_curr = 0;
mddi_writel(mddi->rev_addr, REV_PTR);
mddi_writel(mddi->rev_addr, REV_PTR);
mddi_writel(MDDI_CMD_FORCE_NEW_REV_PTR, CMD);
}
static void mddi_handle_rev_data(struct mddi_info *mddi, union mddi_rev *rev)
{
int i;
struct reg_read_info *ri;
if ((rev->hdr.length <= MDDI_REV_BUFFER_SIZE - 2) &&
(rev->hdr.length >= sizeof(struct mddi_rev_packet) - 2)) {
switch (rev->hdr.type) {
case TYPE_CLIENT_CAPS:
memcpy(&mddi->caps, &rev->caps,
sizeof(struct mddi_client_caps));
mddi->flags |= FLAG_HAVE_CAPS;
wake_up(&mddi->int_wait);
break;
case TYPE_CLIENT_STATUS:
memcpy(&mddi->status, &rev->status,
sizeof(struct mddi_client_status));
mddi->flags |= FLAG_HAVE_STATUS;
wake_up(&mddi->int_wait);
break;
case TYPE_REGISTER_ACCESS:
ri = mddi->reg_read;
if (ri == 0) {
printk(KERN_INFO "rev: got reg %x = %x without "
" pending read\n",
rev->reg.register_address,
rev->reg.register_data_list);
break;
}
if (ri->reg != rev->reg.register_address) {
printk(KERN_INFO "rev: got reg %x = %x for "
"wrong register, expected "
"%x\n",
rev->reg.register_address,
rev->reg.register_data_list, ri->reg);
break;
}
mddi->reg_read = NULL;
ri->status = 0;
ri->result = rev->reg.register_data_list;
complete(&ri->done);
break;
default:
printk(KERN_INFO "rev: unknown reverse packet: "
"len=%04x type=%04x CURR_REV_PTR=%x\n",
rev->hdr.length, rev->hdr.type,
mddi_readl(CURR_REV_PTR));
for (i = 0; i < rev->hdr.length + 2; i++) {
if ((i % 16) == 0)
printk(KERN_INFO "\n");
printk(KERN_INFO " %02x", rev->raw[i]);
}
printk(KERN_INFO "\n");
mddi_reset_rev_encap_ptr(mddi);
}
} else {
printk(KERN_INFO "bad rev length, %d, CURR_REV_PTR %x\n",
rev->hdr.length, mddi_readl(CURR_REV_PTR));
mddi_reset_rev_encap_ptr(mddi);
}
}
static void mddi_wait_interrupt(struct mddi_info *mddi, uint32_t intmask);
static void mddi_handle_rev_data_avail(struct mddi_info *mddi)
{
union mddi_rev *rev = mddi->rev_data;
uint32_t rev_data_count;
uint32_t rev_crc_err_count;
int i;
struct reg_read_info *ri;
size_t prev_offset;
uint16_t length;
union mddi_rev *crev = mddi->rev_data + mddi->rev_data_curr;
/* clear the interrupt */
mddi_writel(MDDI_INT_REV_DATA_AVAIL, INT);
rev_data_count = mddi_readl(REV_PKT_CNT);
rev_crc_err_count = mddi_readl(REV_CRC_ERR);
if (rev_data_count > 1)
printk(KERN_INFO "rev_data_count %d\n", rev_data_count);
if (rev_crc_err_count) {
printk(KERN_INFO "rev_crc_err_count %d, INT %x\n",
rev_crc_err_count, mddi_readl(INT));
ri = mddi->reg_read;
if (ri == 0) {
printk(KERN_INFO "rev: got crc error without pending "
"read\n");
} else {
mddi->reg_read = NULL;
ri->status = -EIO;
ri->result = -1;
complete(&ri->done);
}
}
if (rev_data_count == 0)
return;
prev_offset = mddi->rev_data_curr;
length = *((uint8_t *)mddi->rev_data + mddi->rev_data_curr);
mddi->rev_data_curr++;
if (mddi->rev_data_curr == MDDI_REV_BUFFER_SIZE)
mddi->rev_data_curr = 0;
length += *((uint8_t *)mddi->rev_data + mddi->rev_data_curr) << 8;
mddi->rev_data_curr += 1 + length;
if (mddi->rev_data_curr >= MDDI_REV_BUFFER_SIZE)
mddi->rev_data_curr =
mddi->rev_data_curr % MDDI_REV_BUFFER_SIZE;
if (length > MDDI_REV_BUFFER_SIZE - 2) {
printk(KERN_INFO "mddi: rev data length greater than buffer"
"size\n");
mddi_reset_rev_encap_ptr(mddi);
return;
}
if (prev_offset + 2 + length >= MDDI_REV_BUFFER_SIZE) {
union mddi_rev tmprev;
size_t rem = MDDI_REV_BUFFER_SIZE - prev_offset;
memcpy(&tmprev.raw[0], mddi->rev_data + prev_offset, rem);
memcpy(&tmprev.raw[rem], mddi->rev_data, 2 + length - rem);
mddi_handle_rev_data(mddi, &tmprev);
} else {
mddi_handle_rev_data(mddi, crev);
}
if (prev_offset < MDDI_REV_BUFFER_SIZE / 2 &&
mddi->rev_data_curr >= MDDI_REV_BUFFER_SIZE / 2) {
mddi_writel(mddi->rev_addr, REV_PTR);
}
}
static irqreturn_t mddi_isr(int irq, void *data)
{
struct msm_mddi_client_data *cdata = data;
struct mddi_info *mddi = container_of(cdata, struct mddi_info,
client_data);
uint32_t active, status;
spin_lock(&mddi->int_lock);
active = mddi_readl(INT);
status = mddi_readl(STAT);
mddi_writel(active, INT);
/* ignore any interrupts we have disabled */
active &= mddi->int_enable;
mddi->got_int |= active;
wake_up(&mddi->int_wait);
if (active & MDDI_INT_PRI_LINK_LIST_DONE) {
mddi->int_enable &= (~MDDI_INT_PRI_LINK_LIST_DONE);
mddi_handle_link_list_done(mddi);
}
if (active & MDDI_INT_REV_DATA_AVAIL)
mddi_handle_rev_data_avail(mddi);
if (active & ~MDDI_INT_NEED_CLEAR)
mddi->int_enable &= ~(active & ~MDDI_INT_NEED_CLEAR);
if (active & MDDI_INT_LINK_ACTIVE) {
mddi->int_enable &= (~MDDI_INT_LINK_ACTIVE);
mddi->int_enable |= MDDI_INT_IN_HIBERNATION;
}
if (active & MDDI_INT_IN_HIBERNATION) {
mddi->int_enable &= (~MDDI_INT_IN_HIBERNATION);
mddi->int_enable |= MDDI_INT_LINK_ACTIVE;
}
mddi_writel(mddi->int_enable, INTEN);
spin_unlock(&mddi->int_lock);
return IRQ_HANDLED;
}
static long mddi_wait_interrupt_timeout(struct mddi_info *mddi,
uint32_t intmask, int timeout)
{
unsigned long irq_flags;
spin_lock_irqsave(&mddi->int_lock, irq_flags);
mddi->got_int &= ~intmask;
mddi->int_enable |= intmask;
mddi_writel(mddi->int_enable, INTEN);
spin_unlock_irqrestore(&mddi->int_lock, irq_flags);
return wait_event_timeout(mddi->int_wait, mddi->got_int & intmask,
timeout);
}
static void mddi_wait_interrupt(struct mddi_info *mddi, uint32_t intmask)
{
if (mddi_wait_interrupt_timeout(mddi, intmask, HZ/10) == 0)
printk(KERN_INFO KERN_ERR "mddi_wait_interrupt %d, timeout "
"waiting for %x, INT = %x, STAT = %x gotint = %x\n",
current->pid, intmask, mddi_readl(INT), mddi_readl(STAT),
mddi->got_int);
}
static void mddi_init_rev_encap(struct mddi_info *mddi)
{
memset(mddi->rev_data, 0xee, MDDI_REV_BUFFER_SIZE);
mddi_writel(mddi->rev_addr, REV_PTR);
mddi_writel(MDDI_CMD_FORCE_NEW_REV_PTR, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
}
void mddi_set_auto_hibernate(struct msm_mddi_client_data *cdata, int on)
{
struct mddi_info *mddi = container_of(cdata, struct mddi_info,
client_data);
mddi_writel(MDDI_CMD_POWERDOWN, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_IN_HIBERNATION);
mddi_writel(MDDI_CMD_HIBERNATE | !!on, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
}
static uint16_t mddi_init_registers(struct mddi_info *mddi)
{
mddi_writel(0x0001, VERSION);
mddi_writel(MDDI_HOST_BYTES_PER_SUBFRAME, BPS);
mddi_writel(0x0003, SPM); /* subframes per media */
mddi_writel(0x0005, TA1_LEN);
mddi_writel(MDDI_HOST_TA2_LEN, TA2_LEN);
mddi_writel(0x0096, DRIVE_HI);
/* 0x32 normal, 0x50 for Toshiba display */
mddi_writel(0x0050, DRIVE_LO);
mddi_writel(0x003C, DISP_WAKE); /* wakeup counter */
mddi_writel(MDDI_HOST_REV_RATE_DIV, REV_RATE_DIV);
mddi_writel(MDDI_REV_BUFFER_SIZE, REV_SIZE);
mddi_writel(MDDI_MAX_REV_PKT_SIZE, REV_ENCAP_SZ);
/* disable periodic rev encap */
mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
if (mddi_readl(PAD_CTL) == 0) {
/* If we are turning on band gap, need to wait 5us before
* turning on the rest of the PAD */
mddi_writel(0x08000, PAD_CTL);
udelay(5);
}
/* Recommendation from PAD hw team */
mddi_writel(0xa850f, PAD_CTL);
/* Need an even number for counts */
mddi_writel(0x60006, DRIVER_START_CNT);
mddi_set_auto_hibernate(&mddi->client_data, 0);
mddi_writel(MDDI_CMD_DISP_IGNORE, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
mddi_init_rev_encap(mddi);
return mddi_readl(CORE_VER) & 0xffff;
}
static void mddi_suspend(struct msm_mddi_client_data *cdata)
{
struct mddi_info *mddi = container_of(cdata, struct mddi_info,
client_data);
/* turn off the client */
if (mddi->power_client)
mddi->power_client(&mddi->client_data, 0);
/* turn off the link */
mddi_writel(MDDI_CMD_RESET, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
/* turn off the clock */
clk_disable(mddi->clk);
}
static void mddi_resume(struct msm_mddi_client_data *cdata)
{
struct mddi_info *mddi = container_of(cdata, struct mddi_info,
client_data);
mddi_set_auto_hibernate(&mddi->client_data, 0);
/* turn on the client */
if (mddi->power_client)
mddi->power_client(&mddi->client_data, 1);
/* turn on the clock */
clk_enable(mddi->clk);
/* set up the local registers */
mddi->rev_data_curr = 0;
mddi_init_registers(mddi);
mddi_writel(mddi->int_enable, INTEN);
mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
mddi_writel(MDDI_CMD_SEND_RTD, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
mddi_set_auto_hibernate(&mddi->client_data, 1);
}
static int __init mddi_get_client_caps(struct mddi_info *mddi)
{
int i, j;
/* clear any stale interrupts */
mddi_writel(0xffffffff, INT);
mddi->int_enable = MDDI_INT_LINK_ACTIVE |
MDDI_INT_IN_HIBERNATION |
MDDI_INT_PRI_LINK_LIST_DONE |
MDDI_INT_REV_DATA_AVAIL |
MDDI_INT_REV_OVERFLOW |
MDDI_INT_REV_OVERWRITE |
MDDI_INT_RTD_FAILURE;
mddi_writel(mddi->int_enable, INTEN);
mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
for (j = 0; j < 3; j++) {
/* the toshiba vga panel does not respond to get
* caps unless you SEND_RTD, but the first SEND_RTD
* will fail...
*/
for (i = 0; i < 4; i++) {
uint32_t stat;
mddi_writel(MDDI_CMD_SEND_RTD, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
stat = mddi_readl(STAT);
printk(KERN_INFO "mddi cmd send rtd: int %x, stat %x, "
"rtd val %x\n", mddi_readl(INT), stat,
mddi_readl(RTD_VAL));
if ((stat & MDDI_STAT_RTD_MEAS_FAIL) == 0)
break;
msleep(1);
}
mddi_writel(CMD_GET_CLIENT_CAP, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
wait_event_timeout(mddi->int_wait, mddi->flags & FLAG_HAVE_CAPS,
HZ / 100);
if (mddi->flags & FLAG_HAVE_CAPS)
break;
printk(KERN_INFO KERN_ERR "mddi_init, timeout waiting for "
"caps\n");
}
return mddi->flags & FLAG_HAVE_CAPS;
}
/* link must be active when this is called */
int mddi_check_status(struct mddi_info *mddi)
{
int ret = -1, retry = 3;
mutex_lock(&mddi->reg_read_lock);
mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 1, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
do {
mddi->flags &= ~FLAG_HAVE_STATUS;
mddi_writel(CMD_GET_CLIENT_STATUS, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
wait_event_timeout(mddi->int_wait,
mddi->flags & FLAG_HAVE_STATUS,
HZ / 100);
if (mddi->flags & FLAG_HAVE_STATUS) {
if (mddi->status.crc_error_count)
printk(KERN_INFO "mddi status: crc_error "
"count: %d\n",
mddi->status.crc_error_count);
else
ret = 0;
break;
} else
printk(KERN_INFO "mddi status: failed to get client "
"status\n");
mddi_writel(MDDI_CMD_SEND_RTD, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
} while (--retry);
mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 0, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
mutex_unlock(&mddi->reg_read_lock);
return ret;
}
void mddi_remote_write(struct msm_mddi_client_data *cdata, uint32_t val,
uint32_t reg)
{
struct mddi_info *mddi = container_of(cdata, struct mddi_info,
client_data);
struct mddi_llentry *ll;
struct mddi_register_access *ra;
mutex_lock(&mddi->reg_write_lock);
ll = mddi->reg_write_data;
ra = &(ll->u.r);
ra->length = 14 + 4;
ra->type = TYPE_REGISTER_ACCESS;
ra->client_id = 0;
ra->read_write_info = MDDI_WRITE | 1;
ra->crc16 = 0;
ra->register_address = reg;
ra->register_data_list = val;
ll->flags = 1;
ll->header_count = 14;
ll->data_count = 4;
ll->data = mddi->reg_write_addr + offsetof(struct mddi_llentry,
u.r.register_data_list);
ll->next = 0;
ll->reserved = 0;
mddi_writel(mddi->reg_write_addr, PRI_PTR);
mddi_wait_interrupt(mddi, MDDI_INT_PRI_LINK_LIST_DONE);
mutex_unlock(&mddi->reg_write_lock);
}
uint32_t mddi_remote_read(struct msm_mddi_client_data *cdata, uint32_t reg)
{
struct mddi_info *mddi = container_of(cdata, struct mddi_info,
client_data);
struct mddi_llentry *ll;
struct mddi_register_access *ra;
struct reg_read_info ri;
unsigned s;
int retry_count = 2;
unsigned long irq_flags;
mutex_lock(&mddi->reg_read_lock);
ll = mddi->reg_read_data;
ra = &(ll->u.r);
ra->length = 14;
ra->type = TYPE_REGISTER_ACCESS;
ra->client_id = 0;
ra->read_write_info = MDDI_READ | 1;
ra->crc16 = 0;
ra->register_address = reg;
ll->flags = 0x11;
ll->header_count = 14;
ll->data_count = 0;
ll->data = 0;
ll->next = 0;
ll->reserved = 0;
s = mddi_readl(STAT);
ri.reg = reg;
ri.status = -1;
do {
init_completion(&ri.done);
mddi->reg_read = &ri;
mddi_writel(mddi->reg_read_addr, PRI_PTR);
mddi_wait_interrupt(mddi, MDDI_INT_PRI_LINK_LIST_DONE);
/* Enable Periodic Reverse Encapsulation. */
mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 1, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
if (wait_for_completion_timeout(&ri.done, HZ/10) == 0 &&
!ri.done.done) {
printk(KERN_INFO "mddi_remote_read(%x) timeout "
"(%d %d %d)\n",
reg, ri.status, ri.result, ri.done.done);
spin_lock_irqsave(&mddi->int_lock, irq_flags);
mddi->reg_read = NULL;
spin_unlock_irqrestore(&mddi->int_lock, irq_flags);
ri.status = -1;
ri.result = -1;
}
if (ri.status == 0)
break;
mddi_writel(MDDI_CMD_SEND_RTD, CMD);
mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
printk(KERN_INFO "mddi_remote_read: failed, sent "
"MDDI_CMD_SEND_RTD: int %x, stat %x, rtd val %x "
"curr_rev_ptr %x\n", mddi_readl(INT), mddi_readl(STAT),
mddi_readl(RTD_VAL), mddi_readl(CURR_REV_PTR));
} while (retry_count-- > 0);
/* Disable Periodic Reverse Encapsulation. */
mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 0, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
mddi->reg_read = NULL;
mutex_unlock(&mddi->reg_read_lock);
return ri.result;
}
static struct mddi_info mddi_info[2];
static int __init mddi_clk_setup(struct platform_device *pdev,
struct mddi_info *mddi,
unsigned long clk_rate)
{
int ret;
/* set up the clocks */
mddi->clk = clk_get(&pdev->dev, "mddi_clk");
if (IS_ERR(mddi->clk)) {
printk(KERN_INFO "mddi: failed to get clock\n");
return PTR_ERR(mddi->clk);
}
ret = clk_enable(mddi->clk);
if (ret)
goto fail;
ret = clk_set_rate(mddi->clk, clk_rate);
if (ret)
goto fail;
return 0;
fail:
clk_put(mddi->clk);
return ret;
}
static int __init mddi_rev_data_setup(struct mddi_info *mddi)
{
void *dma;
dma_addr_t dma_addr;
/* set up dma buffer */
dma = dma_alloc_coherent(NULL, 0x1000, &dma_addr, GFP_KERNEL);
if (dma == 0)
return -ENOMEM;
mddi->rev_data = dma;
mddi->rev_data_curr = 0;
mddi->rev_addr = dma_addr;
mddi->reg_write_data = dma + MDDI_REV_BUFFER_SIZE;
mddi->reg_write_addr = dma_addr + MDDI_REV_BUFFER_SIZE;
mddi->reg_read_data = mddi->reg_write_data + 1;
mddi->reg_read_addr = mddi->reg_write_addr +
sizeof(*mddi->reg_write_data);
return 0;
}
static int __init mddi_probe(struct platform_device *pdev)
{
struct msm_mddi_platform_data *pdata = pdev->dev.platform_data;
struct mddi_info *mddi = &mddi_info[pdev->id];
struct resource *resource;
int ret, i;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!resource) {
printk(KERN_ERR "mddi: no associated mem resource!\n");
return -ENOMEM;
}
mddi->base = ioremap(resource->start, resource->end - resource->start);
if (!mddi->base) {
printk(KERN_ERR "mddi: failed to remap base!\n");
ret = -EINVAL;
goto error_ioremap;
}
resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!resource) {
printk(KERN_ERR "mddi: no associated irq resource!\n");
ret = -EINVAL;
goto error_get_irq_resource;
}
mddi->irq = resource->start;
printk(KERN_INFO "mddi: init() base=0x%p irq=%d\n", mddi->base,
mddi->irq);
mddi->power_client = pdata->power_client;
mutex_init(&mddi->reg_write_lock);
mutex_init(&mddi->reg_read_lock);
spin_lock_init(&mddi->int_lock);
init_waitqueue_head(&mddi->int_wait);
ret = mddi_clk_setup(pdev, mddi, pdata->clk_rate);
if (ret) {
printk(KERN_ERR "mddi: failed to setup clock!\n");
goto error_clk_setup;
}
ret = mddi_rev_data_setup(mddi);
if (ret) {
printk(KERN_ERR "mddi: failed to setup rev data!\n");
goto error_rev_data;
}
mddi->int_enable = 0;
mddi_writel(mddi->int_enable, INTEN);
ret = request_irq(mddi->irq, mddi_isr, IRQF_DISABLED, "mddi",
&mddi->client_data);
if (ret) {
printk(KERN_ERR "mddi: failed to request enable irq!\n");
goto error_request_irq;
}
/* turn on the mddi client bridge chip */
if (mddi->power_client)
mddi->power_client(&mddi->client_data, 1);
/* initialize the mddi registers */
mddi_set_auto_hibernate(&mddi->client_data, 0);
mddi_writel(MDDI_CMD_RESET, CMD);
mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND);
mddi->version = mddi_init_registers(mddi);
if (mddi->version < 0x20) {
printk(KERN_ERR "mddi: unsupported version 0x%x\n",
mddi->version);
ret = -ENODEV;
goto error_mddi_version;
}
/* read the capabilities off the client */
if (!mddi_get_client_caps(mddi)) {
printk(KERN_INFO "mddi: no client found\n");
/* power down the panel */
mddi_writel(MDDI_CMD_POWERDOWN, CMD);
printk(KERN_INFO "mddi powerdown: stat %x\n", mddi_readl(STAT));
msleep(100);
printk(KERN_INFO "mddi powerdown: stat %x\n", mddi_readl(STAT));
return 0;
}
mddi_set_auto_hibernate(&mddi->client_data, 1);
if (mddi->caps.Mfr_Name == 0 && mddi->caps.Product_Code == 0)
pdata->fixup(&mddi->caps.Mfr_Name, &mddi->caps.Product_Code);
mddi->client_pdev.id = 0;
for (i = 0; i < pdata->num_clients; i++) {
if (pdata->client_platform_data[i].product_id ==
(mddi->caps.Mfr_Name << 16 | mddi->caps.Product_Code)) {
mddi->client_data.private_client_data =
pdata->client_platform_data[i].client_data;
mddi->client_pdev.name =
pdata->client_platform_data[i].name;
mddi->client_pdev.id =
pdata->client_platform_data[i].id;
/* XXX: possibly set clock */
break;
}
}
if (i >= pdata->num_clients)
mddi->client_pdev.name = "mddi_c_dummy";
printk(KERN_INFO "mddi: registering panel %s\n",
mddi->client_pdev.name);
mddi->client_data.suspend = mddi_suspend;
mddi->client_data.resume = mddi_resume;
mddi->client_data.activate_link = mddi_activate_link;
mddi->client_data.remote_write = mddi_remote_write;
mddi->client_data.remote_read = mddi_remote_read;
mddi->client_data.auto_hibernate = mddi_set_auto_hibernate;
mddi->client_data.fb_resource = pdata->fb_resource;
if (pdev->id == 0)
mddi->client_data.interface_type = MSM_MDDI_PMDH_INTERFACE;
else if (pdev->id == 1)
mddi->client_data.interface_type = MSM_MDDI_EMDH_INTERFACE;
else {
printk(KERN_ERR "mddi: can not determine interface %d!\n",
pdev->id);
ret = -EINVAL;
goto error_mddi_interface;
}
mddi->client_pdev.dev.platform_data = &mddi->client_data;
printk(KERN_INFO "mddi: publish: %s\n", mddi->client_name);
platform_device_register(&mddi->client_pdev);
return 0;
error_mddi_interface:
error_mddi_version:
free_irq(mddi->irq, 0);
error_request_irq:
dma_free_coherent(NULL, 0x1000, mddi->rev_data, mddi->rev_addr);
error_rev_data:
error_clk_setup:
error_get_irq_resource:
iounmap(mddi->base);
error_ioremap:
printk(KERN_INFO "mddi: mddi_init() failed (%d)\n", ret);
return ret;
}
static struct platform_driver mddi_driver = {
.probe = mddi_probe,
.driver = { .name = "msm_mddi" },
};
static int __init _mddi_init(void)
{
return platform_driver_register(&mddi_driver);
}
module_init(_mddi_init);