linux/drivers/gpu/drm/i915/intel_lrc.c

2643 lines
79 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
* Michel Thierry <michel.thierry@intel.com>
* Thomas Daniel <thomas.daniel@intel.com>
* Oscar Mateo <oscar.mateo@intel.com>
*
*/
/**
* DOC: Logical Rings, Logical Ring Contexts and Execlists
*
* Motivation:
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
* These expanded contexts enable a number of new abilities, especially
* "Execlists" (also implemented in this file).
*
* One of the main differences with the legacy HW contexts is that logical
* ring contexts incorporate many more things to the context's state, like
* PDPs or ringbuffer control registers:
*
* The reason why PDPs are included in the context is straightforward: as
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
* instead, the GPU will do it for you on the context switch.
*
* But, what about the ringbuffer control registers (head, tail, etc..)?
* shouldn't we just need a set of those per engine command streamer? This is
* where the name "Logical Rings" starts to make sense: by virtualizing the
* rings, the engine cs shifts to a new "ring buffer" with every context
* switch. When you want to submit a workload to the GPU you: A) choose your
* context, B) find its appropriate virtualized ring, C) write commands to it
* and then, finally, D) tell the GPU to switch to that context.
*
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
* to a contexts is via a context execution list, ergo "Execlists".
*
* LRC implementation:
* Regarding the creation of contexts, we have:
*
* - One global default context.
* - One local default context for each opened fd.
* - One local extra context for each context create ioctl call.
*
* Now that ringbuffers belong per-context (and not per-engine, like before)
* and that contexts are uniquely tied to a given engine (and not reusable,
* like before) we need:
*
* - One ringbuffer per-engine inside each context.
* - One backing object per-engine inside each context.
*
* The global default context starts its life with these new objects fully
* allocated and populated. The local default context for each opened fd is
* more complex, because we don't know at creation time which engine is going
* to use them. To handle this, we have implemented a deferred creation of LR
* contexts:
*
* The local context starts its life as a hollow or blank holder, that only
* gets populated for a given engine once we receive an execbuffer. If later
* on we receive another execbuffer ioctl for the same context but a different
* engine, we allocate/populate a new ringbuffer and context backing object and
* so on.
*
* Finally, regarding local contexts created using the ioctl call: as they are
* only allowed with the render ring, we can allocate & populate them right
* away (no need to defer anything, at least for now).
*
* Execlists implementation:
* Execlists are the new method by which, on gen8+ hardware, workloads are
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
* This method works as follows:
*
* When a request is committed, its commands (the BB start and any leading or
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
* for the appropriate context. The tail pointer in the hardware context is not
* updated at this time, but instead, kept by the driver in the ringbuffer
* structure. A structure representing this request is added to a request queue
* for the appropriate engine: this structure contains a copy of the context's
* tail after the request was written to the ring buffer and a pointer to the
* context itself.
*
* If the engine's request queue was empty before the request was added, the
* queue is processed immediately. Otherwise the queue will be processed during
* a context switch interrupt. In any case, elements on the queue will get sent
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
* globally unique 20-bits submission ID.
*
* When execution of a request completes, the GPU updates the context status
* buffer with a context complete event and generates a context switch interrupt.
* During the interrupt handling, the driver examines the events in the buffer:
* for each context complete event, if the announced ID matches that on the head
* of the request queue, then that request is retired and removed from the queue.
*
* After processing, if any requests were retired and the queue is not empty
* then a new execution list can be submitted. The two requests at the front of
* the queue are next to be submitted but since a context may not occur twice in
* an execution list, if subsequent requests have the same ID as the first then
* the two requests must be combined. This is done simply by discarding requests
* at the head of the queue until either only one requests is left (in which case
* we use a NULL second context) or the first two requests have unique IDs.
*
* By always executing the first two requests in the queue the driver ensures
* that the GPU is kept as busy as possible. In the case where a single context
* completes but a second context is still executing, the request for this second
* context will be at the head of the queue when we remove the first one. This
* request will then be resubmitted along with a new request for a different context,
* which will cause the hardware to continue executing the second request and queue
* the new request (the GPU detects the condition of a context getting preempted
* with the same context and optimizes the context switch flow by not doing
* preemption, but just sampling the new tail pointer).
*
*/
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "intel_mocs.h"
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
#define RING_EXECLIST_QFULL (1 << 0x2)
#define RING_EXECLIST1_VALID (1 << 0x3)
#define RING_EXECLIST0_VALID (1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
#define CTX_LRI_HEADER_0 0x01
#define CTX_CONTEXT_CONTROL 0x02
#define CTX_RING_HEAD 0x04
#define CTX_RING_TAIL 0x06
#define CTX_RING_BUFFER_START 0x08
#define CTX_RING_BUFFER_CONTROL 0x0a
#define CTX_BB_HEAD_U 0x0c
#define CTX_BB_HEAD_L 0x0e
#define CTX_BB_STATE 0x10
#define CTX_SECOND_BB_HEAD_U 0x12
#define CTX_SECOND_BB_HEAD_L 0x14
#define CTX_SECOND_BB_STATE 0x16
#define CTX_BB_PER_CTX_PTR 0x18
#define CTX_RCS_INDIRECT_CTX 0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
#define CTX_LRI_HEADER_1 0x21
#define CTX_CTX_TIMESTAMP 0x22
#define CTX_PDP3_UDW 0x24
#define CTX_PDP3_LDW 0x26
#define CTX_PDP2_UDW 0x28
#define CTX_PDP2_LDW 0x2a
#define CTX_PDP1_UDW 0x2c
#define CTX_PDP1_LDW 0x2e
#define CTX_PDP0_UDW 0x30
#define CTX_PDP0_LDW 0x32
#define CTX_LRI_HEADER_2 0x41
#define CTX_R_PWR_CLK_STATE 0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
(reg_state)[(pos)+1] = (val); \
} while (0)
#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
} while (0)
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
} while (0)
enum {
ADVANCED_CONTEXT = 0,
LEGACY_32B_CONTEXT,
ADVANCED_AD_CONTEXT,
LEGACY_64B_CONTEXT
};
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
LEGACY_64B_CONTEXT :\
LEGACY_32B_CONTEXT)
enum {
FAULT_AND_HANG = 0,
FAULT_AND_HALT, /* Debug only */
FAULT_AND_STREAM,
FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
static int intel_lr_context_pin(struct intel_context *ctx,
struct intel_engine_cs *engine);
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
struct drm_i915_gem_object *default_ctx_obj);
/**
* intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
* @dev: DRM device.
* @enable_execlists: value of i915.enable_execlists module parameter.
*
* Only certain platforms support Execlists (the prerequisites being
* support for Logical Ring Contexts and Aliasing PPGTT or better).
*
* Return: 1 if Execlists is supported and has to be enabled.
*/
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
WARN_ON(i915.enable_ppgtt == -1);
/* On platforms with execlist available, vGPU will only
* support execlist mode, no ring buffer mode.
*/
if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
return 1;
if (INTEL_INFO(dev)->gen >= 9)
return 1;
if (enable_execlists == 0)
return 0;
if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
i915.use_mmio_flip >= 0)
return 1;
return 0;
}
static void
logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
(ring->id == VCS || ring->id == VCS2);
ring->ctx_desc_template = GEN8_CTX_VALID;
ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
GEN8_CTX_ADDRESSING_MODE_SHIFT;
if (IS_GEN8(dev))
ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
/* TODO: WaDisableLiteRestore when we start using semaphore
* signalling between Command Streamers */
/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
/* WaEnableForceRestoreInCtxtDescForVCS:skl */
/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
if (ring->disable_lite_restore_wa)
ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
}
/**
* intel_lr_context_descriptor_update() - calculate & cache the descriptor
* descriptor for a pinned context
*
* @ctx: Context to work on
* @ring: Engine the descriptor will be used with
*
* The context descriptor encodes various attributes of a context,
* including its GTT address and some flags. Because it's fairly
* expensive to calculate, we'll just do it once and cache the result,
* which remains valid until the context is unpinned.
*
* This is what a descriptor looks like, from LSB to MSB:
* bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
* bits 12-31: LRCA, GTT address of (the HWSP of) this context
* bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
* bits 52-63: reserved, may encode the engine ID (for GuC)
*/
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
struct intel_engine_cs *ring)
{
uint64_t lrca, desc;
lrca = ctx->engine[ring->id].lrc_vma->node.start +
LRC_PPHWSP_PN * PAGE_SIZE;
desc = ring->ctx_desc_template; /* bits 0-11 */
desc |= lrca; /* bits 12-31 */
desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
ctx->engine[ring->id].lrc_desc = desc;
}
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
struct intel_engine_cs *ring)
{
return ctx->engine[ring->id].lrc_desc;
}
/**
* intel_execlists_ctx_id() - get the Execlists Context ID
* @ctx: Context to get the ID for
* @ring: Engine to get the ID for
*
* Do not confuse with ctx->id! Unfortunately we have a name overload
* here: the old context ID we pass to userspace as a handler so that
* they can refer to a context, and the new context ID we pass to the
* ELSP so that the GPU can inform us of the context status via
* interrupts.
*
* The context ID is a portion of the context descriptor, so we can
* just extract the required part from the cached descriptor.
*
* Return: 20-bits globally unique context ID.
*/
u32 intel_execlists_ctx_id(struct intel_context *ctx,
struct intel_engine_cs *ring)
{
return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
}
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
struct drm_i915_gem_request *rq1)
{
struct intel_engine_cs *ring = rq0->ring;
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint64_t desc[2];
if (rq1) {
desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
rq1->elsp_submitted++;
} else {
desc[1] = 0;
}
desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
rq0->elsp_submitted++;
/* You must always write both descriptors in the order below. */
spin_lock(&dev_priv->uncore.lock);
intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
/* The context is automatically loaded after the following */
I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
/* ELSP is a wo register, use another nearby reg for posting */
POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
spin_unlock(&dev_priv->uncore.lock);
}
static int execlists_update_context(struct drm_i915_gem_request *rq)
{
struct intel_engine_cs *ring = rq->ring;
struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
reg_state[CTX_RING_TAIL+1] = rq->tail;
if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
/* True 32b PPGTT with dynamic page allocation: update PDP
* registers and point the unallocated PDPs to scratch page.
* PML4 is allocated during ppgtt init, so this is not needed
* in 48-bit mode.
*/
ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}
return 0;
}
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
struct drm_i915_gem_request *rq1)
{
execlists_update_context(rq0);
if (rq1)
execlists_update_context(rq1);
execlists_elsp_write(rq0, rq1);
}
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
assert_spin_locked(&ring->execlist_lock);
/*
* If irqs are not active generate a warning as batches that finish
* without the irqs may get lost and a GPU Hang may occur.
*/
WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
if (list_empty(&ring->execlist_queue))
return;
/* Try to read in pairs */
list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
execlist_link) {
if (!req0) {
req0 = cursor;
} else if (req0->ctx == cursor->ctx) {
/* Same ctx: ignore first request, as second request
* will update tail past first request's workload */
cursor->elsp_submitted = req0->elsp_submitted;
list_move_tail(&req0->execlist_link,
&ring->execlist_retired_req_list);
req0 = cursor;
} else {
req1 = cursor;
break;
}
}
if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
/*
* WaIdleLiteRestore: make sure we never cause a lite
* restore with HEAD==TAIL
*/
if (req0->elsp_submitted) {
/*
* Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
* as we resubmit the request. See gen8_emit_request()
* for where we prepare the padding after the end of the
* request.
*/
struct intel_ringbuffer *ringbuf;
ringbuf = req0->ctx->engine[ring->id].ringbuf;
req0->tail += 8;
req0->tail &= ringbuf->size - 1;
}
}
WARN_ON(req1 && req1->elsp_submitted);
execlists_submit_requests(req0, req1);
}
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
u32 request_id)
{
struct drm_i915_gem_request *head_req;
assert_spin_locked(&ring->execlist_lock);
head_req = list_first_entry_or_null(&ring->execlist_queue,
struct drm_i915_gem_request,
execlist_link);
if (head_req != NULL) {
if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
WARN(head_req->elsp_submitted == 0,
"Never submitted head request\n");
if (--head_req->elsp_submitted <= 0) {
list_move_tail(&head_req->execlist_link,
&ring->execlist_retired_req_list);
return true;
}
}
}
return false;
}
static void get_context_status(struct intel_engine_cs *ring,
u8 read_pointer,
u32 *status, u32 *context_id)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
return;
*status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
*context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
}
/**
* intel_lrc_irq_handler() - handle Context Switch interrupts
* @ring: Engine Command Streamer to handle.
*
* Check the unread Context Status Buffers and manage the submission of new
* contexts to the ELSP accordingly.
*/
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
u32 status_pointer;
u8 read_pointer;
u8 write_pointer;
u32 status = 0;
u32 status_id;
u32 submit_contexts = 0;
status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
read_pointer = ring->next_context_status_buffer;
write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
if (read_pointer > write_pointer)
write_pointer += GEN8_CSB_ENTRIES;
spin_lock(&ring->execlist_lock);
while (read_pointer < write_pointer) {
get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
&status, &status_id);
if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
continue;
if (status & GEN8_CTX_STATUS_PREEMPTED) {
if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
if (execlists_check_remove_request(ring, status_id))
WARN(1, "Lite Restored request removed from queue\n");
} else
WARN(1, "Preemption without Lite Restore\n");
}
if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
(status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
if (execlists_check_remove_request(ring, status_id))
submit_contexts++;
}
}
if (ring->disable_lite_restore_wa) {
/* Prevent a ctx to preempt itself */
if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
(submit_contexts != 0))
execlists_context_unqueue(ring);
} else if (submit_contexts != 0) {
execlists_context_unqueue(ring);
}
spin_unlock(&ring->execlist_lock);
if (unlikely(submit_contexts > 2))
DRM_ERROR("More than two context complete events?\n");
ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
/* Update the read pointer to the old write pointer. Manual ringbuffer
* management ftw </sarcasm> */
I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
ring->next_context_status_buffer << 8));
}
static int execlists_context_queue(struct drm_i915_gem_request *request)
{
struct intel_engine_cs *ring = request->ring;
struct drm_i915_gem_request *cursor;
int num_elements = 0;
if (request->ctx != request->i915->kernel_context)
intel_lr_context_pin(request->ctx, ring);
i915_gem_request_reference(request);
spin_lock_irq(&ring->execlist_lock);
list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
if (++num_elements > 2)
break;
if (num_elements > 2) {
struct drm_i915_gem_request *tail_req;
tail_req = list_last_entry(&ring->execlist_queue,
struct drm_i915_gem_request,
execlist_link);
if (request->ctx == tail_req->ctx) {
WARN(tail_req->elsp_submitted != 0,
"More than 2 already-submitted reqs queued\n");
list_move_tail(&tail_req->execlist_link,
&ring->execlist_retired_req_list);
}
}
list_add_tail(&request->execlist_link, &ring->execlist_queue);
if (num_elements == 0)
execlists_context_unqueue(ring);
spin_unlock_irq(&ring->execlist_lock);
return 0;
}
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
uint32_t flush_domains;
int ret;
flush_domains = 0;
if (ring->gpu_caches_dirty)
flush_domains = I915_GEM_GPU_DOMAINS;
ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
if (ret)
return ret;
ring->gpu_caches_dirty = false;
return 0;
}
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
struct list_head *vmas)
{
const unsigned other_rings = ~intel_ring_flag(req->ring);
struct i915_vma *vma;
uint32_t flush_domains = 0;
bool flush_chipset = false;
int ret;
list_for_each_entry(vma, vmas, exec_list) {
struct drm_i915_gem_object *obj = vma->obj;
if (obj->active & other_rings) {
ret = i915_gem_object_sync(obj, req->ring, &req);
if (ret)
return ret;
}
if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
flush_chipset |= i915_gem_clflush_object(obj, false);
flush_domains |= obj->base.write_domain;
}
if (flush_domains & I915_GEM_DOMAIN_GTT)
wmb();
/* Unconditionally invalidate gpu caches and ensure that we do flush
* any residual writes from the previous batch.
*/
return logical_ring_invalidate_all_caches(req);
}
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
{
int ret = 0;
request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
if (i915.enable_guc_submission) {
/*
* Check that the GuC has space for the request before
* going any further, as the i915_add_request() call
* later on mustn't fail ...
*/
struct intel_guc *guc = &request->i915->guc;
ret = i915_guc_wq_check_space(guc->execbuf_client);
if (ret)
return ret;
}
if (request->ctx != request->i915->kernel_context)
ret = intel_lr_context_pin(request->ctx, request->ring);
return ret;
}
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
int bytes)
{
struct intel_ringbuffer *ringbuf = req->ringbuf;
struct intel_engine_cs *ring = req->ring;
struct drm_i915_gem_request *target;
unsigned space;
int ret;
if (intel_ring_space(ringbuf) >= bytes)
return 0;
/* The whole point of reserving space is to not wait! */
WARN_ON(ringbuf->reserved_in_use);
list_for_each_entry(target, &ring->request_list, list) {
/*
* The request queue is per-engine, so can contain requests
* from multiple ringbuffers. Here, we must ignore any that
* aren't from the ringbuffer we're considering.
*/
if (target->ringbuf != ringbuf)
continue;
/* Would completion of this request free enough space? */
space = __intel_ring_space(target->postfix, ringbuf->tail,
ringbuf->size);
if (space >= bytes)
break;
}
if (WARN_ON(&target->list == &ring->request_list))
return -ENOSPC;
ret = i915_wait_request(target);
if (ret)
return ret;
ringbuf->space = space;
return 0;
}
/*
* intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
* @request: Request to advance the logical ringbuffer of.
*
* The tail is updated in our logical ringbuffer struct, not in the actual context. What
* really happens during submission is that the context and current tail will be placed
* on a queue waiting for the ELSP to be ready to accept a new context submission. At that
* point, the tail *inside* the context is updated and the ELSP written to.
*/
static int
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
{
struct intel_ringbuffer *ringbuf = request->ringbuf;
struct drm_i915_private *dev_priv = request->i915;
struct intel_engine_cs *engine = request->ring;
intel_logical_ring_advance(ringbuf);
request->tail = ringbuf->tail;
/*
* Here we add two extra NOOPs as padding to avoid
* lite restore of a context with HEAD==TAIL.
*
* Caller must reserve WA_TAIL_DWORDS for us!
*/
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance(ringbuf);
if (intel_ring_stopped(engine))
return 0;
if (engine->last_context != request->ctx) {
if (engine->last_context)
intel_lr_context_unpin(engine->last_context, engine);
if (request->ctx != request->i915->kernel_context) {
intel_lr_context_pin(request->ctx, engine);
engine->last_context = request->ctx;
} else {
engine->last_context = NULL;
}
}
if (dev_priv->guc.execbuf_client)
i915_guc_submit(dev_priv->guc.execbuf_client, request);
else
execlists_context_queue(request);
return 0;
}
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
{
uint32_t __iomem *virt;
int rem = ringbuf->size - ringbuf->tail;
virt = ringbuf->virtual_start + ringbuf->tail;
rem /= 4;
while (rem--)
iowrite32(MI_NOOP, virt++);
ringbuf->tail = 0;
intel_ring_update_space(ringbuf);
}
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
{
struct intel_ringbuffer *ringbuf = req->ringbuf;
int remain_usable = ringbuf->effective_size - ringbuf->tail;
int remain_actual = ringbuf->size - ringbuf->tail;
int ret, total_bytes, wait_bytes = 0;
bool need_wrap = false;
if (ringbuf->reserved_in_use)
total_bytes = bytes;
else
total_bytes = bytes + ringbuf->reserved_size;
if (unlikely(bytes > remain_usable)) {
/*
* Not enough space for the basic request. So need to flush
* out the remainder and then wait for base + reserved.
*/
wait_bytes = remain_actual + total_bytes;
need_wrap = true;
} else {
if (unlikely(total_bytes > remain_usable)) {
/*
* The base request will fit but the reserved space
* falls off the end. So only need to to wait for the
* reserved size after flushing out the remainder.
*/
wait_bytes = remain_actual + ringbuf->reserved_size;
need_wrap = true;
} else if (total_bytes > ringbuf->space) {
/* No wrapping required, just waiting. */
wait_bytes = total_bytes;
}
}
if (wait_bytes) {
ret = logical_ring_wait_for_space(req, wait_bytes);
if (unlikely(ret))
return ret;
if (need_wrap)
__wrap_ring_buffer(ringbuf);
}
return 0;
}
/**
* intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
*
* @req: The request to start some new work for
* @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
*
* The ringbuffer might not be ready to accept the commands right away (maybe it needs to
* be wrapped, or wait a bit for the tail to be updated). This function takes care of that
* and also preallocates a request (every workload submission is still mediated through
* requests, same as it did with legacy ringbuffer submission).
*
* Return: non-zero if the ringbuffer is not ready to be written to.
*/
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
{
struct drm_i915_private *dev_priv;
int ret;
WARN_ON(req == NULL);
dev_priv = req->ring->dev->dev_private;
ret = i915_gem_check_wedge(&dev_priv->gpu_error,
dev_priv->mm.interruptible);
if (ret)
return ret;
ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
if (ret)
return ret;
req->ringbuf->space -= num_dwords * sizeof(uint32_t);
return 0;
}
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
/*
* The first call merely notes the reserve request and is common for
* all back ends. The subsequent localised _begin() call actually
* ensures that the reservation is available. Without the begin, if
* the request creator immediately submitted the request without
* adding any commands to it then there might not actually be
* sufficient room for the submission commands.
*/
intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
return intel_logical_ring_begin(request, 0);
}
/**
* execlists_submission() - submit a batchbuffer for execution, Execlists style
* @dev: DRM device.
* @file: DRM file.
* @ring: Engine Command Streamer to submit to.
* @ctx: Context to employ for this submission.
* @args: execbuffer call arguments.
* @vmas: list of vmas.
* @batch_obj: the batchbuffer to submit.
* @exec_start: batchbuffer start virtual address pointer.
* @dispatch_flags: translated execbuffer call flags.
*
* This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
* away the submission details of the execbuffer ioctl call.
*
* Return: non-zero if the submission fails.
*/
int intel_execlists_submission(struct i915_execbuffer_params *params,
struct drm_i915_gem_execbuffer2 *args,
struct list_head *vmas)
{
struct drm_device *dev = params->dev;
struct intel_engine_cs *ring = params->ring;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
u64 exec_start;
int instp_mode;
u32 instp_mask;
int ret;
instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
instp_mask = I915_EXEC_CONSTANTS_MASK;
switch (instp_mode) {
case I915_EXEC_CONSTANTS_REL_GENERAL:
case I915_EXEC_CONSTANTS_ABSOLUTE:
case I915_EXEC_CONSTANTS_REL_SURFACE:
if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
return -EINVAL;
}
if (instp_mode != dev_priv->relative_constants_mode) {
if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
return -EINVAL;
}
/* The HW changed the meaning on this bit on gen6 */
instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
}
break;
default:
DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
return -EINVAL;
}
if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
DRM_DEBUG("sol reset is gen7 only\n");
return -EINVAL;
}
ret = execlists_move_to_gpu(params->request, vmas);
if (ret)
return ret;
if (ring == &dev_priv->ring[RCS] &&
instp_mode != dev_priv->relative_constants_mode) {
ret = intel_logical_ring_begin(params->request, 4);
if (ret)
return ret;
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
intel_logical_ring_emit_reg(ringbuf, INSTPM);
intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
intel_logical_ring_advance(ringbuf);
dev_priv->relative_constants_mode = instp_mode;
}
exec_start = params->batch_obj_vm_offset +
args->batch_start_offset;
ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
if (ret)
return ret;
trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
i915_gem_execbuffer_move_to_active(vmas, params->request);
i915_gem_execbuffer_retire_commands(params);
return 0;
}
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
struct drm_i915_gem_request *req, *tmp;
struct list_head retired_list;
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
if (list_empty(&ring->execlist_retired_req_list))
return;
INIT_LIST_HEAD(&retired_list);
spin_lock_irq(&ring->execlist_lock);
list_replace_init(&ring->execlist_retired_req_list, &retired_list);
spin_unlock_irq(&ring->execlist_lock);
list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
struct intel_context *ctx = req->ctx;
struct drm_i915_gem_object *ctx_obj =
ctx->engine[ring->id].state;
if (ctx_obj && (ctx != req->i915->kernel_context))
intel_lr_context_unpin(ctx, ring);
list_del(&req->execlist_link);
i915_gem_request_unreference(req);
}
}
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
int ret;
if (!intel_ring_initialized(ring))
return;
ret = intel_ring_idle(ring);
if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
ring->name, ret);
/* TODO: Is this correct with Execlists enabled? */
I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
return;
}
I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
}
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *ring = req->ring;
int ret;
if (!ring->gpu_caches_dirty)
return 0;
ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
ring->gpu_caches_dirty = false;
return 0;
}
static int intel_lr_context_do_pin(struct intel_context *ctx,
struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
struct page *lrc_state_page;
uint32_t *lrc_reg_state;
int ret;
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
if (ret)
return ret;
lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
if (WARN_ON(!lrc_state_page)) {
ret = -ENODEV;
goto unpin_ctx_obj;
}
ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
if (ret)
goto unpin_ctx_obj;
ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
intel_lr_context_descriptor_update(ctx, ring);
lrc_reg_state = kmap(lrc_state_page);
lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
ctx->engine[ring->id].lrc_reg_state = lrc_reg_state;
ctx_obj->dirty = true;
/* Invalidate GuC TLB. */
if (i915.enable_guc_submission)
I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
return ret;
unpin_ctx_obj:
i915_gem_object_ggtt_unpin(ctx_obj);
return ret;
}
static int intel_lr_context_pin(struct intel_context *ctx,
struct intel_engine_cs *engine)
{
int ret = 0;
if (ctx->engine[engine->id].pin_count++ == 0) {
ret = intel_lr_context_do_pin(ctx, engine);
if (ret)
goto reset_pin_count;
i915_gem_context_reference(ctx);
}
return ret;
reset_pin_count:
ctx->engine[engine->id].pin_count = 0;
return ret;
}
void intel_lr_context_unpin(struct intel_context *ctx,
struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
if (WARN_ON_ONCE(!ctx_obj))
return;
if (--ctx->engine[engine->id].pin_count == 0) {
kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
i915_gem_object_ggtt_unpin(ctx_obj);
ctx->engine[engine->id].lrc_vma = NULL;
ctx->engine[engine->id].lrc_desc = 0;
ctx->engine[engine->id].lrc_reg_state = NULL;
i915_gem_context_unreference(ctx);
}
}
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
{
int ret, i;
struct intel_engine_cs *ring = req->ring;
struct intel_ringbuffer *ringbuf = req->ringbuf;
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_workarounds *w = &dev_priv->workarounds;
if (w->count == 0)
return 0;
ring->gpu_caches_dirty = true;
ret = logical_ring_flush_all_caches(req);
if (ret)
return ret;
ret = intel_logical_ring_begin(req, w->count * 2 + 2);
if (ret)
return ret;
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
for (i = 0; i < w->count; i++) {
intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
intel_logical_ring_emit(ringbuf, w->reg[i].value);
}
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance(ringbuf);
ring->gpu_caches_dirty = true;
ret = logical_ring_flush_all_caches(req);
if (ret)
return ret;
return 0;
}
#define wa_ctx_emit(batch, index, cmd) \
do { \
int __index = (index)++; \
if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
return -ENOSPC; \
} \
batch[__index] = (cmd); \
} while (0)
#define wa_ctx_emit_reg(batch, index, reg) \
wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
/*
* In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
* PIPE_CONTROL instruction. This is required for the flush to happen correctly
* but there is a slight complication as this is applied in WA batch where the
* values are only initialized once so we cannot take register value at the
* beginning and reuse it further; hence we save its value to memory, upload a
* constant value with bit21 set and then we restore it back with the saved value.
* To simplify the WA, a constant value is formed by using the default value
* of this register. This shouldn't be a problem because we are only modifying
* it for a short period and this batch in non-premptible. We can ofcourse
* use additional instructions that read the actual value of the register
* at that time and set our bit of interest but it makes the WA complicated.
*
* This WA is also required for Gen9 so extracting as a function avoids
* code duplication.
*/
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
uint32_t *const batch,
uint32_t index)
{
uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
/*
* WaDisableLSQCROPERFforOCL:skl
* This WA is implemented in skl_init_clock_gating() but since
* this batch updates GEN8_L3SQCREG4 with default value we need to
* set this bit here to retain the WA during flush.
*/
if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
MI_SRM_LRM_GLOBAL_GTT));
wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
wa_ctx_emit(batch, index, l3sqc4_flush);
wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_DC_FLUSH_ENABLE));
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
MI_SRM_LRM_GLOBAL_GTT));
wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
wa_ctx_emit(batch, index, 0);
return index;
}
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
uint32_t offset,
uint32_t start_alignment)
{
return wa_ctx->offset = ALIGN(offset, start_alignment);
}
static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
uint32_t offset,
uint32_t size_alignment)
{
wa_ctx->size = offset - wa_ctx->offset;
WARN(wa_ctx->size % size_alignment,
"wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
wa_ctx->size, size_alignment);
return 0;
}
/**
* gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
*
* @ring: only applicable for RCS
* @wa_ctx: structure representing wa_ctx
* offset: specifies start of the batch, should be cache-aligned. This is updated
* with the offset value received as input.
* size: size of the batch in DWORDS but HW expects in terms of cachelines
* @batch: page in which WA are loaded
* @offset: This field specifies the start of the batch, it should be
* cache-aligned otherwise it is adjusted accordingly.
* Typically we only have one indirect_ctx and per_ctx batch buffer which are
* initialized at the beginning and shared across all contexts but this field
* helps us to have multiple batches at different offsets and select them based
* on a criteria. At the moment this batch always start at the beginning of the page
* and at this point we don't have multiple wa_ctx batch buffers.
*
* The number of WA applied are not known at the beginning; we use this field
* to return the no of DWORDS written.
*
* It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
* so it adds NOOPs as padding to make it cacheline aligned.
* MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
* makes a complete batch buffer.
*
* Return: non-zero if we exceed the PAGE_SIZE limit.
*/
static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
struct i915_wa_ctx_bb *wa_ctx,
uint32_t *const batch,
uint32_t *offset)
{
uint32_t scratch_addr;
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
/* WaDisableCtxRestoreArbitration:bdw,chv */
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
if (IS_BROADWELL(ring->dev)) {
int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
if (rc < 0)
return rc;
index = rc;
}
/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
/* Actual scratch location is at 128 bytes offset */
scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE));
wa_ctx_emit(batch, index, scratch_addr);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, 0);
/* Pad to end of cacheline */
while (index % CACHELINE_DWORDS)
wa_ctx_emit(batch, index, MI_NOOP);
/*
* MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
* execution depends on the length specified in terms of cache lines
* in the register CTX_RCS_INDIRECT_CTX
*/
return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}
/**
* gen8_init_perctx_bb() - initialize per ctx batch with WA
*
* @ring: only applicable for RCS
* @wa_ctx: structure representing wa_ctx
* offset: specifies start of the batch, should be cache-aligned.
* size: size of the batch in DWORDS but HW expects in terms of cachelines
* @batch: page in which WA are loaded
* @offset: This field specifies the start of this batch.
* This batch is started immediately after indirect_ctx batch. Since we ensure
* that indirect_ctx ends on a cacheline this batch is aligned automatically.
*
* The number of DWORDS written are returned using this field.
*
* This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
* to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
*/
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
struct i915_wa_ctx_bb *wa_ctx,
uint32_t *const batch,
uint32_t *offset)
{
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
/* WaDisableCtxRestoreArbitration:bdw,chv */
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
return wa_ctx_end(wa_ctx, *offset = index, 1);
}
static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
struct i915_wa_ctx_bb *wa_ctx,
uint32_t *const batch,
uint32_t *offset)
{
int ret;
struct drm_device *dev = ring->dev;
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
/* WaDisableCtxRestoreArbitration:skl,bxt */
if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
IS_BXT_REVID(dev, 0, BXT_REVID_A1))
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
if (ret < 0)
return ret;
index = ret;
/* Pad to end of cacheline */
while (index % CACHELINE_DWORDS)
wa_ctx_emit(batch, index, MI_NOOP);
return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}
static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
struct i915_wa_ctx_bb *wa_ctx,
uint32_t *const batch,
uint32_t *offset)
{
struct drm_device *dev = ring->dev;
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
wa_ctx_emit(batch, index,
_MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
wa_ctx_emit(batch, index, MI_NOOP);
}
/* WaDisableCtxRestoreArbitration:skl,bxt */
if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
IS_BXT_REVID(dev, 0, BXT_REVID_A1))
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
return wa_ctx_end(wa_ctx, *offset = index, 1);
}
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
int ret;
ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
if (!ring->wa_ctx.obj) {
DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
return -ENOMEM;
}
ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
if (ret) {
DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
ret);
drm_gem_object_unreference(&ring->wa_ctx.obj->base);
return ret;
}
return 0;
}
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
if (ring->wa_ctx.obj) {
i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
drm_gem_object_unreference(&ring->wa_ctx.obj->base);
ring->wa_ctx.obj = NULL;
}
}
static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
int ret;
uint32_t *batch;
uint32_t offset;
struct page *page;
struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
WARN_ON(ring->id != RCS);
/* update this when WA for higher Gen are added */
if (INTEL_INFO(ring->dev)->gen > 9) {
DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
INTEL_INFO(ring->dev)->gen);
return 0;
}
/* some WA perform writes to scratch page, ensure it is valid */
if (ring->scratch.obj == NULL) {
DRM_ERROR("scratch page not allocated for %s\n", ring->name);
return -EINVAL;
}
ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
if (ret) {
DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
return ret;
}
page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
batch = kmap_atomic(page);
offset = 0;
if (INTEL_INFO(ring->dev)->gen == 8) {
ret = gen8_init_indirectctx_bb(ring,
&wa_ctx->indirect_ctx,
batch,
&offset);
if (ret)
goto out;
ret = gen8_init_perctx_bb(ring,
&wa_ctx->per_ctx,
batch,
&offset);
if (ret)
goto out;
} else if (INTEL_INFO(ring->dev)->gen == 9) {
ret = gen9_init_indirectctx_bb(ring,
&wa_ctx->indirect_ctx,
batch,
&offset);
if (ret)
goto out;
ret = gen9_init_perctx_bb(ring,
&wa_ctx->per_ctx,
batch,
&offset);
if (ret)
goto out;
}
out:
kunmap_atomic(batch);
if (ret)
lrc_destroy_wa_ctx_obj(ring);
return ret;
}
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u8 next_context_status_buffer_hw;
lrc_setup_hardware_status_page(ring,
dev_priv->kernel_context->engine[ring->id].state);
I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
I915_WRITE(RING_MODE_GEN7(ring),
_MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
_MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
POSTING_READ(RING_MODE_GEN7(ring));
/*
* Instead of resetting the Context Status Buffer (CSB) read pointer to
* zero, we need to read the write pointer from hardware and use its
* value because "this register is power context save restored".
* Effectively, these states have been observed:
*
* | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
* BDW | CSB regs not reset | CSB regs reset |
* CHT | CSB regs not reset | CSB regs not reset |
* SKL | ? | ? |
* BXT | ? | ? |
*/
next_context_status_buffer_hw =
GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
/*
* When the CSB registers are reset (also after power-up / gpu reset),
* CSB write pointer is set to all 1's, which is not valid, use '5' in
* this special case, so the first element read is CSB[0].
*/
if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
ring->next_context_status_buffer = next_context_status_buffer_hw;
DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
return 0;
}
static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = gen8_init_common_ring(ring);
if (ret)
return ret;
/* We need to disable the AsyncFlip performance optimisations in order
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
* programmed to '1' on all products.
*
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
*/
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
return init_workarounds_ring(ring);
}
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
int ret;
ret = gen8_init_common_ring(ring);
if (ret)
return ret;
return init_workarounds_ring(ring);
}
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
struct intel_engine_cs *ring = req->ring;
struct intel_ringbuffer *ringbuf = req->ringbuf;
const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
int i, ret;
ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
if (ret)
return ret;
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
}
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance(ringbuf);
return 0;
}
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, unsigned dispatch_flags)
{
struct intel_ringbuffer *ringbuf = req->ringbuf;
bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
int ret;
/* Don't rely in hw updating PDPs, specially in lite-restore.
* Ideally, we should set Force PD Restore in ctx descriptor,
* but we can't. Force Restore would be a second option, but
* it is unsafe in case of lite-restore (because the ctx is
* not idle). PML4 is allocated during ppgtt init so this is
* not needed in 48-bit.*/
if (req->ctx->ppgtt &&
(intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
if (!USES_FULL_48BIT_PPGTT(req->i915) &&
!intel_vgpu_active(req->i915->dev)) {
ret = intel_logical_ring_emit_pdps(req);
if (ret)
return ret;
}
req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
}
ret = intel_logical_ring_begin(req, 4);
if (ret)
return ret;
/* FIXME(BDW): Address space and security selectors. */
intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
(ppgtt<<8) |
(dispatch_flags & I915_DISPATCH_RS ?
MI_BATCH_RESOURCE_STREAMER : 0));
intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance(ringbuf);
return 0;
}
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return false;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (ring->irq_refcount++ == 0) {
I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
POSTING_READ(RING_IMR(ring->mmio_base));
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return true;
}
static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (--ring->irq_refcount == 0) {
I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
POSTING_READ(RING_IMR(ring->mmio_base));
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}
static int gen8_emit_flush(struct drm_i915_gem_request *request,
u32 invalidate_domains,
u32 unused)
{
struct intel_ringbuffer *ringbuf = request->ringbuf;
struct intel_engine_cs *ring = ringbuf->ring;
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t cmd;
int ret;
ret = intel_logical_ring_begin(request, 4);
if (ret)
return ret;
cmd = MI_FLUSH_DW + 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
cmd |= MI_INVALIDATE_TLB;
if (ring == &dev_priv->ring[VCS])
cmd |= MI_INVALIDATE_BSD;
}
intel_logical_ring_emit(ringbuf, cmd);
intel_logical_ring_emit(ringbuf,
I915_GEM_HWS_SCRATCH_ADDR |
MI_FLUSH_DW_USE_GTT);
intel_logical_ring_emit(ringbuf, 0); /* upper addr */
intel_logical_ring_emit(ringbuf, 0); /* value */
intel_logical_ring_advance(ringbuf);
return 0;
}
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
u32 invalidate_domains,
u32 flush_domains)
{
struct intel_ringbuffer *ringbuf = request->ringbuf;
struct intel_engine_cs *ring = ringbuf->ring;
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
bool vf_flush_wa = false;
u32 flags = 0;
int ret;
flags |= PIPE_CONTROL_CS_STALL;
if (flush_domains) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (invalidate_domains) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/*
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
* pipe control.
*/
if (IS_GEN9(ring->dev))
vf_flush_wa = true;
}
ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
if (ret)
return ret;
if (vf_flush_wa) {
intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
}
intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
intel_logical_ring_emit(ringbuf, flags);
intel_logical_ring_emit(ringbuf, scratch_addr);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_advance(ringbuf);
return 0;
}
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}
static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}
static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
/*
* On BXT A steppings there is a HW coherency issue whereby the
* MI_STORE_DATA_IMM storing the completed request's seqno
* occasionally doesn't invalidate the CPU cache. Work around this by
* clflushing the corresponding cacheline whenever the caller wants
* the coherency to be guaranteed. Note that this cacheline is known
* to be clean at this point, since we only write it in
* bxt_a_set_seqno(), where we also do a clflush after the write. So
* this clflush in practice becomes an invalidate operation.
*/
if (!lazy_coherency)
intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}
static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
/* See bxt_a_get_seqno() explaining the reason for the clflush. */
intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
}
/*
* Reserve space for 2 NOOPs at the end of each request to be
* used as a workaround for not being allowed to do lite
* restore with HEAD==TAIL (WaIdleLiteRestore).
*/
#define WA_TAIL_DWORDS 2
static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}
static int gen8_emit_request(struct drm_i915_gem_request *request)
{
struct intel_ringbuffer *ringbuf = request->ringbuf;
int ret;
ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
if (ret)
return ret;
/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
intel_logical_ring_emit(ringbuf,
(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
intel_logical_ring_emit(ringbuf,
hws_seqno_address(request->ring) |
MI_FLUSH_DW_USE_GTT);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
intel_logical_ring_emit(ringbuf, MI_NOOP);
return intel_logical_ring_advance_and_submit(request);
}
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
struct intel_ringbuffer *ringbuf = request->ringbuf;
int ret;
ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
if (ret)
return ret;
/* w/a for post sync ops following a GPGPU operation we
* need a prior CS_STALL, which is emitted by the flush
* following the batch.
*/
intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
intel_logical_ring_emit(ringbuf,
(PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE));
intel_logical_ring_emit(ringbuf, hws_seqno_address(request->ring));
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
return intel_logical_ring_advance_and_submit(request);
}
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
{
struct render_state so;
int ret;
ret = i915_gem_render_state_prepare(req->ring, &so);
if (ret)
return ret;
if (so.rodata == NULL)
return 0;
ret = req->ring->emit_bb_start(req, so.ggtt_offset,
I915_DISPATCH_SECURE);
if (ret)
goto out;
ret = req->ring->emit_bb_start(req,
(so.ggtt_offset + so.aux_batch_offset),
I915_DISPATCH_SECURE);
if (ret)
goto out;
i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
out:
i915_gem_render_state_fini(&so);
return ret;
}
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
{
int ret;
ret = intel_logical_ring_workarounds_emit(req);
if (ret)
return ret;
ret = intel_rcs_context_init_mocs(req);
/*
* Failing to program the MOCS is non-fatal.The system will not
* run at peak performance. So generate an error and carry on.
*/
if (ret)
DRM_ERROR("MOCS failed to program: expect performance issues.\n");
return intel_lr_context_render_state_init(req);
}
/**
* intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
*
* @ring: Engine Command Streamer.
*
*/
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv;
if (!intel_ring_initialized(ring))
return;
dev_priv = ring->dev->dev_private;
if (ring->buffer) {
intel_logical_ring_stop(ring);
WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
}
if (ring->cleanup)
ring->cleanup(ring);
i915_cmd_parser_fini_ring(ring);
i915_gem_batch_pool_fini(&ring->batch_pool);
if (ring->status_page.obj) {
kunmap(sg_page(ring->status_page.obj->pages->sgl));
ring->status_page.obj = NULL;
}
ring->disable_lite_restore_wa = false;
ring->ctx_desc_template = 0;
lrc_destroy_wa_ctx_obj(ring);
ring->dev = NULL;
}
static void
logical_ring_default_vfuncs(struct drm_device *dev,
struct intel_engine_cs *ring)
{
/* Default vfuncs which can be overriden by each engine. */
ring->init_hw = gen8_init_common_ring;
ring->emit_request = gen8_emit_request;
ring->emit_flush = gen8_emit_flush;
ring->irq_get = gen8_logical_ring_get_irq;
ring->irq_put = gen8_logical_ring_put_irq;
ring->emit_bb_start = gen8_emit_bb_start;
if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
ring->get_seqno = bxt_a_get_seqno;
ring->set_seqno = bxt_a_set_seqno;
} else {
ring->get_seqno = gen8_get_seqno;
ring->set_seqno = gen8_set_seqno;
}
}
static inline void
logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
{
ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
}
static int
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
struct intel_context *dctx = to_i915(dev)->kernel_context;
int ret;
/* Intentionally left blank. */
ring->buffer = NULL;
ring->dev = dev;
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
i915_gem_batch_pool_init(dev, &ring->batch_pool);
init_waitqueue_head(&ring->irq_queue);
INIT_LIST_HEAD(&ring->buffers);
INIT_LIST_HEAD(&ring->execlist_queue);
INIT_LIST_HEAD(&ring->execlist_retired_req_list);
spin_lock_init(&ring->execlist_lock);
logical_ring_init_platform_invariants(ring);
ret = i915_cmd_parser_init_ring(ring);
if (ret)
goto error;
ret = intel_lr_context_deferred_alloc(dctx, ring);
if (ret)
goto error;
/* As this is the default context, always pin it */
ret = intel_lr_context_do_pin(dctx, ring);
if (ret) {
DRM_ERROR(
"Failed to pin and map ringbuffer %s: %d\n",
ring->name, ret);
goto error;
}
return 0;
error:
intel_logical_ring_cleanup(ring);
return ret;
}
static int logical_render_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
int ret;
ring->name = "render ring";
ring->id = RCS;
ring->exec_id = I915_EXEC_RENDER;
ring->guc_id = GUC_RENDER_ENGINE;
ring->mmio_base = RENDER_RING_BASE;
logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
if (HAS_L3_DPF(dev))
ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
logical_ring_default_vfuncs(dev, ring);
/* Override some for render ring. */
if (INTEL_INFO(dev)->gen >= 9)
ring->init_hw = gen9_init_render_ring;
else
ring->init_hw = gen8_init_render_ring;
ring->init_context = gen8_init_rcs_context;
ring->cleanup = intel_fini_pipe_control;
ring->emit_flush = gen8_emit_flush_render;
ring->emit_request = gen8_emit_request_render;
ring->dev = dev;
ret = intel_init_pipe_control(ring);
if (ret)
return ret;
ret = intel_init_workaround_bb(ring);
if (ret) {
/*
* We continue even if we fail to initialize WA batch
* because we only expect rare glitches but nothing
* critical to prevent us from using GPU
*/
DRM_ERROR("WA batch buffer initialization failed: %d\n",
ret);
}
ret = logical_ring_init(dev, ring);
if (ret) {
lrc_destroy_wa_ctx_obj(ring);
}
return ret;
}
static int logical_bsd_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VCS];
ring->name = "bsd ring";
ring->id = VCS;
ring->exec_id = I915_EXEC_BSD;
ring->guc_id = GUC_VIDEO_ENGINE;
ring->mmio_base = GEN6_BSD_RING_BASE;
logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
logical_ring_default_vfuncs(dev, ring);
return logical_ring_init(dev, ring);
}
static int logical_bsd2_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
ring->name = "bsd2 ring";
ring->id = VCS2;
ring->exec_id = I915_EXEC_BSD;
ring->guc_id = GUC_VIDEO_ENGINE2;
ring->mmio_base = GEN8_BSD2_RING_BASE;
logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
logical_ring_default_vfuncs(dev, ring);
return logical_ring_init(dev, ring);
}
static int logical_blt_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[BCS];
ring->name = "blitter ring";
ring->id = BCS;
ring->exec_id = I915_EXEC_BLT;
ring->guc_id = GUC_BLITTER_ENGINE;
ring->mmio_base = BLT_RING_BASE;
logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
logical_ring_default_vfuncs(dev, ring);
return logical_ring_init(dev, ring);
}
static int logical_vebox_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VECS];
ring->name = "video enhancement ring";
ring->id = VECS;
ring->exec_id = I915_EXEC_VEBOX;
ring->guc_id = GUC_VIDEOENHANCE_ENGINE;
ring->mmio_base = VEBOX_RING_BASE;
logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
logical_ring_default_vfuncs(dev, ring);
return logical_ring_init(dev, ring);
}
/**
* intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
* @dev: DRM device.
*
* This function inits the engines for an Execlists submission style (the equivalent in the
* legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
* those engines that are present in the hardware.
*
* Return: non-zero if the initialization failed.
*/
int intel_logical_rings_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = logical_render_ring_init(dev);
if (ret)
return ret;
if (HAS_BSD(dev)) {
ret = logical_bsd_ring_init(dev);
if (ret)
goto cleanup_render_ring;
}
if (HAS_BLT(dev)) {
ret = logical_blt_ring_init(dev);
if (ret)
goto cleanup_bsd_ring;
}
if (HAS_VEBOX(dev)) {
ret = logical_vebox_ring_init(dev);
if (ret)
goto cleanup_blt_ring;
}
if (HAS_BSD2(dev)) {
ret = logical_bsd2_ring_init(dev);
if (ret)
goto cleanup_vebox_ring;
}
return 0;
cleanup_vebox_ring:
intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
return ret;
}
static u32
make_rpcs(struct drm_device *dev)
{
u32 rpcs = 0;
/*
* No explicit RPCS request is needed to ensure full
* slice/subslice/EU enablement prior to Gen9.
*/
if (INTEL_INFO(dev)->gen < 9)
return 0;
/*
* Starting in Gen9, render power gating can leave
* slice/subslice/EU in a partially enabled state. We
* must make an explicit request through RPCS for full
* enablement.
*/
if (INTEL_INFO(dev)->has_slice_pg) {
rpcs |= GEN8_RPCS_S_CNT_ENABLE;
rpcs |= INTEL_INFO(dev)->slice_total <<
GEN8_RPCS_S_CNT_SHIFT;
rpcs |= GEN8_RPCS_ENABLE;
}
if (INTEL_INFO(dev)->has_subslice_pg) {
rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
GEN8_RPCS_SS_CNT_SHIFT;
rpcs |= GEN8_RPCS_ENABLE;
}
if (INTEL_INFO(dev)->has_eu_pg) {
rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
GEN8_RPCS_EU_MIN_SHIFT;
rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
GEN8_RPCS_EU_MAX_SHIFT;
rpcs |= GEN8_RPCS_ENABLE;
}
return rpcs;
}
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
struct page *page;
uint32_t *reg_state;
int ret;
if (!ppgtt)
ppgtt = dev_priv->mm.aliasing_ppgtt;
ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
if (ret) {
DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
return ret;
}
ret = i915_gem_object_get_pages(ctx_obj);
if (ret) {
DRM_DEBUG_DRIVER("Could not get object pages\n");
return ret;
}
i915_gem_object_pin_pages(ctx_obj);
/* The second page of the context object contains some fields which must
* be set up prior to the first execution. */
page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
reg_state = kmap_atomic(page);
/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
* commands followed by (reg, value) pairs. The values we are setting here are
* only for the first context restore: on a subsequent save, the GPU will
* recreate this batchbuffer with new values (including all the missing
* MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
reg_state[CTX_LRI_HEADER_0] =
MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
CTX_CTRL_RS_CTX_ENABLE));
ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
/* Ring buffer start address is not known until the buffer is pinned.
* It is written to the context image in execlists_update_context()
*/
ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
RING_BB_PPGTT);
ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
if (ring->id == RCS) {
ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
if (ring->wa_ctx.obj) {
struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
reg_state[CTX_RCS_INDIRECT_CTX+1] =
(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
reg_state[CTX_BB_PER_CTX_PTR+1] =
(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
0x01;
}
}
reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
/* PDP values well be assigned later if needed */
ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
/* 64b PPGTT (48bit canonical)
* PDP0_DESCRIPTOR contains the base address to PML4 and
* other PDP Descriptors are ignored.
*/
ASSIGN_CTX_PML4(ppgtt, reg_state);
} else {
/* 32b PPGTT
* PDP*_DESCRIPTOR contains the base address of space supported.
* With dynamic page allocation, PDPs may not be allocated at
* this point. Point the unallocated PDPs to the scratch page
*/
ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}
if (ring->id == RCS) {
reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
make_rpcs(dev));
}
kunmap_atomic(reg_state);
i915_gem_object_unpin_pages(ctx_obj);
return 0;
}
/**
* intel_lr_context_free() - free the LRC specific bits of a context
* @ctx: the LR context to free.
*
* The real context freeing is done in i915_gem_context_free: this only
* takes care of the bits that are LRC related: the per-engine backing
* objects and the logical ringbuffer.
*/
void intel_lr_context_free(struct intel_context *ctx)
{
int i;
for (i = I915_NUM_RINGS; --i >= 0; ) {
struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
if (!ctx_obj)
continue;
if (ctx == ctx->i915->kernel_context) {
intel_unpin_ringbuffer_obj(ringbuf);
i915_gem_object_ggtt_unpin(ctx_obj);
}
WARN_ON(ctx->engine[i].pin_count);
intel_ringbuffer_free(ringbuf);
drm_gem_object_unreference(&ctx_obj->base);
}
}
/**
* intel_lr_context_size() - return the size of the context for an engine
* @ring: which engine to find the context size for
*
* Each engine may require a different amount of space for a context image,
* so when allocating (or copying) an image, this function can be used to
* find the right size for the specific engine.
*
* Return: size (in bytes) of an engine-specific context image
*
* Note: this size includes the HWSP, which is part of the context image
* in LRC mode, but does not include the "shared data page" used with
* GuC submission. The caller should account for this if using the GuC.
*/
uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
{
int ret = 0;
WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
switch (ring->id) {
case RCS:
if (INTEL_INFO(ring->dev)->gen >= 9)
ret = GEN9_LR_CONTEXT_RENDER_SIZE;
else
ret = GEN8_LR_CONTEXT_RENDER_SIZE;
break;
case VCS:
case BCS:
case VECS:
case VCS2:
ret = GEN8_LR_CONTEXT_OTHER_SIZE;
break;
}
return ret;
}
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
struct drm_i915_gem_object *default_ctx_obj)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
struct page *page;
/* The HWSP is part of the default context object in LRC mode. */
ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
+ LRC_PPHWSP_PN * PAGE_SIZE;
page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
ring->status_page.page_addr = kmap(page);
ring->status_page.obj = default_ctx_obj;
I915_WRITE(RING_HWS_PGA(ring->mmio_base),
(u32)ring->status_page.gfx_addr);
POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}
/**
* intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
* @ctx: LR context to create.
* @ring: engine to be used with the context.
*
* This function can be called more than once, with different engines, if we plan
* to use the context with them. The context backing objects and the ringbuffers
* (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
* the creation is a deferred call: it's better to make sure first that we need to use
* a given ring with the context.
*
* Return: non-zero on error.
*/
int intel_lr_context_deferred_alloc(struct intel_context *ctx,
struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_gem_object *ctx_obj;
uint32_t context_size;
struct intel_ringbuffer *ringbuf;
int ret;
WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
WARN_ON(ctx->engine[ring->id].state);
context_size = round_up(intel_lr_context_size(ring), 4096);
/* One extra page as the sharing data between driver and GuC */
context_size += PAGE_SIZE * LRC_PPHWSP_PN;
ctx_obj = i915_gem_alloc_object(dev, context_size);
if (!ctx_obj) {
DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
return -ENOMEM;
}
ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
if (IS_ERR(ringbuf)) {
ret = PTR_ERR(ringbuf);
goto error_deref_obj;
}
ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
if (ret) {
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
goto error_ringbuf;
}
ctx->engine[ring->id].ringbuf = ringbuf;
ctx->engine[ring->id].state = ctx_obj;
if (ctx != ctx->i915->kernel_context && ring->init_context) {
struct drm_i915_gem_request *req;
req = i915_gem_request_alloc(ring, ctx);
if (IS_ERR(req)) {
ret = PTR_ERR(req);
DRM_ERROR("ring create req: %d\n", ret);
goto error_ringbuf;
}
ret = ring->init_context(req);
if (ret) {
DRM_ERROR("ring init context: %d\n",
ret);
i915_gem_request_cancel(req);
goto error_ringbuf;
}
i915_add_request_no_flush(req);
}
return 0;
error_ringbuf:
intel_ringbuffer_free(ringbuf);
error_deref_obj:
drm_gem_object_unreference(&ctx_obj->base);
ctx->engine[ring->id].ringbuf = NULL;
ctx->engine[ring->id].state = NULL;
return ret;
}
void intel_lr_context_reset(struct drm_device *dev,
struct intel_context *ctx)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring;
int i;
for_each_ring(ring, dev_priv, i) {
struct drm_i915_gem_object *ctx_obj =
ctx->engine[ring->id].state;
struct intel_ringbuffer *ringbuf =
ctx->engine[ring->id].ringbuf;
uint32_t *reg_state;
struct page *page;
if (!ctx_obj)
continue;
if (i915_gem_object_get_pages(ctx_obj)) {
WARN(1, "Failed get_pages for context obj\n");
continue;
}
page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
reg_state = kmap_atomic(page);
reg_state[CTX_RING_HEAD+1] = 0;
reg_state[CTX_RING_TAIL+1] = 0;
kunmap_atomic(reg_state);
ringbuf->head = 0;
ringbuf->tail = 0;
}
}