linux/drivers/net/ethernet/qlogic/qla3xxx.c

3968 lines
102 KiB
C

/*
* QLogic QLA3xxx NIC HBA Driver
* Copyright (c) 2003-2006 QLogic Corporation
*
* See LICENSE.qla3xxx for copyright and licensing details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/mempool.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/if_vlan.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/prefetch.h>
#include "qla3xxx.h"
#define DRV_NAME "qla3xxx"
#define DRV_STRING "QLogic ISP3XXX Network Driver"
#define DRV_VERSION "v2.03.00-k5"
static const char ql3xxx_driver_name[] = DRV_NAME;
static const char ql3xxx_driver_version[] = DRV_VERSION;
#define TIMED_OUT_MSG \
"Timed out waiting for management port to get free before issuing command\n"
MODULE_AUTHOR("QLogic Corporation");
MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static const u32 default_msg
= NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
| NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
static int debug = -1; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static int msi;
module_param(msi, int, 0);
MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
static DEFINE_PCI_DEVICE_TABLE(ql3xxx_pci_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
/*
* These are the known PHY's which are used
*/
enum PHY_DEVICE_TYPE {
PHY_TYPE_UNKNOWN = 0,
PHY_VITESSE_VSC8211,
PHY_AGERE_ET1011C,
MAX_PHY_DEV_TYPES
};
struct PHY_DEVICE_INFO {
const enum PHY_DEVICE_TYPE phyDevice;
const u32 phyIdOUI;
const u16 phyIdModel;
const char *name;
};
static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
{PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
{PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
};
/*
* Caller must take hw_lock.
*/
static int ql_sem_spinlock(struct ql3_adapter *qdev,
u32 sem_mask, u32 sem_bits)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 value;
unsigned int seconds = 3;
do {
writel((sem_mask | sem_bits),
&port_regs->CommonRegs.semaphoreReg);
value = readl(&port_regs->CommonRegs.semaphoreReg);
if ((value & (sem_mask >> 16)) == sem_bits)
return 0;
ssleep(1);
} while (--seconds);
return -1;
}
static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
readl(&port_regs->CommonRegs.semaphoreReg);
}
static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 value;
writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
value = readl(&port_regs->CommonRegs.semaphoreReg);
return ((value & (sem_mask >> 16)) == sem_bits);
}
/*
* Caller holds hw_lock.
*/
static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
{
int i = 0;
while (i < 10) {
if (i)
ssleep(1);
if (ql_sem_lock(qdev,
QL_DRVR_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
* 2) << 1)) {
netdev_printk(KERN_DEBUG, qdev->ndev,
"driver lock acquired\n");
return 1;
}
}
netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
return 0;
}
static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
writel(((ISP_CONTROL_NP_MASK << 16) | page),
&port_regs->CommonRegs.ispControlStatus);
readl(&port_regs->CommonRegs.ispControlStatus);
qdev->current_page = page;
}
static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
{
u32 value;
unsigned long hw_flags;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
value = readl(reg);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return value;
}
static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
{
return readl(reg);
}
static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
{
u32 value;
unsigned long hw_flags;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (qdev->current_page != 0)
ql_set_register_page(qdev, 0);
value = readl(reg);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return value;
}
static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
{
if (qdev->current_page != 0)
ql_set_register_page(qdev, 0);
return readl(reg);
}
static void ql_write_common_reg_l(struct ql3_adapter *qdev,
u32 __iomem *reg, u32 value)
{
unsigned long hw_flags;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
writel(value, reg);
readl(reg);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
}
static void ql_write_common_reg(struct ql3_adapter *qdev,
u32 __iomem *reg, u32 value)
{
writel(value, reg);
readl(reg);
}
static void ql_write_nvram_reg(struct ql3_adapter *qdev,
u32 __iomem *reg, u32 value)
{
writel(value, reg);
readl(reg);
udelay(1);
}
static void ql_write_page0_reg(struct ql3_adapter *qdev,
u32 __iomem *reg, u32 value)
{
if (qdev->current_page != 0)
ql_set_register_page(qdev, 0);
writel(value, reg);
readl(reg);
}
/*
* Caller holds hw_lock. Only called during init.
*/
static void ql_write_page1_reg(struct ql3_adapter *qdev,
u32 __iomem *reg, u32 value)
{
if (qdev->current_page != 1)
ql_set_register_page(qdev, 1);
writel(value, reg);
readl(reg);
}
/*
* Caller holds hw_lock. Only called during init.
*/
static void ql_write_page2_reg(struct ql3_adapter *qdev,
u32 __iomem *reg, u32 value)
{
if (qdev->current_page != 2)
ql_set_register_page(qdev, 2);
writel(value, reg);
readl(reg);
}
static void ql_disable_interrupts(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
(ISP_IMR_ENABLE_INT << 16));
}
static void ql_enable_interrupts(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
((0xff << 16) | ISP_IMR_ENABLE_INT));
}
static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
struct ql_rcv_buf_cb *lrg_buf_cb)
{
dma_addr_t map;
int err;
lrg_buf_cb->next = NULL;
if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
} else {
qdev->lrg_buf_free_tail->next = lrg_buf_cb;
qdev->lrg_buf_free_tail = lrg_buf_cb;
}
if (!lrg_buf_cb->skb) {
lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
qdev->lrg_buffer_len);
if (unlikely(!lrg_buf_cb->skb)) {
netdev_err(qdev->ndev, "failed netdev_alloc_skb()\n");
qdev->lrg_buf_skb_check++;
} else {
/*
* We save some space to copy the ethhdr from first
* buffer
*/
skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
map = pci_map_single(qdev->pdev,
lrg_buf_cb->skb->data,
qdev->lrg_buffer_len -
QL_HEADER_SPACE,
PCI_DMA_FROMDEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
netdev_err(qdev->ndev,
"PCI mapping failed with error: %d\n",
err);
dev_kfree_skb(lrg_buf_cb->skb);
lrg_buf_cb->skb = NULL;
qdev->lrg_buf_skb_check++;
return;
}
lrg_buf_cb->buf_phy_addr_low =
cpu_to_le32(LS_64BITS(map));
lrg_buf_cb->buf_phy_addr_high =
cpu_to_le32(MS_64BITS(map));
dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
dma_unmap_len_set(lrg_buf_cb, maplen,
qdev->lrg_buffer_len -
QL_HEADER_SPACE);
}
}
qdev->lrg_buf_free_count++;
}
static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
*qdev)
{
struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
if (lrg_buf_cb != NULL) {
qdev->lrg_buf_free_head = lrg_buf_cb->next;
if (qdev->lrg_buf_free_head == NULL)
qdev->lrg_buf_free_tail = NULL;
qdev->lrg_buf_free_count--;
}
return lrg_buf_cb;
}
static u32 addrBits = EEPROM_NO_ADDR_BITS;
static u32 dataBits = EEPROM_NO_DATA_BITS;
static void fm93c56a_deselect(struct ql3_adapter *qdev);
static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
unsigned short *value);
/*
* Caller holds hw_lock.
*/
static void fm93c56a_select(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
ql_write_nvram_reg(qdev, spir,
((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
}
/*
* Caller holds hw_lock.
*/
static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
{
int i;
u32 mask;
u32 dataBit;
u32 previousBit;
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
/* Clock in a zero, then do the start bit */
ql_write_nvram_reg(qdev, spir,
(ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
AUBURN_EEPROM_DO_1));
ql_write_nvram_reg(qdev, spir,
(ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
ql_write_nvram_reg(qdev, spir,
(ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
mask = 1 << (FM93C56A_CMD_BITS - 1);
/* Force the previous data bit to be different */
previousBit = 0xffff;
for (i = 0; i < FM93C56A_CMD_BITS; i++) {
dataBit = (cmd & mask)
? AUBURN_EEPROM_DO_1
: AUBURN_EEPROM_DO_0;
if (previousBit != dataBit) {
/* If the bit changed, change the DO state to match */
ql_write_nvram_reg(qdev, spir,
(ISP_NVRAM_MASK |
qdev->eeprom_cmd_data | dataBit));
previousBit = dataBit;
}
ql_write_nvram_reg(qdev, spir,
(ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
dataBit | AUBURN_EEPROM_CLK_RISE));
ql_write_nvram_reg(qdev, spir,
(ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
dataBit | AUBURN_EEPROM_CLK_FALL));
cmd = cmd << 1;
}
mask = 1 << (addrBits - 1);
/* Force the previous data bit to be different */
previousBit = 0xffff;
for (i = 0; i < addrBits; i++) {
dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
: AUBURN_EEPROM_DO_0;
if (previousBit != dataBit) {
/*
* If the bit changed, then change the DO state to
* match
*/
ql_write_nvram_reg(qdev, spir,
(ISP_NVRAM_MASK |
qdev->eeprom_cmd_data | dataBit));
previousBit = dataBit;
}
ql_write_nvram_reg(qdev, spir,
(ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
dataBit | AUBURN_EEPROM_CLK_RISE));
ql_write_nvram_reg(qdev, spir,
(ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
dataBit | AUBURN_EEPROM_CLK_FALL));
eepromAddr = eepromAddr << 1;
}
}
/*
* Caller holds hw_lock.
*/
static void fm93c56a_deselect(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
}
/*
* Caller holds hw_lock.
*/
static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
{
int i;
u32 data = 0;
u32 dataBit;
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
/* Read the data bits */
/* The first bit is a dummy. Clock right over it. */
for (i = 0; i < dataBits; i++) {
ql_write_nvram_reg(qdev, spir,
ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
AUBURN_EEPROM_CLK_RISE);
ql_write_nvram_reg(qdev, spir,
ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
AUBURN_EEPROM_CLK_FALL);
dataBit = (ql_read_common_reg(qdev, spir) &
AUBURN_EEPROM_DI_1) ? 1 : 0;
data = (data << 1) | dataBit;
}
*value = (u16)data;
}
/*
* Caller holds hw_lock.
*/
static void eeprom_readword(struct ql3_adapter *qdev,
u32 eepromAddr, unsigned short *value)
{
fm93c56a_select(qdev);
fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
fm93c56a_datain(qdev, value);
fm93c56a_deselect(qdev);
}
static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
{
__le16 *p = (__le16 *)ndev->dev_addr;
p[0] = cpu_to_le16(addr[0]);
p[1] = cpu_to_le16(addr[1]);
p[2] = cpu_to_le16(addr[2]);
}
static int ql_get_nvram_params(struct ql3_adapter *qdev)
{
u16 *pEEPROMData;
u16 checksum = 0;
u32 index;
unsigned long hw_flags;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
pEEPROMData = (u16 *)&qdev->nvram_data;
qdev->eeprom_cmd_data = 0;
if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2) << 10)) {
pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return -1;
}
for (index = 0; index < EEPROM_SIZE; index++) {
eeprom_readword(qdev, index, pEEPROMData);
checksum += *pEEPROMData;
pEEPROMData++;
}
ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
if (checksum != 0) {
netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
checksum);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return -1;
}
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return checksum;
}
static const u32 PHYAddr[2] = {
PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
};
static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 temp;
int count = 1000;
while (count) {
temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
if (!(temp & MAC_MII_STATUS_BSY))
return 0;
udelay(10);
count--;
}
return -1;
}
static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 scanControl;
if (qdev->numPorts > 1) {
/* Auto scan will cycle through multiple ports */
scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
} else {
scanControl = MAC_MII_CONTROL_SC;
}
/*
* Scan register 1 of PHY/PETBI,
* Set up to scan both devices
* The autoscan starts from the first register, completes
* the last one before rolling over to the first
*/
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
PHYAddr[0] | MII_SCAN_REGISTER);
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
(scanControl) |
((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
}
static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
{
u8 ret;
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
/* See if scan mode is enabled before we turn it off */
if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
(MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
/* Scan is enabled */
ret = 1;
} else {
/* Scan is disabled */
ret = 0;
}
/*
* When disabling scan mode you must first change the MII register
* address
*/
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
PHYAddr[0] | MII_SCAN_REGISTER);
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
MAC_MII_CONTROL_RC) << 16));
return ret;
}
static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
u16 regAddr, u16 value, u32 phyAddr)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u8 scanWasEnabled;
scanWasEnabled = ql_mii_disable_scan_mode(qdev);
if (ql_wait_for_mii_ready(qdev)) {
netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
return -1;
}
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
phyAddr | regAddr);
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
/* Wait for write to complete 9/10/04 SJP */
if (ql_wait_for_mii_ready(qdev)) {
netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
return -1;
}
if (scanWasEnabled)
ql_mii_enable_scan_mode(qdev);
return 0;
}
static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
u16 *value, u32 phyAddr)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u8 scanWasEnabled;
u32 temp;
scanWasEnabled = ql_mii_disable_scan_mode(qdev);
if (ql_wait_for_mii_ready(qdev)) {
netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
return -1;
}
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
phyAddr | regAddr);
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
(MAC_MII_CONTROL_RC << 16));
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
(MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
/* Wait for the read to complete */
if (ql_wait_for_mii_ready(qdev)) {
netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
return -1;
}
temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
*value = (u16) temp;
if (scanWasEnabled)
ql_mii_enable_scan_mode(qdev);
return 0;
}
static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
ql_mii_disable_scan_mode(qdev);
if (ql_wait_for_mii_ready(qdev)) {
netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
return -1;
}
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
qdev->PHYAddr | regAddr);
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
/* Wait for write to complete. */
if (ql_wait_for_mii_ready(qdev)) {
netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
return -1;
}
ql_mii_enable_scan_mode(qdev);
return 0;
}
static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
{
u32 temp;
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
ql_mii_disable_scan_mode(qdev);
if (ql_wait_for_mii_ready(qdev)) {
netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
return -1;
}
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
qdev->PHYAddr | regAddr);
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
(MAC_MII_CONTROL_RC << 16));
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
(MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
/* Wait for the read to complete */
if (ql_wait_for_mii_ready(qdev)) {
netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
return -1;
}
temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
*value = (u16) temp;
ql_mii_enable_scan_mode(qdev);
return 0;
}
static void ql_petbi_reset(struct ql3_adapter *qdev)
{
ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
}
static void ql_petbi_start_neg(struct ql3_adapter *qdev)
{
u16 reg;
/* Enable Auto-negotiation sense */
ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
reg |= PETBI_TBI_AUTO_SENSE;
ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
}
static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
{
ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
PHYAddr[qdev->mac_index]);
}
static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
{
u16 reg;
/* Enable Auto-negotiation sense */
ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
PHYAddr[qdev->mac_index]);
reg |= PETBI_TBI_AUTO_SENSE;
ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
PHYAddr[qdev->mac_index]);
ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
PHYAddr[qdev->mac_index]);
ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
PHYAddr[qdev->mac_index]);
}
static void ql_petbi_init(struct ql3_adapter *qdev)
{
ql_petbi_reset(qdev);
ql_petbi_start_neg(qdev);
}
static void ql_petbi_init_ex(struct ql3_adapter *qdev)
{
ql_petbi_reset_ex(qdev);
ql_petbi_start_neg_ex(qdev);
}
static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
{
u16 reg;
if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
return 0;
return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
}
static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
{
netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
/* power down device bit 11 = 1 */
ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
/* enable diagnostic mode bit 2 = 1 */
ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
/* 1000MB amplitude adjust (see Agere errata) */
ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
/* 1000MB amplitude adjust (see Agere errata) */
ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
/* 100MB amplitude adjust (see Agere errata) */
ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
/* 100MB amplitude adjust (see Agere errata) */
ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
/* 10MB amplitude adjust (see Agere errata) */
ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
/* 10MB amplitude adjust (see Agere errata) */
ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
/* point to hidden reg 0x2806 */
ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
/* Write new PHYAD w/bit 5 set */
ql_mii_write_reg_ex(qdev, 0x11,
0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
/*
* Disable diagnostic mode bit 2 = 0
* Power up device bit 11 = 0
* Link up (on) and activity (blink)
*/
ql_mii_write_reg(qdev, 0x12, 0x840a);
ql_mii_write_reg(qdev, 0x00, 0x1140);
ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
}
static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
u16 phyIdReg0, u16 phyIdReg1)
{
enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
u32 oui;
u16 model;
int i;
if (phyIdReg0 == 0xffff)
return result;
if (phyIdReg1 == 0xffff)
return result;
/* oui is split between two registers */
oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
/* Scan table for this PHY */
for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
if ((oui == PHY_DEVICES[i].phyIdOUI) &&
(model == PHY_DEVICES[i].phyIdModel)) {
netdev_info(qdev->ndev, "Phy: %s\n",
PHY_DEVICES[i].name);
result = PHY_DEVICES[i].phyDevice;
break;
}
}
return result;
}
static int ql_phy_get_speed(struct ql3_adapter *qdev)
{
u16 reg;
switch (qdev->phyType) {
case PHY_AGERE_ET1011C: {
if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
return 0;
reg = (reg >> 8) & 3;
break;
}
default:
if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
return 0;
reg = (((reg & 0x18) >> 3) & 3);
}
switch (reg) {
case 2:
return SPEED_1000;
case 1:
return SPEED_100;
case 0:
return SPEED_10;
default:
return -1;
}
}
static int ql_is_full_dup(struct ql3_adapter *qdev)
{
u16 reg;
switch (qdev->phyType) {
case PHY_AGERE_ET1011C: {
if (ql_mii_read_reg(qdev, 0x1A, &reg))
return 0;
return ((reg & 0x0080) && (reg & 0x1000)) != 0;
}
case PHY_VITESSE_VSC8211:
default: {
if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
return 0;
return (reg & PHY_AUX_DUPLEX_STAT) != 0;
}
}
}
static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
{
u16 reg;
if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
return 0;
return (reg & PHY_NEG_PAUSE) != 0;
}
static int PHY_Setup(struct ql3_adapter *qdev)
{
u16 reg1;
u16 reg2;
bool agereAddrChangeNeeded = false;
u32 miiAddr = 0;
int err;
/* Determine the PHY we are using by reading the ID's */
err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
if (err != 0) {
netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
return err;
}
err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
if (err != 0) {
netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
return err;
}
/* Check if we have a Agere PHY */
if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
/* Determine which MII address we should be using
determined by the index of the card */
if (qdev->mac_index == 0)
miiAddr = MII_AGERE_ADDR_1;
else
miiAddr = MII_AGERE_ADDR_2;
err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
if (err != 0) {
netdev_err(qdev->ndev,
"Could not read from reg PHY_ID_0_REG after Agere detected\n");
return err;
}
err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
if (err != 0) {
netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
return err;
}
/* We need to remember to initialize the Agere PHY */
agereAddrChangeNeeded = true;
}
/* Determine the particular PHY we have on board to apply
PHY specific initializations */
qdev->phyType = getPhyType(qdev, reg1, reg2);
if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
/* need this here so address gets changed */
phyAgereSpecificInit(qdev, miiAddr);
} else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
netdev_err(qdev->ndev, "PHY is unknown\n");
return -EIO;
}
return 0;
}
/*
* Caller holds hw_lock.
*/
static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 value;
if (enable)
value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
else
value = (MAC_CONFIG_REG_PE << 16);
if (qdev->mac_index)
ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
else
ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
}
/*
* Caller holds hw_lock.
*/
static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 value;
if (enable)
value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
else
value = (MAC_CONFIG_REG_SR << 16);
if (qdev->mac_index)
ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
else
ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
}
/*
* Caller holds hw_lock.
*/
static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 value;
if (enable)
value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
else
value = (MAC_CONFIG_REG_GM << 16);
if (qdev->mac_index)
ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
else
ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
}
/*
* Caller holds hw_lock.
*/
static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 value;
if (enable)
value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
else
value = (MAC_CONFIG_REG_FD << 16);
if (qdev->mac_index)
ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
else
ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
}
/*
* Caller holds hw_lock.
*/
static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 value;
if (enable)
value =
((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
else
value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
if (qdev->mac_index)
ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
else
ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
}
/*
* Caller holds hw_lock.
*/
static int ql_is_fiber(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 bitToCheck = 0;
u32 temp;
switch (qdev->mac_index) {
case 0:
bitToCheck = PORT_STATUS_SM0;
break;
case 1:
bitToCheck = PORT_STATUS_SM1;
break;
}
temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
return (temp & bitToCheck) != 0;
}
static int ql_is_auto_cfg(struct ql3_adapter *qdev)
{
u16 reg;
ql_mii_read_reg(qdev, 0x00, &reg);
return (reg & 0x1000) != 0;
}
/*
* Caller holds hw_lock.
*/
static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 bitToCheck = 0;
u32 temp;
switch (qdev->mac_index) {
case 0:
bitToCheck = PORT_STATUS_AC0;
break;
case 1:
bitToCheck = PORT_STATUS_AC1;
break;
}
temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
if (temp & bitToCheck) {
netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
return 1;
}
netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
return 0;
}
/*
* ql_is_neg_pause() returns 1 if pause was negotiated to be on
*/
static int ql_is_neg_pause(struct ql3_adapter *qdev)
{
if (ql_is_fiber(qdev))
return ql_is_petbi_neg_pause(qdev);
else
return ql_is_phy_neg_pause(qdev);
}
static int ql_auto_neg_error(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 bitToCheck = 0;
u32 temp;
switch (qdev->mac_index) {
case 0:
bitToCheck = PORT_STATUS_AE0;
break;
case 1:
bitToCheck = PORT_STATUS_AE1;
break;
}
temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
return (temp & bitToCheck) != 0;
}
static u32 ql_get_link_speed(struct ql3_adapter *qdev)
{
if (ql_is_fiber(qdev))
return SPEED_1000;
else
return ql_phy_get_speed(qdev);
}
static int ql_is_link_full_dup(struct ql3_adapter *qdev)
{
if (ql_is_fiber(qdev))
return 1;
else
return ql_is_full_dup(qdev);
}
/*
* Caller holds hw_lock.
*/
static int ql_link_down_detect(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 bitToCheck = 0;
u32 temp;
switch (qdev->mac_index) {
case 0:
bitToCheck = ISP_CONTROL_LINK_DN_0;
break;
case 1:
bitToCheck = ISP_CONTROL_LINK_DN_1;
break;
}
temp =
ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
return (temp & bitToCheck) != 0;
}
/*
* Caller holds hw_lock.
*/
static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
switch (qdev->mac_index) {
case 0:
ql_write_common_reg(qdev,
&port_regs->CommonRegs.ispControlStatus,
(ISP_CONTROL_LINK_DN_0) |
(ISP_CONTROL_LINK_DN_0 << 16));
break;
case 1:
ql_write_common_reg(qdev,
&port_regs->CommonRegs.ispControlStatus,
(ISP_CONTROL_LINK_DN_1) |
(ISP_CONTROL_LINK_DN_1 << 16));
break;
default:
return 1;
}
return 0;
}
/*
* Caller holds hw_lock.
*/
static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 bitToCheck = 0;
u32 temp;
switch (qdev->mac_index) {
case 0:
bitToCheck = PORT_STATUS_F1_ENABLED;
break;
case 1:
bitToCheck = PORT_STATUS_F3_ENABLED;
break;
default:
break;
}
temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
if (temp & bitToCheck) {
netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
"not link master\n");
return 0;
}
netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
return 1;
}
static void ql_phy_reset_ex(struct ql3_adapter *qdev)
{
ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
PHYAddr[qdev->mac_index]);
}
static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
{
u16 reg;
u16 portConfiguration;
if (qdev->phyType == PHY_AGERE_ET1011C)
ql_mii_write_reg(qdev, 0x13, 0x0000);
/* turn off external loopback */
if (qdev->mac_index == 0)
portConfiguration =
qdev->nvram_data.macCfg_port0.portConfiguration;
else
portConfiguration =
qdev->nvram_data.macCfg_port1.portConfiguration;
/* Some HBA's in the field are set to 0 and they need to
be reinterpreted with a default value */
if (portConfiguration == 0)
portConfiguration = PORT_CONFIG_DEFAULT;
/* Set the 1000 advertisements */
ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
PHYAddr[qdev->mac_index]);
reg &= ~PHY_GIG_ALL_PARAMS;
if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
reg |= PHY_GIG_ADV_1000F;
else
reg |= PHY_GIG_ADV_1000H;
}
ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
PHYAddr[qdev->mac_index]);
/* Set the 10/100 & pause negotiation advertisements */
ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
PHYAddr[qdev->mac_index]);
reg &= ~PHY_NEG_ALL_PARAMS;
if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
if (portConfiguration & PORT_CONFIG_100MB_SPEED)
reg |= PHY_NEG_ADV_100F;
if (portConfiguration & PORT_CONFIG_10MB_SPEED)
reg |= PHY_NEG_ADV_10F;
}
if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
if (portConfiguration & PORT_CONFIG_100MB_SPEED)
reg |= PHY_NEG_ADV_100H;
if (portConfiguration & PORT_CONFIG_10MB_SPEED)
reg |= PHY_NEG_ADV_10H;
}
if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
reg |= 1;
ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
PHYAddr[qdev->mac_index]);
ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
ql_mii_write_reg_ex(qdev, CONTROL_REG,
reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
PHYAddr[qdev->mac_index]);
}
static void ql_phy_init_ex(struct ql3_adapter *qdev)
{
ql_phy_reset_ex(qdev);
PHY_Setup(qdev);
ql_phy_start_neg_ex(qdev);
}
/*
* Caller holds hw_lock.
*/
static u32 ql_get_link_state(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 bitToCheck = 0;
u32 temp, linkState;
switch (qdev->mac_index) {
case 0:
bitToCheck = PORT_STATUS_UP0;
break;
case 1:
bitToCheck = PORT_STATUS_UP1;
break;
}
temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
if (temp & bitToCheck)
linkState = LS_UP;
else
linkState = LS_DOWN;
return linkState;
}
static int ql_port_start(struct ql3_adapter *qdev)
{
if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2) << 7)) {
netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
return -1;
}
if (ql_is_fiber(qdev)) {
ql_petbi_init(qdev);
} else {
/* Copper port */
ql_phy_init_ex(qdev);
}
ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
return 0;
}
static int ql_finish_auto_neg(struct ql3_adapter *qdev)
{
if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2) << 7))
return -1;
if (!ql_auto_neg_error(qdev)) {
if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
/* configure the MAC */
netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
"Configuring link\n");
ql_mac_cfg_soft_reset(qdev, 1);
ql_mac_cfg_gig(qdev,
(ql_get_link_speed
(qdev) ==
SPEED_1000));
ql_mac_cfg_full_dup(qdev,
ql_is_link_full_dup
(qdev));
ql_mac_cfg_pause(qdev,
ql_is_neg_pause
(qdev));
ql_mac_cfg_soft_reset(qdev, 0);
/* enable the MAC */
netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
"Enabling mac\n");
ql_mac_enable(qdev, 1);
}
qdev->port_link_state = LS_UP;
netif_start_queue(qdev->ndev);
netif_carrier_on(qdev->ndev);
netif_info(qdev, link, qdev->ndev,
"Link is up at %d Mbps, %s duplex\n",
ql_get_link_speed(qdev),
ql_is_link_full_dup(qdev) ? "full" : "half");
} else { /* Remote error detected */
if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
"Remote error detected. Calling ql_port_start()\n");
/*
* ql_port_start() is shared code and needs
* to lock the PHY on it's own.
*/
ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
if (ql_port_start(qdev)) /* Restart port */
return -1;
return 0;
}
}
ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
return 0;
}
static void ql_link_state_machine_work(struct work_struct *work)
{
struct ql3_adapter *qdev =
container_of(work, struct ql3_adapter, link_state_work.work);
u32 curr_link_state;
unsigned long hw_flags;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
curr_link_state = ql_get_link_state(qdev);
if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
netif_info(qdev, link, qdev->ndev,
"Reset in progress, skip processing link state\n");
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
/* Restart timer on 2 second interval. */
mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
return;
}
switch (qdev->port_link_state) {
default:
if (test_bit(QL_LINK_MASTER, &qdev->flags))
ql_port_start(qdev);
qdev->port_link_state = LS_DOWN;
/* Fall Through */
case LS_DOWN:
if (curr_link_state == LS_UP) {
netif_info(qdev, link, qdev->ndev, "Link is up\n");
if (ql_is_auto_neg_complete(qdev))
ql_finish_auto_neg(qdev);
if (qdev->port_link_state == LS_UP)
ql_link_down_detect_clear(qdev);
qdev->port_link_state = LS_UP;
}
break;
case LS_UP:
/*
* See if the link is currently down or went down and came
* back up
*/
if (curr_link_state == LS_DOWN) {
netif_info(qdev, link, qdev->ndev, "Link is down\n");
qdev->port_link_state = LS_DOWN;
}
if (ql_link_down_detect(qdev))
qdev->port_link_state = LS_DOWN;
break;
}
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
/* Restart timer on 2 second interval. */
mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
}
/*
* Caller must take hw_lock and QL_PHY_GIO_SEM.
*/
static void ql_get_phy_owner(struct ql3_adapter *qdev)
{
if (ql_this_adapter_controls_port(qdev))
set_bit(QL_LINK_MASTER, &qdev->flags);
else
clear_bit(QL_LINK_MASTER, &qdev->flags);
}
/*
* Caller must take hw_lock and QL_PHY_GIO_SEM.
*/
static void ql_init_scan_mode(struct ql3_adapter *qdev)
{
ql_mii_enable_scan_mode(qdev);
if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
if (ql_this_adapter_controls_port(qdev))
ql_petbi_init_ex(qdev);
} else {
if (ql_this_adapter_controls_port(qdev))
ql_phy_init_ex(qdev);
}
}
/*
* MII_Setup needs to be called before taking the PHY out of reset
* so that the management interface clock speed can be set properly.
* It would be better if we had a way to disable MDC until after the
* PHY is out of reset, but we don't have that capability.
*/
static int ql_mii_setup(struct ql3_adapter *qdev)
{
u32 reg;
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2) << 7))
return -1;
if (qdev->device_id == QL3032_DEVICE_ID)
ql_write_page0_reg(qdev,
&port_regs->macMIIMgmtControlReg, 0x0f00000);
/* Divide 125MHz clock by 28 to meet PHY timing requirements */
reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
return 0;
}
#define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
SUPPORTED_FIBRE | \
SUPPORTED_Autoneg)
#define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
SUPPORTED_10baseT_Full | \
SUPPORTED_100baseT_Half | \
SUPPORTED_100baseT_Full | \
SUPPORTED_1000baseT_Half | \
SUPPORTED_1000baseT_Full | \
SUPPORTED_Autoneg | \
SUPPORTED_TP) \
static u32 ql_supported_modes(struct ql3_adapter *qdev)
{
if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
return SUPPORTED_OPTICAL_MODES;
return SUPPORTED_TP_MODES;
}
static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
{
int status;
unsigned long hw_flags;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE |
(qdev->mac_index) * 2) << 7)) {
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return 0;
}
status = ql_is_auto_cfg(qdev);
ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return status;
}
static u32 ql_get_speed(struct ql3_adapter *qdev)
{
u32 status;
unsigned long hw_flags;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE |
(qdev->mac_index) * 2) << 7)) {
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return 0;
}
status = ql_get_link_speed(qdev);
ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return status;
}
static int ql_get_full_dup(struct ql3_adapter *qdev)
{
int status;
unsigned long hw_flags;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE |
(qdev->mac_index) * 2) << 7)) {
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return 0;
}
status = ql_is_link_full_dup(qdev);
ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return status;
}
static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
ecmd->transceiver = XCVR_INTERNAL;
ecmd->supported = ql_supported_modes(qdev);
if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
ecmd->port = PORT_FIBRE;
} else {
ecmd->port = PORT_TP;
ecmd->phy_address = qdev->PHYAddr;
}
ecmd->advertising = ql_supported_modes(qdev);
ecmd->autoneg = ql_get_auto_cfg_status(qdev);
ethtool_cmd_speed_set(ecmd, ql_get_speed(qdev));
ecmd->duplex = ql_get_full_dup(qdev);
return 0;
}
static void ql_get_drvinfo(struct net_device *ndev,
struct ethtool_drvinfo *drvinfo)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
strlcpy(drvinfo->version, ql3xxx_driver_version,
sizeof(drvinfo->version));
strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
sizeof(drvinfo->bus_info));
drvinfo->regdump_len = 0;
drvinfo->eedump_len = 0;
}
static u32 ql_get_msglevel(struct net_device *ndev)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
return qdev->msg_enable;
}
static void ql_set_msglevel(struct net_device *ndev, u32 value)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
qdev->msg_enable = value;
}
static void ql_get_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 reg;
if (qdev->mac_index == 0)
reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
else
reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
pause->autoneg = ql_get_auto_cfg_status(qdev);
pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
}
static const struct ethtool_ops ql3xxx_ethtool_ops = {
.get_settings = ql_get_settings,
.get_drvinfo = ql_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_msglevel = ql_get_msglevel,
.set_msglevel = ql_set_msglevel,
.get_pauseparam = ql_get_pauseparam,
};
static int ql_populate_free_queue(struct ql3_adapter *qdev)
{
struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
dma_addr_t map;
int err;
while (lrg_buf_cb) {
if (!lrg_buf_cb->skb) {
lrg_buf_cb->skb =
netdev_alloc_skb(qdev->ndev,
qdev->lrg_buffer_len);
if (unlikely(!lrg_buf_cb->skb)) {
netdev_printk(KERN_DEBUG, qdev->ndev,
"Failed netdev_alloc_skb()\n");
break;
} else {
/*
* We save some space to copy the ethhdr from
* first buffer
*/
skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
map = pci_map_single(qdev->pdev,
lrg_buf_cb->skb->data,
qdev->lrg_buffer_len -
QL_HEADER_SPACE,
PCI_DMA_FROMDEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
netdev_err(qdev->ndev,
"PCI mapping failed with error: %d\n",
err);
dev_kfree_skb(lrg_buf_cb->skb);
lrg_buf_cb->skb = NULL;
break;
}
lrg_buf_cb->buf_phy_addr_low =
cpu_to_le32(LS_64BITS(map));
lrg_buf_cb->buf_phy_addr_high =
cpu_to_le32(MS_64BITS(map));
dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
dma_unmap_len_set(lrg_buf_cb, maplen,
qdev->lrg_buffer_len -
QL_HEADER_SPACE);
--qdev->lrg_buf_skb_check;
if (!qdev->lrg_buf_skb_check)
return 1;
}
}
lrg_buf_cb = lrg_buf_cb->next;
}
return 0;
}
/*
* Caller holds hw_lock.
*/
static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
if (qdev->small_buf_release_cnt >= 16) {
while (qdev->small_buf_release_cnt >= 16) {
qdev->small_buf_q_producer_index++;
if (qdev->small_buf_q_producer_index ==
NUM_SBUFQ_ENTRIES)
qdev->small_buf_q_producer_index = 0;
qdev->small_buf_release_cnt -= 8;
}
wmb();
writel(qdev->small_buf_q_producer_index,
&port_regs->CommonRegs.rxSmallQProducerIndex);
}
}
/*
* Caller holds hw_lock.
*/
static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
{
struct bufq_addr_element *lrg_buf_q_ele;
int i;
struct ql_rcv_buf_cb *lrg_buf_cb;
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
if ((qdev->lrg_buf_free_count >= 8) &&
(qdev->lrg_buf_release_cnt >= 16)) {
if (qdev->lrg_buf_skb_check)
if (!ql_populate_free_queue(qdev))
return;
lrg_buf_q_ele = qdev->lrg_buf_next_free;
while ((qdev->lrg_buf_release_cnt >= 16) &&
(qdev->lrg_buf_free_count >= 8)) {
for (i = 0; i < 8; i++) {
lrg_buf_cb =
ql_get_from_lrg_buf_free_list(qdev);
lrg_buf_q_ele->addr_high =
lrg_buf_cb->buf_phy_addr_high;
lrg_buf_q_ele->addr_low =
lrg_buf_cb->buf_phy_addr_low;
lrg_buf_q_ele++;
qdev->lrg_buf_release_cnt--;
}
qdev->lrg_buf_q_producer_index++;
if (qdev->lrg_buf_q_producer_index ==
qdev->num_lbufq_entries)
qdev->lrg_buf_q_producer_index = 0;
if (qdev->lrg_buf_q_producer_index ==
(qdev->num_lbufq_entries - 1)) {
lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
}
}
wmb();
qdev->lrg_buf_next_free = lrg_buf_q_ele;
writel(qdev->lrg_buf_q_producer_index,
&port_regs->CommonRegs.rxLargeQProducerIndex);
}
}
static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
struct ob_mac_iocb_rsp *mac_rsp)
{
struct ql_tx_buf_cb *tx_cb;
int i;
int retval = 0;
if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
netdev_warn(qdev->ndev,
"Frame too short but it was padded and sent\n");
}
tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
/* Check the transmit response flags for any errors */
if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
netdev_err(qdev->ndev,
"Frame too short to be legal, frame not sent\n");
qdev->ndev->stats.tx_errors++;
retval = -EIO;
goto frame_not_sent;
}
if (tx_cb->seg_count == 0) {
netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
mac_rsp->transaction_id);
qdev->ndev->stats.tx_errors++;
retval = -EIO;
goto invalid_seg_count;
}
pci_unmap_single(qdev->pdev,
dma_unmap_addr(&tx_cb->map[0], mapaddr),
dma_unmap_len(&tx_cb->map[0], maplen),
PCI_DMA_TODEVICE);
tx_cb->seg_count--;
if (tx_cb->seg_count) {
for (i = 1; i < tx_cb->seg_count; i++) {
pci_unmap_page(qdev->pdev,
dma_unmap_addr(&tx_cb->map[i],
mapaddr),
dma_unmap_len(&tx_cb->map[i], maplen),
PCI_DMA_TODEVICE);
}
}
qdev->ndev->stats.tx_packets++;
qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
frame_not_sent:
dev_kfree_skb_irq(tx_cb->skb);
tx_cb->skb = NULL;
invalid_seg_count:
atomic_inc(&qdev->tx_count);
}
static void ql_get_sbuf(struct ql3_adapter *qdev)
{
if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
qdev->small_buf_index = 0;
qdev->small_buf_release_cnt++;
}
static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
{
struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
qdev->lrg_buf_release_cnt++;
if (++qdev->lrg_buf_index == qdev->num_large_buffers)
qdev->lrg_buf_index = 0;
return lrg_buf_cb;
}
/*
* The difference between 3022 and 3032 for inbound completions:
* 3022 uses two buffers per completion. The first buffer contains
* (some) header info, the second the remainder of the headers plus
* the data. For this chip we reserve some space at the top of the
* receive buffer so that the header info in buffer one can be
* prepended to the buffer two. Buffer two is the sent up while
* buffer one is returned to the hardware to be reused.
* 3032 receives all of it's data and headers in one buffer for a
* simpler process. 3032 also supports checksum verification as
* can be seen in ql_process_macip_rx_intr().
*/
static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
{
struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
struct sk_buff *skb;
u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
/*
* Get the inbound address list (small buffer).
*/
ql_get_sbuf(qdev);
if (qdev->device_id == QL3022_DEVICE_ID)
lrg_buf_cb1 = ql_get_lbuf(qdev);
/* start of second buffer */
lrg_buf_cb2 = ql_get_lbuf(qdev);
skb = lrg_buf_cb2->skb;
qdev->ndev->stats.rx_packets++;
qdev->ndev->stats.rx_bytes += length;
skb_put(skb, length);
pci_unmap_single(qdev->pdev,
dma_unmap_addr(lrg_buf_cb2, mapaddr),
dma_unmap_len(lrg_buf_cb2, maplen),
PCI_DMA_FROMDEVICE);
prefetch(skb->data);
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, qdev->ndev);
netif_receive_skb(skb);
lrg_buf_cb2->skb = NULL;
if (qdev->device_id == QL3022_DEVICE_ID)
ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
}
static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
{
struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
struct sk_buff *skb1 = NULL, *skb2;
struct net_device *ndev = qdev->ndev;
u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
u16 size = 0;
/*
* Get the inbound address list (small buffer).
*/
ql_get_sbuf(qdev);
if (qdev->device_id == QL3022_DEVICE_ID) {
/* start of first buffer on 3022 */
lrg_buf_cb1 = ql_get_lbuf(qdev);
skb1 = lrg_buf_cb1->skb;
size = ETH_HLEN;
if (*((u16 *) skb1->data) != 0xFFFF)
size += VLAN_ETH_HLEN - ETH_HLEN;
}
/* start of second buffer */
lrg_buf_cb2 = ql_get_lbuf(qdev);
skb2 = lrg_buf_cb2->skb;
skb_put(skb2, length); /* Just the second buffer length here. */
pci_unmap_single(qdev->pdev,
dma_unmap_addr(lrg_buf_cb2, mapaddr),
dma_unmap_len(lrg_buf_cb2, maplen),
PCI_DMA_FROMDEVICE);
prefetch(skb2->data);
skb_checksum_none_assert(skb2);
if (qdev->device_id == QL3022_DEVICE_ID) {
/*
* Copy the ethhdr from first buffer to second. This
* is necessary for 3022 IP completions.
*/
skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
skb_push(skb2, size), size);
} else {
u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
if (checksum &
(IB_IP_IOCB_RSP_3032_ICE |
IB_IP_IOCB_RSP_3032_CE)) {
netdev_err(ndev,
"%s: Bad checksum for this %s packet, checksum = %x\n",
__func__,
((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
"TCP" : "UDP"), checksum);
} else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
(checksum & IB_IP_IOCB_RSP_3032_UDP &&
!(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
skb2->ip_summed = CHECKSUM_UNNECESSARY;
}
}
skb2->protocol = eth_type_trans(skb2, qdev->ndev);
netif_receive_skb(skb2);
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += length;
lrg_buf_cb2->skb = NULL;
if (qdev->device_id == QL3022_DEVICE_ID)
ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
}
static int ql_tx_rx_clean(struct ql3_adapter *qdev,
int *tx_cleaned, int *rx_cleaned, int work_to_do)
{
struct net_rsp_iocb *net_rsp;
struct net_device *ndev = qdev->ndev;
int work_done = 0;
/* While there are entries in the completion queue. */
while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
qdev->rsp_consumer_index) && (work_done < work_to_do)) {
net_rsp = qdev->rsp_current;
rmb();
/*
* Fix 4032 chip's undocumented "feature" where bit-8 is set
* if the inbound completion is for a VLAN.
*/
if (qdev->device_id == QL3032_DEVICE_ID)
net_rsp->opcode &= 0x7f;
switch (net_rsp->opcode) {
case OPCODE_OB_MAC_IOCB_FN0:
case OPCODE_OB_MAC_IOCB_FN2:
ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
net_rsp);
(*tx_cleaned)++;
break;
case OPCODE_IB_MAC_IOCB:
case OPCODE_IB_3032_MAC_IOCB:
ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
net_rsp);
(*rx_cleaned)++;
break;
case OPCODE_IB_IP_IOCB:
case OPCODE_IB_3032_IP_IOCB:
ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
net_rsp);
(*rx_cleaned)++;
break;
default: {
u32 *tmp = (u32 *)net_rsp;
netdev_err(ndev,
"Hit default case, not handled!\n"
" dropping the packet, opcode = %x\n"
"0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
net_rsp->opcode,
(unsigned long int)tmp[0],
(unsigned long int)tmp[1],
(unsigned long int)tmp[2],
(unsigned long int)tmp[3]);
}
}
qdev->rsp_consumer_index++;
if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
qdev->rsp_consumer_index = 0;
qdev->rsp_current = qdev->rsp_q_virt_addr;
} else {
qdev->rsp_current++;
}
work_done = *tx_cleaned + *rx_cleaned;
}
return work_done;
}
static int ql_poll(struct napi_struct *napi, int budget)
{
struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
int rx_cleaned = 0, tx_cleaned = 0;
unsigned long hw_flags;
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
if (tx_cleaned + rx_cleaned != budget) {
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
__napi_complete(napi);
ql_update_small_bufq_prod_index(qdev);
ql_update_lrg_bufq_prod_index(qdev);
writel(qdev->rsp_consumer_index,
&port_regs->CommonRegs.rspQConsumerIndex);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
ql_enable_interrupts(qdev);
}
return tx_cleaned + rx_cleaned;
}
static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct ql3_adapter *qdev = netdev_priv(ndev);
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 value;
int handled = 1;
u32 var;
value = ql_read_common_reg_l(qdev,
&port_regs->CommonRegs.ispControlStatus);
if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
spin_lock(&qdev->adapter_lock);
netif_stop_queue(qdev->ndev);
netif_carrier_off(qdev->ndev);
ql_disable_interrupts(qdev);
qdev->port_link_state = LS_DOWN;
set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
if (value & ISP_CONTROL_FE) {
/*
* Chip Fatal Error.
*/
var =
ql_read_page0_reg_l(qdev,
&port_regs->PortFatalErrStatus);
netdev_warn(ndev,
"Resetting chip. PortFatalErrStatus register = 0x%x\n",
var);
set_bit(QL_RESET_START, &qdev->flags) ;
} else {
/*
* Soft Reset Requested.
*/
set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
netdev_err(ndev,
"Another function issued a reset to the chip. ISR value = %x\n",
value);
}
queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
spin_unlock(&qdev->adapter_lock);
} else if (value & ISP_IMR_DISABLE_CMPL_INT) {
ql_disable_interrupts(qdev);
if (likely(napi_schedule_prep(&qdev->napi)))
__napi_schedule(&qdev->napi);
} else
return IRQ_NONE;
return IRQ_RETVAL(handled);
}
/*
* Get the total number of segments needed for the given number of fragments.
* This is necessary because outbound address lists (OAL) will be used when
* more than two frags are given. Each address list has 5 addr/len pairs.
* The 5th pair in each OAL is used to point to the next OAL if more frags
* are coming. That is why the frags:segment count ratio is not linear.
*/
static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
{
if (qdev->device_id == QL3022_DEVICE_ID)
return 1;
if (frags <= 2)
return frags + 1;
else if (frags <= 6)
return frags + 2;
else if (frags <= 10)
return frags + 3;
else if (frags <= 14)
return frags + 4;
else if (frags <= 18)
return frags + 5;
return -1;
}
static void ql_hw_csum_setup(const struct sk_buff *skb,
struct ob_mac_iocb_req *mac_iocb_ptr)
{
const struct iphdr *ip = ip_hdr(skb);
mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
mac_iocb_ptr->ip_hdr_len = ip->ihl;
if (ip->protocol == IPPROTO_TCP) {
mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
OB_3032MAC_IOCB_REQ_IC;
} else {
mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
OB_3032MAC_IOCB_REQ_IC;
}
}
/*
* Map the buffers for this transmit.
* This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
*/
static int ql_send_map(struct ql3_adapter *qdev,
struct ob_mac_iocb_req *mac_iocb_ptr,
struct ql_tx_buf_cb *tx_cb,
struct sk_buff *skb)
{
struct oal *oal;
struct oal_entry *oal_entry;
int len = skb_headlen(skb);
dma_addr_t map;
int err;
int completed_segs, i;
int seg_cnt, seg = 0;
int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
seg_cnt = tx_cb->seg_count;
/*
* Map the skb buffer first.
*/
map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
err);
return NETDEV_TX_BUSY;
}
oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
oal_entry->len = cpu_to_le32(len);
dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
seg++;
if (seg_cnt == 1) {
/* Terminate the last segment. */
oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
return NETDEV_TX_OK;
}
oal = tx_cb->oal;
for (completed_segs = 0;
completed_segs < frag_cnt;
completed_segs++, seg++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
oal_entry++;
/*
* Check for continuation requirements.
* It's strange but necessary.
* Continuation entry points to outbound address list.
*/
if ((seg == 2 && seg_cnt > 3) ||
(seg == 7 && seg_cnt > 8) ||
(seg == 12 && seg_cnt > 13) ||
(seg == 17 && seg_cnt > 18)) {
map = pci_map_single(qdev->pdev, oal,
sizeof(struct oal),
PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
netdev_err(qdev->ndev,
"PCI mapping outbound address list with error: %d\n",
err);
goto map_error;
}
oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
oal_entry->len = cpu_to_le32(sizeof(struct oal) |
OAL_CONT_ENTRY);
dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
dma_unmap_len_set(&tx_cb->map[seg], maplen,
sizeof(struct oal));
oal_entry = (struct oal_entry *)oal;
oal++;
seg++;
}
map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
DMA_TO_DEVICE);
err = dma_mapping_error(&qdev->pdev->dev, map);
if (err) {
netdev_err(qdev->ndev,
"PCI mapping frags failed with error: %d\n",
err);
goto map_error;
}
oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
oal_entry->len = cpu_to_le32(skb_frag_size(frag));
dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
}
/* Terminate the last segment. */
oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
return NETDEV_TX_OK;
map_error:
/* A PCI mapping failed and now we will need to back out
* We need to traverse through the oal's and associated pages which
* have been mapped and now we must unmap them to clean up properly
*/
seg = 1;
oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
oal = tx_cb->oal;
for (i = 0; i < completed_segs; i++, seg++) {
oal_entry++;
/*
* Check for continuation requirements.
* It's strange but necessary.
*/
if ((seg == 2 && seg_cnt > 3) ||
(seg == 7 && seg_cnt > 8) ||
(seg == 12 && seg_cnt > 13) ||
(seg == 17 && seg_cnt > 18)) {
pci_unmap_single(qdev->pdev,
dma_unmap_addr(&tx_cb->map[seg], mapaddr),
dma_unmap_len(&tx_cb->map[seg], maplen),
PCI_DMA_TODEVICE);
oal++;
seg++;
}
pci_unmap_page(qdev->pdev,
dma_unmap_addr(&tx_cb->map[seg], mapaddr),
dma_unmap_len(&tx_cb->map[seg], maplen),
PCI_DMA_TODEVICE);
}
pci_unmap_single(qdev->pdev,
dma_unmap_addr(&tx_cb->map[0], mapaddr),
dma_unmap_addr(&tx_cb->map[0], maplen),
PCI_DMA_TODEVICE);
return NETDEV_TX_BUSY;
}
/*
* The difference between 3022 and 3032 sends:
* 3022 only supports a simple single segment transmission.
* 3032 supports checksumming and scatter/gather lists (fragments).
* The 3032 supports sglists by using the 3 addr/len pairs (ALP)
* in the IOCB plus a chain of outbound address lists (OAL) that
* each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
* will be used to point to an OAL when more ALP entries are required.
* The IOCB is always the top of the chain followed by one or more
* OALs (when necessary).
*/
static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
struct net_device *ndev)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
struct ql_tx_buf_cb *tx_cb;
u32 tot_len = skb->len;
struct ob_mac_iocb_req *mac_iocb_ptr;
if (unlikely(atomic_read(&qdev->tx_count) < 2))
return NETDEV_TX_BUSY;
tx_cb = &qdev->tx_buf[qdev->req_producer_index];
tx_cb->seg_count = ql_get_seg_count(qdev,
skb_shinfo(skb)->nr_frags);
if (tx_cb->seg_count == -1) {
netdev_err(ndev, "%s: invalid segment count!\n", __func__);
return NETDEV_TX_OK;
}
mac_iocb_ptr = tx_cb->queue_entry;
memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
mac_iocb_ptr->flags |= qdev->mb_bit_mask;
mac_iocb_ptr->transaction_id = qdev->req_producer_index;
mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
tx_cb->skb = skb;
if (qdev->device_id == QL3032_DEVICE_ID &&
skb->ip_summed == CHECKSUM_PARTIAL)
ql_hw_csum_setup(skb, mac_iocb_ptr);
if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
return NETDEV_TX_BUSY;
}
wmb();
qdev->req_producer_index++;
if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
qdev->req_producer_index = 0;
wmb();
ql_write_common_reg_l(qdev,
&port_regs->CommonRegs.reqQProducerIndex,
qdev->req_producer_index);
netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
"tx queued, slot %d, len %d\n",
qdev->req_producer_index, skb->len);
atomic_dec(&qdev->tx_count);
return NETDEV_TX_OK;
}
static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
{
qdev->req_q_size =
(u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
qdev->req_q_virt_addr =
pci_alloc_consistent(qdev->pdev,
(size_t) qdev->req_q_size,
&qdev->req_q_phy_addr);
if ((qdev->req_q_virt_addr == NULL) ||
LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
netdev_err(qdev->ndev, "reqQ failed\n");
return -ENOMEM;
}
qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
qdev->rsp_q_virt_addr =
pci_alloc_consistent(qdev->pdev,
(size_t) qdev->rsp_q_size,
&qdev->rsp_q_phy_addr);
if ((qdev->rsp_q_virt_addr == NULL) ||
LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
netdev_err(qdev->ndev, "rspQ allocation failed\n");
pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
qdev->req_q_virt_addr,
qdev->req_q_phy_addr);
return -ENOMEM;
}
set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
return 0;
}
static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
{
if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
netdev_info(qdev->ndev, "Already done\n");
return;
}
pci_free_consistent(qdev->pdev,
qdev->req_q_size,
qdev->req_q_virt_addr, qdev->req_q_phy_addr);
qdev->req_q_virt_addr = NULL;
pci_free_consistent(qdev->pdev,
qdev->rsp_q_size,
qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
qdev->rsp_q_virt_addr = NULL;
clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
}
static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
{
/* Create Large Buffer Queue */
qdev->lrg_buf_q_size =
qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
if (qdev->lrg_buf_q_size < PAGE_SIZE)
qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
else
qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
qdev->lrg_buf =
kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),
GFP_KERNEL);
if (qdev->lrg_buf == NULL) {
netdev_err(qdev->ndev, "qdev->lrg_buf alloc failed\n");
return -ENOMEM;
}
qdev->lrg_buf_q_alloc_virt_addr =
pci_alloc_consistent(qdev->pdev,
qdev->lrg_buf_q_alloc_size,
&qdev->lrg_buf_q_alloc_phy_addr);
if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
netdev_err(qdev->ndev, "lBufQ failed\n");
return -ENOMEM;
}
qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
/* Create Small Buffer Queue */
qdev->small_buf_q_size =
NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
if (qdev->small_buf_q_size < PAGE_SIZE)
qdev->small_buf_q_alloc_size = PAGE_SIZE;
else
qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
qdev->small_buf_q_alloc_virt_addr =
pci_alloc_consistent(qdev->pdev,
qdev->small_buf_q_alloc_size,
&qdev->small_buf_q_alloc_phy_addr);
if (qdev->small_buf_q_alloc_virt_addr == NULL) {
netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
qdev->lrg_buf_q_alloc_virt_addr,
qdev->lrg_buf_q_alloc_phy_addr);
return -ENOMEM;
}
qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
return 0;
}
static void ql_free_buffer_queues(struct ql3_adapter *qdev)
{
if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
netdev_info(qdev->ndev, "Already done\n");
return;
}
kfree(qdev->lrg_buf);
pci_free_consistent(qdev->pdev,
qdev->lrg_buf_q_alloc_size,
qdev->lrg_buf_q_alloc_virt_addr,
qdev->lrg_buf_q_alloc_phy_addr);
qdev->lrg_buf_q_virt_addr = NULL;
pci_free_consistent(qdev->pdev,
qdev->small_buf_q_alloc_size,
qdev->small_buf_q_alloc_virt_addr,
qdev->small_buf_q_alloc_phy_addr);
qdev->small_buf_q_virt_addr = NULL;
clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
}
static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
{
int i;
struct bufq_addr_element *small_buf_q_entry;
/* Currently we allocate on one of memory and use it for smallbuffers */
qdev->small_buf_total_size =
(QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
QL_SMALL_BUFFER_SIZE);
qdev->small_buf_virt_addr =
pci_alloc_consistent(qdev->pdev,
qdev->small_buf_total_size,
&qdev->small_buf_phy_addr);
if (qdev->small_buf_virt_addr == NULL) {
netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
return -ENOMEM;
}
qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
small_buf_q_entry = qdev->small_buf_q_virt_addr;
/* Initialize the small buffer queue. */
for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
small_buf_q_entry->addr_high =
cpu_to_le32(qdev->small_buf_phy_addr_high);
small_buf_q_entry->addr_low =
cpu_to_le32(qdev->small_buf_phy_addr_low +
(i * QL_SMALL_BUFFER_SIZE));
small_buf_q_entry++;
}
qdev->small_buf_index = 0;
set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
return 0;
}
static void ql_free_small_buffers(struct ql3_adapter *qdev)
{
if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
netdev_info(qdev->ndev, "Already done\n");
return;
}
if (qdev->small_buf_virt_addr != NULL) {
pci_free_consistent(qdev->pdev,
qdev->small_buf_total_size,
qdev->small_buf_virt_addr,
qdev->small_buf_phy_addr);
qdev->small_buf_virt_addr = NULL;
}
}
static void ql_free_large_buffers(struct ql3_adapter *qdev)
{
int i = 0;
struct ql_rcv_buf_cb *lrg_buf_cb;
for (i = 0; i < qdev->num_large_buffers; i++) {
lrg_buf_cb = &qdev->lrg_buf[i];
if (lrg_buf_cb->skb) {
dev_kfree_skb(lrg_buf_cb->skb);
pci_unmap_single(qdev->pdev,
dma_unmap_addr(lrg_buf_cb, mapaddr),
dma_unmap_len(lrg_buf_cb, maplen),
PCI_DMA_FROMDEVICE);
memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
} else {
break;
}
}
}
static void ql_init_large_buffers(struct ql3_adapter *qdev)
{
int i;
struct ql_rcv_buf_cb *lrg_buf_cb;
struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
for (i = 0; i < qdev->num_large_buffers; i++) {
lrg_buf_cb = &qdev->lrg_buf[i];
buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
buf_addr_ele++;
}
qdev->lrg_buf_index = 0;
qdev->lrg_buf_skb_check = 0;
}
static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
{
int i;
struct ql_rcv_buf_cb *lrg_buf_cb;
struct sk_buff *skb;
dma_addr_t map;
int err;
for (i = 0; i < qdev->num_large_buffers; i++) {
skb = netdev_alloc_skb(qdev->ndev,
qdev->lrg_buffer_len);
if (unlikely(!skb)) {
/* Better luck next round */
netdev_err(qdev->ndev,
"large buff alloc failed for %d bytes at index %d\n",
qdev->lrg_buffer_len * 2, i);
ql_free_large_buffers(qdev);
return -ENOMEM;
} else {
lrg_buf_cb = &qdev->lrg_buf[i];
memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
lrg_buf_cb->index = i;
lrg_buf_cb->skb = skb;
/*
* We save some space to copy the ethhdr from first
* buffer
*/
skb_reserve(skb, QL_HEADER_SPACE);
map = pci_map_single(qdev->pdev,
skb->data,
qdev->lrg_buffer_len -
QL_HEADER_SPACE,
PCI_DMA_FROMDEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
netdev_err(qdev->ndev,
"PCI mapping failed with error: %d\n",
err);
ql_free_large_buffers(qdev);
return -ENOMEM;
}
dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
dma_unmap_len_set(lrg_buf_cb, maplen,
qdev->lrg_buffer_len -
QL_HEADER_SPACE);
lrg_buf_cb->buf_phy_addr_low =
cpu_to_le32(LS_64BITS(map));
lrg_buf_cb->buf_phy_addr_high =
cpu_to_le32(MS_64BITS(map));
}
}
return 0;
}
static void ql_free_send_free_list(struct ql3_adapter *qdev)
{
struct ql_tx_buf_cb *tx_cb;
int i;
tx_cb = &qdev->tx_buf[0];
for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
kfree(tx_cb->oal);
tx_cb->oal = NULL;
tx_cb++;
}
}
static int ql_create_send_free_list(struct ql3_adapter *qdev)
{
struct ql_tx_buf_cb *tx_cb;
int i;
struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
/* Create free list of transmit buffers */
for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
tx_cb = &qdev->tx_buf[i];
tx_cb->skb = NULL;
tx_cb->queue_entry = req_q_curr;
req_q_curr++;
tx_cb->oal = kmalloc(512, GFP_KERNEL);
if (tx_cb->oal == NULL)
return -ENOMEM;
}
return 0;
}
static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
{
if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
} else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
/*
* Bigger buffers, so less of them.
*/
qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
} else {
netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
return -ENOMEM;
}
qdev->num_large_buffers =
qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
qdev->max_frame_size =
(qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
/*
* First allocate a page of shared memory and use it for shadow
* locations of Network Request Queue Consumer Address Register and
* Network Completion Queue Producer Index Register
*/
qdev->shadow_reg_virt_addr =
pci_alloc_consistent(qdev->pdev,
PAGE_SIZE, &qdev->shadow_reg_phy_addr);
if (qdev->shadow_reg_virt_addr != NULL) {
qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
qdev->req_consumer_index_phy_addr_high =
MS_64BITS(qdev->shadow_reg_phy_addr);
qdev->req_consumer_index_phy_addr_low =
LS_64BITS(qdev->shadow_reg_phy_addr);
qdev->prsp_producer_index =
(__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
qdev->rsp_producer_index_phy_addr_high =
qdev->req_consumer_index_phy_addr_high;
qdev->rsp_producer_index_phy_addr_low =
qdev->req_consumer_index_phy_addr_low + 8;
} else {
netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
return -ENOMEM;
}
if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
goto err_req_rsp;
}
if (ql_alloc_buffer_queues(qdev) != 0) {
netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
goto err_buffer_queues;
}
if (ql_alloc_small_buffers(qdev) != 0) {
netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
goto err_small_buffers;
}
if (ql_alloc_large_buffers(qdev) != 0) {
netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
goto err_small_buffers;
}
/* Initialize the large buffer queue. */
ql_init_large_buffers(qdev);
if (ql_create_send_free_list(qdev))
goto err_free_list;
qdev->rsp_current = qdev->rsp_q_virt_addr;
return 0;
err_free_list:
ql_free_send_free_list(qdev);
err_small_buffers:
ql_free_buffer_queues(qdev);
err_buffer_queues:
ql_free_net_req_rsp_queues(qdev);
err_req_rsp:
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->shadow_reg_virt_addr,
qdev->shadow_reg_phy_addr);
return -ENOMEM;
}
static void ql_free_mem_resources(struct ql3_adapter *qdev)
{
ql_free_send_free_list(qdev);
ql_free_large_buffers(qdev);
ql_free_small_buffers(qdev);
ql_free_buffer_queues(qdev);
ql_free_net_req_rsp_queues(qdev);
if (qdev->shadow_reg_virt_addr != NULL) {
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->shadow_reg_virt_addr,
qdev->shadow_reg_phy_addr);
qdev->shadow_reg_virt_addr = NULL;
}
}
static int ql_init_misc_registers(struct ql3_adapter *qdev)
{
struct ql3xxx_local_ram_registers __iomem *local_ram =
(void __iomem *)qdev->mem_map_registers;
if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2) << 4))
return -1;
ql_write_page2_reg(qdev,
&local_ram->bufletSize, qdev->nvram_data.bufletSize);
ql_write_page2_reg(qdev,
&local_ram->maxBufletCount,
qdev->nvram_data.bufletCount);
ql_write_page2_reg(qdev,
&local_ram->freeBufletThresholdLow,
(qdev->nvram_data.tcpWindowThreshold25 << 16) |
(qdev->nvram_data.tcpWindowThreshold0));
ql_write_page2_reg(qdev,
&local_ram->freeBufletThresholdHigh,
qdev->nvram_data.tcpWindowThreshold50);
ql_write_page2_reg(qdev,
&local_ram->ipHashTableBase,
(qdev->nvram_data.ipHashTableBaseHi << 16) |
qdev->nvram_data.ipHashTableBaseLo);
ql_write_page2_reg(qdev,
&local_ram->ipHashTableCount,
qdev->nvram_data.ipHashTableSize);
ql_write_page2_reg(qdev,
&local_ram->tcpHashTableBase,
(qdev->nvram_data.tcpHashTableBaseHi << 16) |
qdev->nvram_data.tcpHashTableBaseLo);
ql_write_page2_reg(qdev,
&local_ram->tcpHashTableCount,
qdev->nvram_data.tcpHashTableSize);
ql_write_page2_reg(qdev,
&local_ram->ncbBase,
(qdev->nvram_data.ncbTableBaseHi << 16) |
qdev->nvram_data.ncbTableBaseLo);
ql_write_page2_reg(qdev,
&local_ram->maxNcbCount,
qdev->nvram_data.ncbTableSize);
ql_write_page2_reg(qdev,
&local_ram->drbBase,
(qdev->nvram_data.drbTableBaseHi << 16) |
qdev->nvram_data.drbTableBaseLo);
ql_write_page2_reg(qdev,
&local_ram->maxDrbCount,
qdev->nvram_data.drbTableSize);
ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
return 0;
}
static int ql_adapter_initialize(struct ql3_adapter *qdev)
{
u32 value;
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
struct ql3xxx_host_memory_registers __iomem *hmem_regs =
(void __iomem *)port_regs;
u32 delay = 10;
int status = 0;
if (ql_mii_setup(qdev))
return -1;
/* Bring out PHY out of reset */
ql_write_common_reg(qdev, spir,
(ISP_SERIAL_PORT_IF_WE |
(ISP_SERIAL_PORT_IF_WE << 16)));
/* Give the PHY time to come out of reset. */
mdelay(100);
qdev->port_link_state = LS_DOWN;
netif_carrier_off(qdev->ndev);
/* V2 chip fix for ARS-39168. */
ql_write_common_reg(qdev, spir,
(ISP_SERIAL_PORT_IF_SDE |
(ISP_SERIAL_PORT_IF_SDE << 16)));
/* Request Queue Registers */
*((u32 *)(qdev->preq_consumer_index)) = 0;
atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
qdev->req_producer_index = 0;
ql_write_page1_reg(qdev,
&hmem_regs->reqConsumerIndexAddrHigh,
qdev->req_consumer_index_phy_addr_high);
ql_write_page1_reg(qdev,
&hmem_regs->reqConsumerIndexAddrLow,
qdev->req_consumer_index_phy_addr_low);
ql_write_page1_reg(qdev,
&hmem_regs->reqBaseAddrHigh,
MS_64BITS(qdev->req_q_phy_addr));
ql_write_page1_reg(qdev,
&hmem_regs->reqBaseAddrLow,
LS_64BITS(qdev->req_q_phy_addr));
ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
/* Response Queue Registers */
*((__le16 *) (qdev->prsp_producer_index)) = 0;
qdev->rsp_consumer_index = 0;
qdev->rsp_current = qdev->rsp_q_virt_addr;
ql_write_page1_reg(qdev,
&hmem_regs->rspProducerIndexAddrHigh,
qdev->rsp_producer_index_phy_addr_high);
ql_write_page1_reg(qdev,
&hmem_regs->rspProducerIndexAddrLow,
qdev->rsp_producer_index_phy_addr_low);
ql_write_page1_reg(qdev,
&hmem_regs->rspBaseAddrHigh,
MS_64BITS(qdev->rsp_q_phy_addr));
ql_write_page1_reg(qdev,
&hmem_regs->rspBaseAddrLow,
LS_64BITS(qdev->rsp_q_phy_addr));
ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
/* Large Buffer Queue */
ql_write_page1_reg(qdev,
&hmem_regs->rxLargeQBaseAddrHigh,
MS_64BITS(qdev->lrg_buf_q_phy_addr));
ql_write_page1_reg(qdev,
&hmem_regs->rxLargeQBaseAddrLow,
LS_64BITS(qdev->lrg_buf_q_phy_addr));
ql_write_page1_reg(qdev,
&hmem_regs->rxLargeQLength,
qdev->num_lbufq_entries);
ql_write_page1_reg(qdev,
&hmem_regs->rxLargeBufferLength,
qdev->lrg_buffer_len);
/* Small Buffer Queue */
ql_write_page1_reg(qdev,
&hmem_regs->rxSmallQBaseAddrHigh,
MS_64BITS(qdev->small_buf_q_phy_addr));
ql_write_page1_reg(qdev,
&hmem_regs->rxSmallQBaseAddrLow,
LS_64BITS(qdev->small_buf_q_phy_addr));
ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
ql_write_page1_reg(qdev,
&hmem_regs->rxSmallBufferLength,
QL_SMALL_BUFFER_SIZE);
qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
qdev->small_buf_release_cnt = 8;
qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
qdev->lrg_buf_release_cnt = 8;
qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
qdev->small_buf_index = 0;
qdev->lrg_buf_index = 0;
qdev->lrg_buf_free_count = 0;
qdev->lrg_buf_free_head = NULL;
qdev->lrg_buf_free_tail = NULL;
ql_write_common_reg(qdev,
&port_regs->CommonRegs.
rxSmallQProducerIndex,
qdev->small_buf_q_producer_index);
ql_write_common_reg(qdev,
&port_regs->CommonRegs.
rxLargeQProducerIndex,
qdev->lrg_buf_q_producer_index);
/*
* Find out if the chip has already been initialized. If it has, then
* we skip some of the initialization.
*/
clear_bit(QL_LINK_MASTER, &qdev->flags);
value = ql_read_page0_reg(qdev, &port_regs->portStatus);
if ((value & PORT_STATUS_IC) == 0) {
/* Chip has not been configured yet, so let it rip. */
if (ql_init_misc_registers(qdev)) {
status = -1;
goto out;
}
value = qdev->nvram_data.tcpMaxWindowSize;
ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
* 2) << 13)) {
status = -1;
goto out;
}
ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
(((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
16) | (INTERNAL_CHIP_SD |
INTERNAL_CHIP_WE)));
ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
}
if (qdev->mac_index)
ql_write_page0_reg(qdev,
&port_regs->mac1MaxFrameLengthReg,
qdev->max_frame_size);
else
ql_write_page0_reg(qdev,
&port_regs->mac0MaxFrameLengthReg,
qdev->max_frame_size);
if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2) << 7)) {
status = -1;
goto out;
}
PHY_Setup(qdev);
ql_init_scan_mode(qdev);
ql_get_phy_owner(qdev);
/* Load the MAC Configuration */
/* Program lower 32 bits of the MAC address */
ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
(MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
((qdev->ndev->dev_addr[2] << 24)
| (qdev->ndev->dev_addr[3] << 16)
| (qdev->ndev->dev_addr[4] << 8)
| qdev->ndev->dev_addr[5]));
/* Program top 16 bits of the MAC address */
ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
((qdev->ndev->dev_addr[0] << 8)
| qdev->ndev->dev_addr[1]));
/* Enable Primary MAC */
ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
MAC_ADDR_INDIRECT_PTR_REG_PE));
/* Clear Primary and Secondary IP addresses */
ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
((IP_ADDR_INDEX_REG_MASK << 16) |
(qdev->mac_index << 2)));
ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
((IP_ADDR_INDEX_REG_MASK << 16) |
((qdev->mac_index << 2) + 1)));
ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
/* Indicate Configuration Complete */
ql_write_page0_reg(qdev,
&port_regs->portControl,
((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
do {
value = ql_read_page0_reg(qdev, &port_regs->portStatus);
if (value & PORT_STATUS_IC)
break;
spin_unlock_irq(&qdev->hw_lock);
msleep(500);
spin_lock_irq(&qdev->hw_lock);
} while (--delay);
if (delay == 0) {
netdev_err(qdev->ndev, "Hw Initialization timeout\n");
status = -1;
goto out;
}
/* Enable Ethernet Function */
if (qdev->device_id == QL3032_DEVICE_ID) {
value =
(QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
QL3032_PORT_CONTROL_ET);
ql_write_page0_reg(qdev, &port_regs->functionControl,
((value << 16) | value));
} else {
value =
(PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
PORT_CONTROL_HH);
ql_write_page0_reg(qdev, &port_regs->portControl,
((value << 16) | value));
}
out:
return status;
}
/*
* Caller holds hw_lock.
*/
static int ql_adapter_reset(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
int status = 0;
u16 value;
int max_wait_time;
set_bit(QL_RESET_ACTIVE, &qdev->flags);
clear_bit(QL_RESET_DONE, &qdev->flags);
/*
* Issue soft reset to chip.
*/
netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
ql_write_common_reg(qdev,
&port_regs->CommonRegs.ispControlStatus,
((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
/* Wait 3 seconds for reset to complete. */
netdev_printk(KERN_DEBUG, qdev->ndev,
"Wait 10 milliseconds for reset to complete\n");
/* Wait until the firmware tells us the Soft Reset is done */
max_wait_time = 5;
do {
value =
ql_read_common_reg(qdev,
&port_regs->CommonRegs.ispControlStatus);
if ((value & ISP_CONTROL_SR) == 0)
break;
ssleep(1);
} while ((--max_wait_time));
/*
* Also, make sure that the Network Reset Interrupt bit has been
* cleared after the soft reset has taken place.
*/
value =
ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
if (value & ISP_CONTROL_RI) {
netdev_printk(KERN_DEBUG, qdev->ndev,
"clearing RI after reset\n");
ql_write_common_reg(qdev,
&port_regs->CommonRegs.
ispControlStatus,
((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
}
if (max_wait_time == 0) {
/* Issue Force Soft Reset */
ql_write_common_reg(qdev,
&port_regs->CommonRegs.
ispControlStatus,
((ISP_CONTROL_FSR << 16) |
ISP_CONTROL_FSR));
/*
* Wait until the firmware tells us the Force Soft Reset is
* done
*/
max_wait_time = 5;
do {
value = ql_read_common_reg(qdev,
&port_regs->CommonRegs.
ispControlStatus);
if ((value & ISP_CONTROL_FSR) == 0)
break;
ssleep(1);
} while ((--max_wait_time));
}
if (max_wait_time == 0)
status = 1;
clear_bit(QL_RESET_ACTIVE, &qdev->flags);
set_bit(QL_RESET_DONE, &qdev->flags);
return status;
}
static void ql_set_mac_info(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 value, port_status;
u8 func_number;
/* Get the function number */
value =
ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
switch (value & ISP_CONTROL_FN_MASK) {
case ISP_CONTROL_FN0_NET:
qdev->mac_index = 0;
qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
qdev->mb_bit_mask = FN0_MA_BITS_MASK;
qdev->PHYAddr = PORT0_PHY_ADDRESS;
if (port_status & PORT_STATUS_SM0)
set_bit(QL_LINK_OPTICAL, &qdev->flags);
else
clear_bit(QL_LINK_OPTICAL, &qdev->flags);
break;
case ISP_CONTROL_FN1_NET:
qdev->mac_index = 1;
qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
qdev->mb_bit_mask = FN1_MA_BITS_MASK;
qdev->PHYAddr = PORT1_PHY_ADDRESS;
if (port_status & PORT_STATUS_SM1)
set_bit(QL_LINK_OPTICAL, &qdev->flags);
else
clear_bit(QL_LINK_OPTICAL, &qdev->flags);
break;
case ISP_CONTROL_FN0_SCSI:
case ISP_CONTROL_FN1_SCSI:
default:
netdev_printk(KERN_DEBUG, qdev->ndev,
"Invalid function number, ispControlStatus = 0x%x\n",
value);
break;
}
qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
}
static void ql_display_dev_info(struct net_device *ndev)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
struct pci_dev *pdev = qdev->pdev;
netdev_info(ndev,
"%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
DRV_NAME, qdev->index, qdev->chip_rev_id,
qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
qdev->pci_slot);
netdev_info(ndev, "%s Interface\n",
test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
/*
* Print PCI bus width/type.
*/
netdev_info(ndev, "Bus interface is %s %s\n",
((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
((qdev->pci_x) ? "PCI-X" : "PCI"));
netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
qdev->mem_map_registers);
netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
}
static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
{
struct net_device *ndev = qdev->ndev;
int retval = 0;
netif_stop_queue(ndev);
netif_carrier_off(ndev);
clear_bit(QL_ADAPTER_UP, &qdev->flags);
clear_bit(QL_LINK_MASTER, &qdev->flags);
ql_disable_interrupts(qdev);
free_irq(qdev->pdev->irq, ndev);
if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
clear_bit(QL_MSI_ENABLED, &qdev->flags);
pci_disable_msi(qdev->pdev);
}
del_timer_sync(&qdev->adapter_timer);
napi_disable(&qdev->napi);
if (do_reset) {
int soft_reset;
unsigned long hw_flags;
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (ql_wait_for_drvr_lock(qdev)) {
soft_reset = ql_adapter_reset(qdev);
if (soft_reset) {
netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
qdev->index);
}
netdev_err(ndev,
"Releasing driver lock via chip reset\n");
} else {
netdev_err(ndev,
"Could not acquire driver lock to do reset!\n");
retval = -1;
}
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
}
ql_free_mem_resources(qdev);
return retval;
}
static int ql_adapter_up(struct ql3_adapter *qdev)
{
struct net_device *ndev = qdev->ndev;
int err;
unsigned long irq_flags = IRQF_SHARED;
unsigned long hw_flags;
if (ql_alloc_mem_resources(qdev)) {
netdev_err(ndev, "Unable to allocate buffers\n");
return -ENOMEM;
}
if (qdev->msi) {
if (pci_enable_msi(qdev->pdev)) {
netdev_err(ndev,
"User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
qdev->msi = 0;
} else {
netdev_info(ndev, "MSI Enabled...\n");
set_bit(QL_MSI_ENABLED, &qdev->flags);
irq_flags &= ~IRQF_SHARED;
}
}
err = request_irq(qdev->pdev->irq, ql3xxx_isr,
irq_flags, ndev->name, ndev);
if (err) {
netdev_err(ndev,
"Failed to reserve interrupt %d - already in use\n",
qdev->pdev->irq);
goto err_irq;
}
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
err = ql_wait_for_drvr_lock(qdev);
if (err) {
err = ql_adapter_initialize(qdev);
if (err) {
netdev_err(ndev, "Unable to initialize adapter\n");
goto err_init;
}
netdev_err(ndev, "Releasing driver lock\n");
ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
} else {
netdev_err(ndev, "Could not acquire driver lock\n");
goto err_lock;
}
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
set_bit(QL_ADAPTER_UP, &qdev->flags);
mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
napi_enable(&qdev->napi);
ql_enable_interrupts(qdev);
return 0;
err_init:
ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
err_lock:
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
free_irq(qdev->pdev->irq, ndev);
err_irq:
if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
netdev_info(ndev, "calling pci_disable_msi()\n");
clear_bit(QL_MSI_ENABLED, &qdev->flags);
pci_disable_msi(qdev->pdev);
}
return err;
}
static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
{
if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
netdev_err(qdev->ndev,
"Driver up/down cycle failed, closing device\n");
rtnl_lock();
dev_close(qdev->ndev);
rtnl_unlock();
return -1;
}
return 0;
}
static int ql3xxx_close(struct net_device *ndev)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
/*
* Wait for device to recover from a reset.
* (Rarely happens, but possible.)
*/
while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
msleep(50);
ql_adapter_down(qdev, QL_DO_RESET);
return 0;
}
static int ql3xxx_open(struct net_device *ndev)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
return ql_adapter_up(qdev);
}
static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
struct sockaddr *addr = p;
unsigned long hw_flags;
if (netif_running(ndev))
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
/* Program lower 32 bits of the MAC address */
ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
(MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
((ndev->dev_addr[2] << 24) | (ndev->
dev_addr[3] << 16) |
(ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
/* Program top 16 bits of the MAC address */
ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return 0;
}
static void ql3xxx_tx_timeout(struct net_device *ndev)
{
struct ql3_adapter *qdev = netdev_priv(ndev);
netdev_err(ndev, "Resetting...\n");
/*
* Stop the queues, we've got a problem.
*/
netif_stop_queue(ndev);
/*
* Wake up the worker to process this event.
*/
queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
}
static void ql_reset_work(struct work_struct *work)
{
struct ql3_adapter *qdev =
container_of(work, struct ql3_adapter, reset_work.work);
struct net_device *ndev = qdev->ndev;
u32 value;
struct ql_tx_buf_cb *tx_cb;
int max_wait_time, i;
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
unsigned long hw_flags;
if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
clear_bit(QL_LINK_MASTER, &qdev->flags);
/*
* Loop through the active list and return the skb.
*/
for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
int j;
tx_cb = &qdev->tx_buf[i];
if (tx_cb->skb) {
netdev_printk(KERN_DEBUG, ndev,
"Freeing lost SKB\n");
pci_unmap_single(qdev->pdev,
dma_unmap_addr(&tx_cb->map[0],
mapaddr),
dma_unmap_len(&tx_cb->map[0], maplen),
PCI_DMA_TODEVICE);
for (j = 1; j < tx_cb->seg_count; j++) {
pci_unmap_page(qdev->pdev,
dma_unmap_addr(&tx_cb->map[j],
mapaddr),
dma_unmap_len(&tx_cb->map[j],
maplen),
PCI_DMA_TODEVICE);
}
dev_kfree_skb(tx_cb->skb);
tx_cb->skb = NULL;
}
}
netdev_err(ndev, "Clearing NRI after reset\n");
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
ql_write_common_reg(qdev,
&port_regs->CommonRegs.
ispControlStatus,
((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
/*
* Wait the for Soft Reset to Complete.
*/
max_wait_time = 10;
do {
value = ql_read_common_reg(qdev,
&port_regs->CommonRegs.
ispControlStatus);
if ((value & ISP_CONTROL_SR) == 0) {
netdev_printk(KERN_DEBUG, ndev,
"reset completed\n");
break;
}
if (value & ISP_CONTROL_RI) {
netdev_printk(KERN_DEBUG, ndev,
"clearing NRI after reset\n");
ql_write_common_reg(qdev,
&port_regs->
CommonRegs.
ispControlStatus,
((ISP_CONTROL_RI <<
16) | ISP_CONTROL_RI));
}
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
ssleep(1);
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
} while (--max_wait_time);
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
if (value & ISP_CONTROL_SR) {
/*
* Set the reset flags and clear the board again.
* Nothing else to do...
*/
netdev_err(ndev,
"Timed out waiting for reset to complete\n");
netdev_err(ndev, "Do a reset\n");
clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
clear_bit(QL_RESET_START, &qdev->flags);
ql_cycle_adapter(qdev, QL_DO_RESET);
return;
}
clear_bit(QL_RESET_ACTIVE, &qdev->flags);
clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
clear_bit(QL_RESET_START, &qdev->flags);
ql_cycle_adapter(qdev, QL_NO_RESET);
}
}
static void ql_tx_timeout_work(struct work_struct *work)
{
struct ql3_adapter *qdev =
container_of(work, struct ql3_adapter, tx_timeout_work.work);
ql_cycle_adapter(qdev, QL_DO_RESET);
}
static void ql_get_board_info(struct ql3_adapter *qdev)
{
struct ql3xxx_port_registers __iomem *port_regs =
qdev->mem_map_registers;
u32 value;
value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
if (value & PORT_STATUS_64)
qdev->pci_width = 64;
else
qdev->pci_width = 32;
if (value & PORT_STATUS_X)
qdev->pci_x = 1;
else
qdev->pci_x = 0;
qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
}
static void ql3xxx_timer(unsigned long ptr)
{
struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
}
static const struct net_device_ops ql3xxx_netdev_ops = {
.ndo_open = ql3xxx_open,
.ndo_start_xmit = ql3xxx_send,
.ndo_stop = ql3xxx_close,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = ql3xxx_set_mac_address,
.ndo_tx_timeout = ql3xxx_tx_timeout,
};
static int __devinit ql3xxx_probe(struct pci_dev *pdev,
const struct pci_device_id *pci_entry)
{
struct net_device *ndev = NULL;
struct ql3_adapter *qdev = NULL;
static int cards_found;
int uninitialized_var(pci_using_dac), err;
err = pci_enable_device(pdev);
if (err) {
pr_err("%s cannot enable PCI device\n", pci_name(pdev));
goto err_out;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
goto err_out_disable_pdev;
}
pci_set_master(pdev);
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
pci_using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
pci_using_dac = 0;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
}
if (err) {
pr_err("%s no usable DMA configuration\n", pci_name(pdev));
goto err_out_free_regions;
}
ndev = alloc_etherdev(sizeof(struct ql3_adapter));
if (!ndev) {
err = -ENOMEM;
goto err_out_free_regions;
}
SET_NETDEV_DEV(ndev, &pdev->dev);
pci_set_drvdata(pdev, ndev);
qdev = netdev_priv(ndev);
qdev->index = cards_found;
qdev->ndev = ndev;
qdev->pdev = pdev;
qdev->device_id = pci_entry->device;
qdev->port_link_state = LS_DOWN;
if (msi)
qdev->msi = 1;
qdev->msg_enable = netif_msg_init(debug, default_msg);
if (pci_using_dac)
ndev->features |= NETIF_F_HIGHDMA;
if (qdev->device_id == QL3032_DEVICE_ID)
ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
if (!qdev->mem_map_registers) {
pr_err("%s: cannot map device registers\n", pci_name(pdev));
err = -EIO;
goto err_out_free_ndev;
}
spin_lock_init(&qdev->adapter_lock);
spin_lock_init(&qdev->hw_lock);
/* Set driver entry points */
ndev->netdev_ops = &ql3xxx_netdev_ops;
SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
ndev->watchdog_timeo = 5 * HZ;
netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
ndev->irq = pdev->irq;
/* make sure the EEPROM is good */
if (ql_get_nvram_params(qdev)) {
pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
__func__, qdev->index);
err = -EIO;
goto err_out_iounmap;
}
ql_set_mac_info(qdev);
/* Validate and set parameters */
if (qdev->mac_index) {
ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
} else {
ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
}
memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
/* Record PCI bus information. */
ql_get_board_info(qdev);
/*
* Set the Maximum Memory Read Byte Count value. We do this to handle
* jumbo frames.
*/
if (qdev->pci_x)
pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
err = register_netdev(ndev);
if (err) {
pr_err("%s: cannot register net device\n", pci_name(pdev));
goto err_out_iounmap;
}
/* we're going to reset, so assume we have no link for now */
netif_carrier_off(ndev);
netif_stop_queue(ndev);
qdev->workqueue = create_singlethread_workqueue(ndev->name);
INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
init_timer(&qdev->adapter_timer);
qdev->adapter_timer.function = ql3xxx_timer;
qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
qdev->adapter_timer.data = (unsigned long)qdev;
if (!cards_found) {
pr_alert("%s\n", DRV_STRING);
pr_alert("Driver name: %s, Version: %s\n",
DRV_NAME, DRV_VERSION);
}
ql_display_dev_info(ndev);
cards_found++;
return 0;
err_out_iounmap:
iounmap(qdev->mem_map_registers);
err_out_free_ndev:
free_netdev(ndev);
err_out_free_regions:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
err_out:
return err;
}
static void __devexit ql3xxx_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql3_adapter *qdev = netdev_priv(ndev);
unregister_netdev(ndev);
ql_disable_interrupts(qdev);
if (qdev->workqueue) {
cancel_delayed_work(&qdev->reset_work);
cancel_delayed_work(&qdev->tx_timeout_work);
destroy_workqueue(qdev->workqueue);
qdev->workqueue = NULL;
}
iounmap(qdev->mem_map_registers);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(ndev);
}
static struct pci_driver ql3xxx_driver = {
.name = DRV_NAME,
.id_table = ql3xxx_pci_tbl,
.probe = ql3xxx_probe,
.remove = __devexit_p(ql3xxx_remove),
};
static int __init ql3xxx_init_module(void)
{
return pci_register_driver(&ql3xxx_driver);
}
static void __exit ql3xxx_exit(void)
{
pci_unregister_driver(&ql3xxx_driver);
}
module_init(ql3xxx_init_module);
module_exit(ql3xxx_exit);