linux/drivers/gpu/drm/amd/amdgpu/amdgpu_atombios.c

1830 lines
56 KiB
C

/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include <drm/drmP.h>
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "amdgpu_atombios.h"
#include "amdgpu_i2c.h"
#include "atom.h"
#include "atom-bits.h"
#include "atombios_encoders.h"
#include "bif/bif_4_1_d.h"
static void amdgpu_atombios_lookup_i2c_gpio_quirks(struct amdgpu_device *adev,
ATOM_GPIO_I2C_ASSIGMENT *gpio,
u8 index)
{
}
static struct amdgpu_i2c_bus_rec amdgpu_atombios_get_bus_rec_for_i2c_gpio(ATOM_GPIO_I2C_ASSIGMENT *gpio)
{
struct amdgpu_i2c_bus_rec i2c;
memset(&i2c, 0, sizeof(struct amdgpu_i2c_bus_rec));
i2c.mask_clk_reg = le16_to_cpu(gpio->usClkMaskRegisterIndex);
i2c.mask_data_reg = le16_to_cpu(gpio->usDataMaskRegisterIndex);
i2c.en_clk_reg = le16_to_cpu(gpio->usClkEnRegisterIndex);
i2c.en_data_reg = le16_to_cpu(gpio->usDataEnRegisterIndex);
i2c.y_clk_reg = le16_to_cpu(gpio->usClkY_RegisterIndex);
i2c.y_data_reg = le16_to_cpu(gpio->usDataY_RegisterIndex);
i2c.a_clk_reg = le16_to_cpu(gpio->usClkA_RegisterIndex);
i2c.a_data_reg = le16_to_cpu(gpio->usDataA_RegisterIndex);
i2c.mask_clk_mask = (1 << gpio->ucClkMaskShift);
i2c.mask_data_mask = (1 << gpio->ucDataMaskShift);
i2c.en_clk_mask = (1 << gpio->ucClkEnShift);
i2c.en_data_mask = (1 << gpio->ucDataEnShift);
i2c.y_clk_mask = (1 << gpio->ucClkY_Shift);
i2c.y_data_mask = (1 << gpio->ucDataY_Shift);
i2c.a_clk_mask = (1 << gpio->ucClkA_Shift);
i2c.a_data_mask = (1 << gpio->ucDataA_Shift);
if (gpio->sucI2cId.sbfAccess.bfHW_Capable)
i2c.hw_capable = true;
else
i2c.hw_capable = false;
if (gpio->sucI2cId.ucAccess == 0xa0)
i2c.mm_i2c = true;
else
i2c.mm_i2c = false;
i2c.i2c_id = gpio->sucI2cId.ucAccess;
if (i2c.mask_clk_reg)
i2c.valid = true;
else
i2c.valid = false;
return i2c;
}
struct amdgpu_i2c_bus_rec amdgpu_atombios_lookup_i2c_gpio(struct amdgpu_device *adev,
uint8_t id)
{
struct atom_context *ctx = adev->mode_info.atom_context;
ATOM_GPIO_I2C_ASSIGMENT *gpio;
struct amdgpu_i2c_bus_rec i2c;
int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info);
struct _ATOM_GPIO_I2C_INFO *i2c_info;
uint16_t data_offset, size;
int i, num_indices;
memset(&i2c, 0, sizeof(struct amdgpu_i2c_bus_rec));
i2c.valid = false;
if (amdgpu_atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) {
i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset);
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_GPIO_I2C_ASSIGMENT);
gpio = &i2c_info->asGPIO_Info[0];
for (i = 0; i < num_indices; i++) {
amdgpu_atombios_lookup_i2c_gpio_quirks(adev, gpio, i);
if (gpio->sucI2cId.ucAccess == id) {
i2c = amdgpu_atombios_get_bus_rec_for_i2c_gpio(gpio);
break;
}
gpio = (ATOM_GPIO_I2C_ASSIGMENT *)
((u8 *)gpio + sizeof(ATOM_GPIO_I2C_ASSIGMENT));
}
}
return i2c;
}
void amdgpu_atombios_i2c_init(struct amdgpu_device *adev)
{
struct atom_context *ctx = adev->mode_info.atom_context;
ATOM_GPIO_I2C_ASSIGMENT *gpio;
struct amdgpu_i2c_bus_rec i2c;
int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info);
struct _ATOM_GPIO_I2C_INFO *i2c_info;
uint16_t data_offset, size;
int i, num_indices;
char stmp[32];
if (amdgpu_atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) {
i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset);
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_GPIO_I2C_ASSIGMENT);
gpio = &i2c_info->asGPIO_Info[0];
for (i = 0; i < num_indices; i++) {
amdgpu_atombios_lookup_i2c_gpio_quirks(adev, gpio, i);
i2c = amdgpu_atombios_get_bus_rec_for_i2c_gpio(gpio);
if (i2c.valid) {
sprintf(stmp, "0x%x", i2c.i2c_id);
adev->i2c_bus[i] = amdgpu_i2c_create(adev->ddev, &i2c, stmp);
}
gpio = (ATOM_GPIO_I2C_ASSIGMENT *)
((u8 *)gpio + sizeof(ATOM_GPIO_I2C_ASSIGMENT));
}
}
}
struct amdgpu_gpio_rec
amdgpu_atombios_lookup_gpio(struct amdgpu_device *adev,
u8 id)
{
struct atom_context *ctx = adev->mode_info.atom_context;
struct amdgpu_gpio_rec gpio;
int index = GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT);
struct _ATOM_GPIO_PIN_LUT *gpio_info;
ATOM_GPIO_PIN_ASSIGNMENT *pin;
u16 data_offset, size;
int i, num_indices;
memset(&gpio, 0, sizeof(struct amdgpu_gpio_rec));
gpio.valid = false;
if (amdgpu_atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) {
gpio_info = (struct _ATOM_GPIO_PIN_LUT *)(ctx->bios + data_offset);
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_GPIO_PIN_ASSIGNMENT);
pin = gpio_info->asGPIO_Pin;
for (i = 0; i < num_indices; i++) {
if (id == pin->ucGPIO_ID) {
gpio.id = pin->ucGPIO_ID;
gpio.reg = le16_to_cpu(pin->usGpioPin_AIndex);
gpio.shift = pin->ucGpioPinBitShift;
gpio.mask = (1 << pin->ucGpioPinBitShift);
gpio.valid = true;
break;
}
pin = (ATOM_GPIO_PIN_ASSIGNMENT *)
((u8 *)pin + sizeof(ATOM_GPIO_PIN_ASSIGNMENT));
}
}
return gpio;
}
static struct amdgpu_hpd
amdgpu_atombios_get_hpd_info_from_gpio(struct amdgpu_device *adev,
struct amdgpu_gpio_rec *gpio)
{
struct amdgpu_hpd hpd;
u32 reg;
memset(&hpd, 0, sizeof(struct amdgpu_hpd));
reg = amdgpu_display_hpd_get_gpio_reg(adev);
hpd.gpio = *gpio;
if (gpio->reg == reg) {
switch(gpio->mask) {
case (1 << 0):
hpd.hpd = AMDGPU_HPD_1;
break;
case (1 << 8):
hpd.hpd = AMDGPU_HPD_2;
break;
case (1 << 16):
hpd.hpd = AMDGPU_HPD_3;
break;
case (1 << 24):
hpd.hpd = AMDGPU_HPD_4;
break;
case (1 << 26):
hpd.hpd = AMDGPU_HPD_5;
break;
case (1 << 28):
hpd.hpd = AMDGPU_HPD_6;
break;
default:
hpd.hpd = AMDGPU_HPD_NONE;
break;
}
} else
hpd.hpd = AMDGPU_HPD_NONE;
return hpd;
}
static const int object_connector_convert[] = {
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_DVII,
DRM_MODE_CONNECTOR_DVII,
DRM_MODE_CONNECTOR_DVID,
DRM_MODE_CONNECTOR_DVID,
DRM_MODE_CONNECTOR_VGA,
DRM_MODE_CONNECTOR_Composite,
DRM_MODE_CONNECTOR_SVIDEO,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_9PinDIN,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_HDMIA,
DRM_MODE_CONNECTOR_HDMIB,
DRM_MODE_CONNECTOR_LVDS,
DRM_MODE_CONNECTOR_9PinDIN,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_DisplayPort,
DRM_MODE_CONNECTOR_eDP,
DRM_MODE_CONNECTOR_Unknown
};
bool amdgpu_atombios_has_dce_engine_info(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
struct atom_context *ctx = mode_info->atom_context;
int index = GetIndexIntoMasterTable(DATA, Object_Header);
u16 size, data_offset;
u8 frev, crev;
ATOM_DISPLAY_OBJECT_PATH_TABLE *path_obj;
ATOM_OBJECT_HEADER *obj_header;
if (!amdgpu_atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset))
return false;
if (crev < 2)
return false;
obj_header = (ATOM_OBJECT_HEADER *) (ctx->bios + data_offset);
path_obj = (ATOM_DISPLAY_OBJECT_PATH_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usDisplayPathTableOffset));
if (path_obj->ucNumOfDispPath)
return true;
else
return false;
}
bool amdgpu_atombios_get_connector_info_from_object_table(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
struct atom_context *ctx = mode_info->atom_context;
int index = GetIndexIntoMasterTable(DATA, Object_Header);
u16 size, data_offset;
u8 frev, crev;
ATOM_CONNECTOR_OBJECT_TABLE *con_obj;
ATOM_ENCODER_OBJECT_TABLE *enc_obj;
ATOM_OBJECT_TABLE *router_obj;
ATOM_DISPLAY_OBJECT_PATH_TABLE *path_obj;
ATOM_OBJECT_HEADER *obj_header;
int i, j, k, path_size, device_support;
int connector_type;
u16 conn_id, connector_object_id;
struct amdgpu_i2c_bus_rec ddc_bus;
struct amdgpu_router router;
struct amdgpu_gpio_rec gpio;
struct amdgpu_hpd hpd;
if (!amdgpu_atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset))
return false;
if (crev < 2)
return false;
obj_header = (ATOM_OBJECT_HEADER *) (ctx->bios + data_offset);
path_obj = (ATOM_DISPLAY_OBJECT_PATH_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usDisplayPathTableOffset));
con_obj = (ATOM_CONNECTOR_OBJECT_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usConnectorObjectTableOffset));
enc_obj = (ATOM_ENCODER_OBJECT_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usEncoderObjectTableOffset));
router_obj = (ATOM_OBJECT_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usRouterObjectTableOffset));
device_support = le16_to_cpu(obj_header->usDeviceSupport);
path_size = 0;
for (i = 0; i < path_obj->ucNumOfDispPath; i++) {
uint8_t *addr = (uint8_t *) path_obj->asDispPath;
ATOM_DISPLAY_OBJECT_PATH *path;
addr += path_size;
path = (ATOM_DISPLAY_OBJECT_PATH *) addr;
path_size += le16_to_cpu(path->usSize);
if (device_support & le16_to_cpu(path->usDeviceTag)) {
uint8_t con_obj_id, con_obj_num, con_obj_type;
con_obj_id =
(le16_to_cpu(path->usConnObjectId) & OBJECT_ID_MASK)
>> OBJECT_ID_SHIFT;
con_obj_num =
(le16_to_cpu(path->usConnObjectId) & ENUM_ID_MASK)
>> ENUM_ID_SHIFT;
con_obj_type =
(le16_to_cpu(path->usConnObjectId) &
OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT;
/* Skip TV/CV support */
if ((le16_to_cpu(path->usDeviceTag) ==
ATOM_DEVICE_TV1_SUPPORT) ||
(le16_to_cpu(path->usDeviceTag) ==
ATOM_DEVICE_CV_SUPPORT))
continue;
if (con_obj_id >= ARRAY_SIZE(object_connector_convert)) {
DRM_ERROR("invalid con_obj_id %d for device tag 0x%04x\n",
con_obj_id, le16_to_cpu(path->usDeviceTag));
continue;
}
connector_type =
object_connector_convert[con_obj_id];
connector_object_id = con_obj_id;
if (connector_type == DRM_MODE_CONNECTOR_Unknown)
continue;
router.ddc_valid = false;
router.cd_valid = false;
for (j = 0; j < ((le16_to_cpu(path->usSize) - 8) / 2); j++) {
uint8_t grph_obj_id, grph_obj_num, grph_obj_type;
grph_obj_id =
(le16_to_cpu(path->usGraphicObjIds[j]) &
OBJECT_ID_MASK) >> OBJECT_ID_SHIFT;
grph_obj_num =
(le16_to_cpu(path->usGraphicObjIds[j]) &
ENUM_ID_MASK) >> ENUM_ID_SHIFT;
grph_obj_type =
(le16_to_cpu(path->usGraphicObjIds[j]) &
OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT;
if (grph_obj_type == GRAPH_OBJECT_TYPE_ENCODER) {
for (k = 0; k < enc_obj->ucNumberOfObjects; k++) {
u16 encoder_obj = le16_to_cpu(enc_obj->asObjects[k].usObjectID);
if (le16_to_cpu(path->usGraphicObjIds[j]) == encoder_obj) {
ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *)
(ctx->bios + data_offset +
le16_to_cpu(enc_obj->asObjects[k].usRecordOffset));
ATOM_ENCODER_CAP_RECORD *cap_record;
u16 caps = 0;
while (record->ucRecordSize > 0 &&
record->ucRecordType > 0 &&
record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) {
switch (record->ucRecordType) {
case ATOM_ENCODER_CAP_RECORD_TYPE:
cap_record =(ATOM_ENCODER_CAP_RECORD *)
record;
caps = le16_to_cpu(cap_record->usEncoderCap);
break;
}
record = (ATOM_COMMON_RECORD_HEADER *)
((char *)record + record->ucRecordSize);
}
amdgpu_display_add_encoder(adev, encoder_obj,
le16_to_cpu(path->usDeviceTag),
caps);
}
}
} else if (grph_obj_type == GRAPH_OBJECT_TYPE_ROUTER) {
for (k = 0; k < router_obj->ucNumberOfObjects; k++) {
u16 router_obj_id = le16_to_cpu(router_obj->asObjects[k].usObjectID);
if (le16_to_cpu(path->usGraphicObjIds[j]) == router_obj_id) {
ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *)
(ctx->bios + data_offset +
le16_to_cpu(router_obj->asObjects[k].usRecordOffset));
ATOM_I2C_RECORD *i2c_record;
ATOM_I2C_ID_CONFIG_ACCESS *i2c_config;
ATOM_ROUTER_DDC_PATH_SELECT_RECORD *ddc_path;
ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD *cd_path;
ATOM_SRC_DST_TABLE_FOR_ONE_OBJECT *router_src_dst_table =
(ATOM_SRC_DST_TABLE_FOR_ONE_OBJECT *)
(ctx->bios + data_offset +
le16_to_cpu(router_obj->asObjects[k].usSrcDstTableOffset));
u8 *num_dst_objs = (u8 *)
((u8 *)router_src_dst_table + 1 +
(router_src_dst_table->ucNumberOfSrc * 2));
u16 *dst_objs = (u16 *)(num_dst_objs + 1);
int enum_id;
router.router_id = router_obj_id;
for (enum_id = 0; enum_id < (*num_dst_objs); enum_id++) {
if (le16_to_cpu(path->usConnObjectId) ==
le16_to_cpu(dst_objs[enum_id]))
break;
}
while (record->ucRecordSize > 0 &&
record->ucRecordType > 0 &&
record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) {
switch (record->ucRecordType) {
case ATOM_I2C_RECORD_TYPE:
i2c_record =
(ATOM_I2C_RECORD *)
record;
i2c_config =
(ATOM_I2C_ID_CONFIG_ACCESS *)
&i2c_record->sucI2cId;
router.i2c_info =
amdgpu_atombios_lookup_i2c_gpio(adev,
i2c_config->
ucAccess);
router.i2c_addr = i2c_record->ucI2CAddr >> 1;
break;
case ATOM_ROUTER_DDC_PATH_SELECT_RECORD_TYPE:
ddc_path = (ATOM_ROUTER_DDC_PATH_SELECT_RECORD *)
record;
router.ddc_valid = true;
router.ddc_mux_type = ddc_path->ucMuxType;
router.ddc_mux_control_pin = ddc_path->ucMuxControlPin;
router.ddc_mux_state = ddc_path->ucMuxState[enum_id];
break;
case ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD_TYPE:
cd_path = (ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD *)
record;
router.cd_valid = true;
router.cd_mux_type = cd_path->ucMuxType;
router.cd_mux_control_pin = cd_path->ucMuxControlPin;
router.cd_mux_state = cd_path->ucMuxState[enum_id];
break;
}
record = (ATOM_COMMON_RECORD_HEADER *)
((char *)record + record->ucRecordSize);
}
}
}
}
}
/* look up gpio for ddc, hpd */
ddc_bus.valid = false;
hpd.hpd = AMDGPU_HPD_NONE;
if ((le16_to_cpu(path->usDeviceTag) &
(ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT)) == 0) {
for (j = 0; j < con_obj->ucNumberOfObjects; j++) {
if (le16_to_cpu(path->usConnObjectId) ==
le16_to_cpu(con_obj->asObjects[j].
usObjectID)) {
ATOM_COMMON_RECORD_HEADER
*record =
(ATOM_COMMON_RECORD_HEADER
*)
(ctx->bios + data_offset +
le16_to_cpu(con_obj->
asObjects[j].
usRecordOffset));
ATOM_I2C_RECORD *i2c_record;
ATOM_HPD_INT_RECORD *hpd_record;
ATOM_I2C_ID_CONFIG_ACCESS *i2c_config;
while (record->ucRecordSize > 0 &&
record->ucRecordType > 0 &&
record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) {
switch (record->ucRecordType) {
case ATOM_I2C_RECORD_TYPE:
i2c_record =
(ATOM_I2C_RECORD *)
record;
i2c_config =
(ATOM_I2C_ID_CONFIG_ACCESS *)
&i2c_record->sucI2cId;
ddc_bus = amdgpu_atombios_lookup_i2c_gpio(adev,
i2c_config->
ucAccess);
break;
case ATOM_HPD_INT_RECORD_TYPE:
hpd_record =
(ATOM_HPD_INT_RECORD *)
record;
gpio = amdgpu_atombios_lookup_gpio(adev,
hpd_record->ucHPDIntGPIOID);
hpd = amdgpu_atombios_get_hpd_info_from_gpio(adev, &gpio);
hpd.plugged_state = hpd_record->ucPlugged_PinState;
break;
}
record =
(ATOM_COMMON_RECORD_HEADER
*) ((char *)record
+
record->
ucRecordSize);
}
break;
}
}
}
/* needed for aux chan transactions */
ddc_bus.hpd = hpd.hpd;
conn_id = le16_to_cpu(path->usConnObjectId);
amdgpu_display_add_connector(adev,
conn_id,
le16_to_cpu(path->usDeviceTag),
connector_type, &ddc_bus,
connector_object_id,
&hpd,
&router);
}
}
amdgpu_link_encoder_connector(adev->ddev);
return true;
}
union firmware_info {
ATOM_FIRMWARE_INFO info;
ATOM_FIRMWARE_INFO_V1_2 info_12;
ATOM_FIRMWARE_INFO_V1_3 info_13;
ATOM_FIRMWARE_INFO_V1_4 info_14;
ATOM_FIRMWARE_INFO_V2_1 info_21;
ATOM_FIRMWARE_INFO_V2_2 info_22;
};
int amdgpu_atombios_get_clock_info(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
uint8_t frev, crev;
uint16_t data_offset;
int ret = -EINVAL;
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
int i;
struct amdgpu_pll *ppll = &adev->clock.ppll[0];
struct amdgpu_pll *spll = &adev->clock.spll;
struct amdgpu_pll *mpll = &adev->clock.mpll;
union firmware_info *firmware_info =
(union firmware_info *)(mode_info->atom_context->bios +
data_offset);
/* pixel clocks */
ppll->reference_freq =
le16_to_cpu(firmware_info->info.usReferenceClock);
ppll->reference_div = 0;
ppll->pll_out_min =
le32_to_cpu(firmware_info->info_12.ulMinPixelClockPLL_Output);
ppll->pll_out_max =
le32_to_cpu(firmware_info->info.ulMaxPixelClockPLL_Output);
ppll->lcd_pll_out_min =
le16_to_cpu(firmware_info->info_14.usLcdMinPixelClockPLL_Output) * 100;
if (ppll->lcd_pll_out_min == 0)
ppll->lcd_pll_out_min = ppll->pll_out_min;
ppll->lcd_pll_out_max =
le16_to_cpu(firmware_info->info_14.usLcdMaxPixelClockPLL_Output) * 100;
if (ppll->lcd_pll_out_max == 0)
ppll->lcd_pll_out_max = ppll->pll_out_max;
if (ppll->pll_out_min == 0)
ppll->pll_out_min = 64800;
ppll->pll_in_min =
le16_to_cpu(firmware_info->info.usMinPixelClockPLL_Input);
ppll->pll_in_max =
le16_to_cpu(firmware_info->info.usMaxPixelClockPLL_Input);
ppll->min_post_div = 2;
ppll->max_post_div = 0x7f;
ppll->min_frac_feedback_div = 0;
ppll->max_frac_feedback_div = 9;
ppll->min_ref_div = 2;
ppll->max_ref_div = 0x3ff;
ppll->min_feedback_div = 4;
ppll->max_feedback_div = 0xfff;
ppll->best_vco = 0;
for (i = 1; i < AMDGPU_MAX_PPLL; i++)
adev->clock.ppll[i] = *ppll;
/* system clock */
spll->reference_freq =
le16_to_cpu(firmware_info->info_21.usCoreReferenceClock);
spll->reference_div = 0;
spll->pll_out_min =
le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Output);
spll->pll_out_max =
le32_to_cpu(firmware_info->info.ulMaxEngineClockPLL_Output);
/* ??? */
if (spll->pll_out_min == 0)
spll->pll_out_min = 64800;
spll->pll_in_min =
le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Input);
spll->pll_in_max =
le16_to_cpu(firmware_info->info.usMaxEngineClockPLL_Input);
spll->min_post_div = 1;
spll->max_post_div = 1;
spll->min_ref_div = 2;
spll->max_ref_div = 0xff;
spll->min_feedback_div = 4;
spll->max_feedback_div = 0xff;
spll->best_vco = 0;
/* memory clock */
mpll->reference_freq =
le16_to_cpu(firmware_info->info_21.usMemoryReferenceClock);
mpll->reference_div = 0;
mpll->pll_out_min =
le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Output);
mpll->pll_out_max =
le32_to_cpu(firmware_info->info.ulMaxMemoryClockPLL_Output);
/* ??? */
if (mpll->pll_out_min == 0)
mpll->pll_out_min = 64800;
mpll->pll_in_min =
le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Input);
mpll->pll_in_max =
le16_to_cpu(firmware_info->info.usMaxMemoryClockPLL_Input);
adev->clock.default_sclk =
le32_to_cpu(firmware_info->info.ulDefaultEngineClock);
adev->clock.default_mclk =
le32_to_cpu(firmware_info->info.ulDefaultMemoryClock);
mpll->min_post_div = 1;
mpll->max_post_div = 1;
mpll->min_ref_div = 2;
mpll->max_ref_div = 0xff;
mpll->min_feedback_div = 4;
mpll->max_feedback_div = 0xff;
mpll->best_vco = 0;
/* disp clock */
adev->clock.default_dispclk =
le32_to_cpu(firmware_info->info_21.ulDefaultDispEngineClkFreq);
/* set a reasonable default for DP */
if (adev->clock.default_dispclk < 53900) {
DRM_INFO("Changing default dispclk from %dMhz to 600Mhz\n",
adev->clock.default_dispclk / 100);
adev->clock.default_dispclk = 60000;
} else if (adev->clock.default_dispclk <= 60000) {
DRM_INFO("Changing default dispclk from %dMhz to 625Mhz\n",
adev->clock.default_dispclk / 100);
adev->clock.default_dispclk = 62500;
}
adev->clock.dp_extclk =
le16_to_cpu(firmware_info->info_21.usUniphyDPModeExtClkFreq);
adev->clock.current_dispclk = adev->clock.default_dispclk;
adev->clock.max_pixel_clock = le16_to_cpu(firmware_info->info.usMaxPixelClock);
if (adev->clock.max_pixel_clock == 0)
adev->clock.max_pixel_clock = 40000;
/* not technically a clock, but... */
adev->mode_info.firmware_flags =
le16_to_cpu(firmware_info->info.usFirmwareCapability.susAccess);
ret = 0;
}
adev->pm.current_sclk = adev->clock.default_sclk;
adev->pm.current_mclk = adev->clock.default_mclk;
return ret;
}
union gfx_info {
ATOM_GFX_INFO_V2_1 info;
};
int amdgpu_atombios_get_gfx_info(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index = GetIndexIntoMasterTable(DATA, GFX_Info);
uint8_t frev, crev;
uint16_t data_offset;
int ret = -EINVAL;
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
union gfx_info *gfx_info = (union gfx_info *)
(mode_info->atom_context->bios + data_offset);
adev->gfx.config.max_shader_engines = gfx_info->info.max_shader_engines;
adev->gfx.config.max_tile_pipes = gfx_info->info.max_tile_pipes;
adev->gfx.config.max_cu_per_sh = gfx_info->info.max_cu_per_sh;
adev->gfx.config.max_sh_per_se = gfx_info->info.max_sh_per_se;
adev->gfx.config.max_backends_per_se = gfx_info->info.max_backends_per_se;
adev->gfx.config.max_texture_channel_caches =
gfx_info->info.max_texture_channel_caches;
ret = 0;
}
return ret;
}
union igp_info {
struct _ATOM_INTEGRATED_SYSTEM_INFO info;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_9 info_9;
};
/*
* Return vram width from integrated system info table, if available,
* or 0 if not.
*/
int amdgpu_atombios_get_vram_width(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
u16 data_offset, size;
union igp_info *igp_info;
u8 frev, crev;
/* get any igp specific overrides */
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, &size,
&frev, &crev, &data_offset)) {
igp_info = (union igp_info *)
(mode_info->atom_context->bios + data_offset);
switch (crev) {
case 8:
case 9:
return igp_info->info_8.ucUMAChannelNumber * 64;
default:
return 0;
}
}
return 0;
}
static void amdgpu_atombios_get_igp_ss_overrides(struct amdgpu_device *adev,
struct amdgpu_atom_ss *ss,
int id)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
u16 data_offset, size;
union igp_info *igp_info;
u8 frev, crev;
u16 percentage = 0, rate = 0;
/* get any igp specific overrides */
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, &size,
&frev, &crev, &data_offset)) {
igp_info = (union igp_info *)
(mode_info->atom_context->bios + data_offset);
switch (crev) {
case 6:
switch (id) {
case ASIC_INTERNAL_SS_ON_TMDS:
percentage = le16_to_cpu(igp_info->info_6.usDVISSPercentage);
rate = le16_to_cpu(igp_info->info_6.usDVISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_HDMI:
percentage = le16_to_cpu(igp_info->info_6.usHDMISSPercentage);
rate = le16_to_cpu(igp_info->info_6.usHDMISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_LVDS:
percentage = le16_to_cpu(igp_info->info_6.usLvdsSSPercentage);
rate = le16_to_cpu(igp_info->info_6.usLvdsSSpreadRateIn10Hz);
break;
}
break;
case 7:
switch (id) {
case ASIC_INTERNAL_SS_ON_TMDS:
percentage = le16_to_cpu(igp_info->info_7.usDVISSPercentage);
rate = le16_to_cpu(igp_info->info_7.usDVISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_HDMI:
percentage = le16_to_cpu(igp_info->info_7.usHDMISSPercentage);
rate = le16_to_cpu(igp_info->info_7.usHDMISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_LVDS:
percentage = le16_to_cpu(igp_info->info_7.usLvdsSSPercentage);
rate = le16_to_cpu(igp_info->info_7.usLvdsSSpreadRateIn10Hz);
break;
}
break;
case 8:
switch (id) {
case ASIC_INTERNAL_SS_ON_TMDS:
percentage = le16_to_cpu(igp_info->info_8.usDVISSPercentage);
rate = le16_to_cpu(igp_info->info_8.usDVISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_HDMI:
percentage = le16_to_cpu(igp_info->info_8.usHDMISSPercentage);
rate = le16_to_cpu(igp_info->info_8.usHDMISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_LVDS:
percentage = le16_to_cpu(igp_info->info_8.usLvdsSSPercentage);
rate = le16_to_cpu(igp_info->info_8.usLvdsSSpreadRateIn10Hz);
break;
}
break;
case 9:
switch (id) {
case ASIC_INTERNAL_SS_ON_TMDS:
percentage = le16_to_cpu(igp_info->info_9.usDVISSPercentage);
rate = le16_to_cpu(igp_info->info_9.usDVISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_HDMI:
percentage = le16_to_cpu(igp_info->info_9.usHDMISSPercentage);
rate = le16_to_cpu(igp_info->info_9.usHDMISSpreadRateIn10Hz);
break;
case ASIC_INTERNAL_SS_ON_LVDS:
percentage = le16_to_cpu(igp_info->info_9.usLvdsSSPercentage);
rate = le16_to_cpu(igp_info->info_9.usLvdsSSpreadRateIn10Hz);
break;
}
break;
default:
DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
break;
}
if (percentage)
ss->percentage = percentage;
if (rate)
ss->rate = rate;
}
}
union asic_ss_info {
struct _ATOM_ASIC_INTERNAL_SS_INFO info;
struct _ATOM_ASIC_INTERNAL_SS_INFO_V2 info_2;
struct _ATOM_ASIC_INTERNAL_SS_INFO_V3 info_3;
};
union asic_ss_assignment {
struct _ATOM_ASIC_SS_ASSIGNMENT v1;
struct _ATOM_ASIC_SS_ASSIGNMENT_V2 v2;
struct _ATOM_ASIC_SS_ASSIGNMENT_V3 v3;
};
bool amdgpu_atombios_get_asic_ss_info(struct amdgpu_device *adev,
struct amdgpu_atom_ss *ss,
int id, u32 clock)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info);
uint16_t data_offset, size;
union asic_ss_info *ss_info;
union asic_ss_assignment *ss_assign;
uint8_t frev, crev;
int i, num_indices;
if (id == ASIC_INTERNAL_MEMORY_SS) {
if (!(adev->mode_info.firmware_flags & ATOM_BIOS_INFO_MEMORY_CLOCK_SS_SUPPORT))
return false;
}
if (id == ASIC_INTERNAL_ENGINE_SS) {
if (!(adev->mode_info.firmware_flags & ATOM_BIOS_INFO_ENGINE_CLOCK_SS_SUPPORT))
return false;
}
memset(ss, 0, sizeof(struct amdgpu_atom_ss));
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, &size,
&frev, &crev, &data_offset)) {
ss_info =
(union asic_ss_info *)(mode_info->atom_context->bios + data_offset);
switch (frev) {
case 1:
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_ASIC_SS_ASSIGNMENT);
ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info.asSpreadSpectrum[0]);
for (i = 0; i < num_indices; i++) {
if ((ss_assign->v1.ucClockIndication == id) &&
(clock <= le32_to_cpu(ss_assign->v1.ulTargetClockRange))) {
ss->percentage =
le16_to_cpu(ss_assign->v1.usSpreadSpectrumPercentage);
ss->type = ss_assign->v1.ucSpreadSpectrumMode;
ss->rate = le16_to_cpu(ss_assign->v1.usSpreadRateInKhz);
ss->percentage_divider = 100;
return true;
}
ss_assign = (union asic_ss_assignment *)
((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT));
}
break;
case 2:
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2);
ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info_2.asSpreadSpectrum[0]);
for (i = 0; i < num_indices; i++) {
if ((ss_assign->v2.ucClockIndication == id) &&
(clock <= le32_to_cpu(ss_assign->v2.ulTargetClockRange))) {
ss->percentage =
le16_to_cpu(ss_assign->v2.usSpreadSpectrumPercentage);
ss->type = ss_assign->v2.ucSpreadSpectrumMode;
ss->rate = le16_to_cpu(ss_assign->v2.usSpreadRateIn10Hz);
ss->percentage_divider = 100;
if ((crev == 2) &&
((id == ASIC_INTERNAL_ENGINE_SS) ||
(id == ASIC_INTERNAL_MEMORY_SS)))
ss->rate /= 100;
return true;
}
ss_assign = (union asic_ss_assignment *)
((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2));
}
break;
case 3:
num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) /
sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3);
ss_assign = (union asic_ss_assignment *)((u8 *)&ss_info->info_3.asSpreadSpectrum[0]);
for (i = 0; i < num_indices; i++) {
if ((ss_assign->v3.ucClockIndication == id) &&
(clock <= le32_to_cpu(ss_assign->v3.ulTargetClockRange))) {
ss->percentage =
le16_to_cpu(ss_assign->v3.usSpreadSpectrumPercentage);
ss->type = ss_assign->v3.ucSpreadSpectrumMode;
ss->rate = le16_to_cpu(ss_assign->v3.usSpreadRateIn10Hz);
if (ss_assign->v3.ucSpreadSpectrumMode &
SS_MODE_V3_PERCENTAGE_DIV_BY_1000_MASK)
ss->percentage_divider = 1000;
else
ss->percentage_divider = 100;
if ((id == ASIC_INTERNAL_ENGINE_SS) ||
(id == ASIC_INTERNAL_MEMORY_SS))
ss->rate /= 100;
if (adev->flags & AMD_IS_APU)
amdgpu_atombios_get_igp_ss_overrides(adev, ss, id);
return true;
}
ss_assign = (union asic_ss_assignment *)
((u8 *)ss_assign + sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3));
}
break;
default:
DRM_ERROR("Unsupported ASIC_InternalSS_Info table: %d %d\n", frev, crev);
break;
}
}
return false;
}
union get_clock_dividers {
struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS v1;
struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V2 v2;
struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V3 v3;
struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 v4;
struct _COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V5 v5;
struct _COMPUTE_GPU_CLOCK_INPUT_PARAMETERS_V1_6 v6_in;
struct _COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 v6_out;
};
int amdgpu_atombios_get_clock_dividers(struct amdgpu_device *adev,
u8 clock_type,
u32 clock,
bool strobe_mode,
struct atom_clock_dividers *dividers)
{
union get_clock_dividers args;
int index = GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL);
u8 frev, crev;
memset(&args, 0, sizeof(args));
memset(dividers, 0, sizeof(struct atom_clock_dividers));
if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev))
return -EINVAL;
switch (crev) {
case 2:
case 3:
case 5:
/* r6xx, r7xx, evergreen, ni, si.
* TODO: add support for asic_type <= CHIP_RV770*/
if (clock_type == COMPUTE_ENGINE_PLL_PARAM) {
args.v3.ulClockParams = cpu_to_le32((clock_type << 24) | clock);
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args);
dividers->post_div = args.v3.ucPostDiv;
dividers->enable_post_div = (args.v3.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_PLL_POST_DIV_EN) ? true : false;
dividers->enable_dithen = (args.v3.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_FRACTION_DISABLE) ? false : true;
dividers->whole_fb_div = le16_to_cpu(args.v3.ulFbDiv.usFbDiv);
dividers->frac_fb_div = le16_to_cpu(args.v3.ulFbDiv.usFbDivFrac);
dividers->ref_div = args.v3.ucRefDiv;
dividers->vco_mode = (args.v3.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_MPLL_VCO_MODE) ? 1 : 0;
} else {
/* for SI we use ComputeMemoryClockParam for memory plls */
if (adev->asic_type >= CHIP_TAHITI)
return -EINVAL;
args.v5.ulClockParams = cpu_to_le32((clock_type << 24) | clock);
if (strobe_mode)
args.v5.ucInputFlag = ATOM_PLL_INPUT_FLAG_PLL_STROBE_MODE_EN;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args);
dividers->post_div = args.v5.ucPostDiv;
dividers->enable_post_div = (args.v5.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_PLL_POST_DIV_EN) ? true : false;
dividers->enable_dithen = (args.v5.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_FRACTION_DISABLE) ? false : true;
dividers->whole_fb_div = le16_to_cpu(args.v5.ulFbDiv.usFbDiv);
dividers->frac_fb_div = le16_to_cpu(args.v5.ulFbDiv.usFbDivFrac);
dividers->ref_div = args.v5.ucRefDiv;
dividers->vco_mode = (args.v5.ucCntlFlag &
ATOM_PLL_CNTL_FLAG_MPLL_VCO_MODE) ? 1 : 0;
}
break;
case 4:
/* fusion */
args.v4.ulClock = cpu_to_le32(clock); /* 10 khz */
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args);
dividers->post_divider = dividers->post_div = args.v4.ucPostDiv;
dividers->real_clock = le32_to_cpu(args.v4.ulClock);
break;
case 6:
/* CI */
/* COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, COMPUTE_GPUCLK_INPUT_FLAG_SCLK */
args.v6_in.ulClock.ulComputeClockFlag = clock_type;
args.v6_in.ulClock.ulClockFreq = cpu_to_le32(clock); /* 10 khz */
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args);
dividers->whole_fb_div = le16_to_cpu(args.v6_out.ulFbDiv.usFbDiv);
dividers->frac_fb_div = le16_to_cpu(args.v6_out.ulFbDiv.usFbDivFrac);
dividers->ref_div = args.v6_out.ucPllRefDiv;
dividers->post_div = args.v6_out.ucPllPostDiv;
dividers->flags = args.v6_out.ucPllCntlFlag;
dividers->real_clock = le32_to_cpu(args.v6_out.ulClock.ulClock);
dividers->post_divider = args.v6_out.ulClock.ucPostDiv;
break;
default:
return -EINVAL;
}
return 0;
}
int amdgpu_atombios_get_memory_pll_dividers(struct amdgpu_device *adev,
u32 clock,
bool strobe_mode,
struct atom_mpll_param *mpll_param)
{
COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 args;
int index = GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam);
u8 frev, crev;
memset(&args, 0, sizeof(args));
memset(mpll_param, 0, sizeof(struct atom_mpll_param));
if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev))
return -EINVAL;
switch (frev) {
case 2:
switch (crev) {
case 1:
/* SI */
args.ulClock = cpu_to_le32(clock); /* 10 khz */
args.ucInputFlag = 0;
if (strobe_mode)
args.ucInputFlag |= MPLL_INPUT_FLAG_STROBE_MODE_EN;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args);
mpll_param->clkfrac = le16_to_cpu(args.ulFbDiv.usFbDivFrac);
mpll_param->clkf = le16_to_cpu(args.ulFbDiv.usFbDiv);
mpll_param->post_div = args.ucPostDiv;
mpll_param->dll_speed = args.ucDllSpeed;
mpll_param->bwcntl = args.ucBWCntl;
mpll_param->vco_mode =
(args.ucPllCntlFlag & MPLL_CNTL_FLAG_VCO_MODE_MASK);
mpll_param->yclk_sel =
(args.ucPllCntlFlag & MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0;
mpll_param->qdr =
(args.ucPllCntlFlag & MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0;
mpll_param->half_rate =
(args.ucPllCntlFlag & MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
}
void amdgpu_atombios_set_engine_dram_timings(struct amdgpu_device *adev,
u32 eng_clock, u32 mem_clock)
{
SET_ENGINE_CLOCK_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings);
u32 tmp;
memset(&args, 0, sizeof(args));
tmp = eng_clock & SET_CLOCK_FREQ_MASK;
tmp |= (COMPUTE_ENGINE_PLL_PARAM << 24);
args.ulTargetEngineClock = cpu_to_le32(tmp);
if (mem_clock)
args.sReserved.ulClock = cpu_to_le32(mem_clock & SET_CLOCK_FREQ_MASK);
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args);
}
void amdgpu_atombios_get_default_voltages(struct amdgpu_device *adev,
u16 *vddc, u16 *vddci, u16 *mvdd)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
u8 frev, crev;
u16 data_offset;
union firmware_info *firmware_info;
*vddc = 0;
*vddci = 0;
*mvdd = 0;
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
firmware_info =
(union firmware_info *)(mode_info->atom_context->bios +
data_offset);
*vddc = le16_to_cpu(firmware_info->info_14.usBootUpVDDCVoltage);
if ((frev == 2) && (crev >= 2)) {
*vddci = le16_to_cpu(firmware_info->info_22.usBootUpVDDCIVoltage);
*mvdd = le16_to_cpu(firmware_info->info_22.usBootUpMVDDCVoltage);
}
}
}
union set_voltage {
struct _SET_VOLTAGE_PS_ALLOCATION alloc;
struct _SET_VOLTAGE_PARAMETERS v1;
struct _SET_VOLTAGE_PARAMETERS_V2 v2;
struct _SET_VOLTAGE_PARAMETERS_V1_3 v3;
};
int amdgpu_atombios_get_max_vddc(struct amdgpu_device *adev, u8 voltage_type,
u16 voltage_id, u16 *voltage)
{
union set_voltage args;
int index = GetIndexIntoMasterTable(COMMAND, SetVoltage);
u8 frev, crev;
if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev))
return -EINVAL;
switch (crev) {
case 1:
return -EINVAL;
case 2:
args.v2.ucVoltageType = SET_VOLTAGE_GET_MAX_VOLTAGE;
args.v2.ucVoltageMode = 0;
args.v2.usVoltageLevel = 0;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args);
*voltage = le16_to_cpu(args.v2.usVoltageLevel);
break;
case 3:
args.v3.ucVoltageType = voltage_type;
args.v3.ucVoltageMode = ATOM_GET_VOLTAGE_LEVEL;
args.v3.usVoltageLevel = cpu_to_le16(voltage_id);
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args);
*voltage = le16_to_cpu(args.v3.usVoltageLevel);
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
int amdgpu_atombios_get_leakage_vddc_based_on_leakage_idx(struct amdgpu_device *adev,
u16 *voltage,
u16 leakage_idx)
{
return amdgpu_atombios_get_max_vddc(adev, VOLTAGE_TYPE_VDDC, leakage_idx, voltage);
}
int amdgpu_atombios_get_leakage_id_from_vbios(struct amdgpu_device *adev,
u16 *leakage_id)
{
union set_voltage args;
int index = GetIndexIntoMasterTable(COMMAND, SetVoltage);
u8 frev, crev;
if (!amdgpu_atom_parse_cmd_header(adev->mode_info.atom_context, index, &frev, &crev))
return -EINVAL;
switch (crev) {
case 3:
case 4:
args.v3.ucVoltageType = 0;
args.v3.ucVoltageMode = ATOM_GET_LEAKAGE_ID;
args.v3.usVoltageLevel = 0;
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args);
*leakage_id = le16_to_cpu(args.v3.usVoltageLevel);
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
int amdgpu_atombios_get_leakage_vddc_based_on_leakage_params(struct amdgpu_device *adev,
u16 *vddc, u16 *vddci,
u16 virtual_voltage_id,
u16 vbios_voltage_id)
{
int index = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
u8 frev, crev;
u16 data_offset, size;
int i, j;
ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
*vddc = 0;
*vddci = 0;
if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset))
return -EINVAL;
profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
(adev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 1:
return -EINVAL;
case 2:
switch (crev) {
case 1:
if (size < sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))
return -EINVAL;
leakage_bin = (u16 *)
(adev->mode_info.atom_context->bios + data_offset +
le16_to_cpu(profile->usLeakageBinArrayOffset));
vddc_id_buf = (u16 *)
(adev->mode_info.atom_context->bios + data_offset +
le16_to_cpu(profile->usElbVDDC_IdArrayOffset));
vddc_buf = (u16 *)
(adev->mode_info.atom_context->bios + data_offset +
le16_to_cpu(profile->usElbVDDC_LevelArrayOffset));
vddci_id_buf = (u16 *)
(adev->mode_info.atom_context->bios + data_offset +
le16_to_cpu(profile->usElbVDDCI_IdArrayOffset));
vddci_buf = (u16 *)
(adev->mode_info.atom_context->bios + data_offset +
le16_to_cpu(profile->usElbVDDCI_LevelArrayOffset));
if (profile->ucElbVDDC_Num > 0) {
for (i = 0; i < profile->ucElbVDDC_Num; i++) {
if (vddc_id_buf[i] == virtual_voltage_id) {
for (j = 0; j < profile->ucLeakageBinNum; j++) {
if (vbios_voltage_id <= leakage_bin[j]) {
*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
break;
}
}
break;
}
}
}
if (profile->ucElbVDDCI_Num > 0) {
for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
if (vddci_id_buf[i] == virtual_voltage_id) {
for (j = 0; j < profile->ucLeakageBinNum; j++) {
if (vbios_voltage_id <= leakage_bin[j]) {
*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
break;
}
}
break;
}
}
}
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
union get_voltage_info {
struct _GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 in;
struct _GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 evv_out;
};
int amdgpu_atombios_get_voltage_evv(struct amdgpu_device *adev,
u16 virtual_voltage_id,
u16 *voltage)
{
int index = GetIndexIntoMasterTable(COMMAND, GetVoltageInfo);
u32 entry_id;
u32 count = adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count;
union get_voltage_info args;
for (entry_id = 0; entry_id < count; entry_id++) {
if (adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[entry_id].v ==
virtual_voltage_id)
break;
}
if (entry_id >= count)
return -EINVAL;
args.in.ucVoltageType = VOLTAGE_TYPE_VDDC;
args.in.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
args.in.usVoltageLevel = cpu_to_le16(virtual_voltage_id);
args.in.ulSCLKFreq =
cpu_to_le32(adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[entry_id].clk);
amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&args);
*voltage = le16_to_cpu(args.evv_out.usVoltageLevel);
return 0;
}
union voltage_object_info {
struct _ATOM_VOLTAGE_OBJECT_INFO v1;
struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
};
union voltage_object {
struct _ATOM_VOLTAGE_OBJECT v1;
struct _ATOM_VOLTAGE_OBJECT_V2 v2;
union _ATOM_VOLTAGE_OBJECT_V3 v3;
};
static ATOM_VOLTAGE_OBJECT_V3 *amdgpu_atombios_lookup_voltage_object_v3(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *v3,
u8 voltage_type, u8 voltage_mode)
{
u32 size = le16_to_cpu(v3->sHeader.usStructureSize);
u32 offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
u8 *start = (u8*)v3;
while (offset < size) {
ATOM_VOLTAGE_OBJECT_V3 *vo = (ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
if ((vo->asGpioVoltageObj.sHeader.ucVoltageType == voltage_type) &&
(vo->asGpioVoltageObj.sHeader.ucVoltageMode == voltage_mode))
return vo;
offset += le16_to_cpu(vo->asGpioVoltageObj.sHeader.usSize);
}
return NULL;
}
int amdgpu_atombios_get_svi2_info(struct amdgpu_device *adev,
u8 voltage_type,
u8 *svd_gpio_id, u8 *svc_gpio_id)
{
int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
u8 frev, crev;
u16 data_offset, size;
union voltage_object_info *voltage_info;
union voltage_object *voltage_object = NULL;
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
voltage_info = (union voltage_object_info *)
(adev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 3:
switch (crev) {
case 1:
voltage_object = (union voltage_object *)
amdgpu_atombios_lookup_voltage_object_v3(&voltage_info->v3,
voltage_type,
VOLTAGE_OBJ_SVID2);
if (voltage_object) {
*svd_gpio_id = voltage_object->v3.asSVID2Obj.ucSVDGpioId;
*svc_gpio_id = voltage_object->v3.asSVID2Obj.ucSVCGpioId;
} else {
return -EINVAL;
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return -EINVAL;
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return -EINVAL;
}
}
return 0;
}
bool
amdgpu_atombios_is_voltage_gpio(struct amdgpu_device *adev,
u8 voltage_type, u8 voltage_mode)
{
int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
u8 frev, crev;
u16 data_offset, size;
union voltage_object_info *voltage_info;
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
voltage_info = (union voltage_object_info *)
(adev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 3:
switch (crev) {
case 1:
if (amdgpu_atombios_lookup_voltage_object_v3(&voltage_info->v3,
voltage_type, voltage_mode))
return true;
break;
default:
DRM_ERROR("unknown voltage object table\n");
return false;
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return false;
}
}
return false;
}
int amdgpu_atombios_get_voltage_table(struct amdgpu_device *adev,
u8 voltage_type, u8 voltage_mode,
struct atom_voltage_table *voltage_table)
{
int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
u8 frev, crev;
u16 data_offset, size;
int i;
union voltage_object_info *voltage_info;
union voltage_object *voltage_object = NULL;
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
voltage_info = (union voltage_object_info *)
(adev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 3:
switch (crev) {
case 1:
voltage_object = (union voltage_object *)
amdgpu_atombios_lookup_voltage_object_v3(&voltage_info->v3,
voltage_type, voltage_mode);
if (voltage_object) {
ATOM_GPIO_VOLTAGE_OBJECT_V3 *gpio =
&voltage_object->v3.asGpioVoltageObj;
VOLTAGE_LUT_ENTRY_V2 *lut;
if (gpio->ucGpioEntryNum > MAX_VOLTAGE_ENTRIES)
return -EINVAL;
lut = &gpio->asVolGpioLut[0];
for (i = 0; i < gpio->ucGpioEntryNum; i++) {
voltage_table->entries[i].value =
le16_to_cpu(lut->usVoltageValue);
voltage_table->entries[i].smio_low =
le32_to_cpu(lut->ulVoltageId);
lut = (VOLTAGE_LUT_ENTRY_V2 *)
((u8 *)lut + sizeof(VOLTAGE_LUT_ENTRY_V2));
}
voltage_table->mask_low = le32_to_cpu(gpio->ulGpioMaskVal);
voltage_table->count = gpio->ucGpioEntryNum;
voltage_table->phase_delay = gpio->ucPhaseDelay;
return 0;
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return -EINVAL;
}
break;
default:
DRM_ERROR("unknown voltage object table\n");
return -EINVAL;
}
}
return -EINVAL;
}
union vram_info {
struct _ATOM_VRAM_INFO_V3 v1_3;
struct _ATOM_VRAM_INFO_V4 v1_4;
struct _ATOM_VRAM_INFO_HEADER_V2_1 v2_1;
};
#define MEM_ID_MASK 0xff000000
#define MEM_ID_SHIFT 24
#define CLOCK_RANGE_MASK 0x00ffffff
#define CLOCK_RANGE_SHIFT 0
#define LOW_NIBBLE_MASK 0xf
#define DATA_EQU_PREV 0
#define DATA_FROM_TABLE 4
int amdgpu_atombios_init_mc_reg_table(struct amdgpu_device *adev,
u8 module_index,
struct atom_mc_reg_table *reg_table)
{
int index = GetIndexIntoMasterTable(DATA, VRAM_Info);
u8 frev, crev, num_entries, t_mem_id, num_ranges = 0;
u32 i = 0, j;
u16 data_offset, size;
union vram_info *vram_info;
memset(reg_table, 0, sizeof(struct atom_mc_reg_table));
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
vram_info = (union vram_info *)
(adev->mode_info.atom_context->bios + data_offset);
switch (frev) {
case 1:
DRM_ERROR("old table version %d, %d\n", frev, crev);
return -EINVAL;
case 2:
switch (crev) {
case 1:
if (module_index < vram_info->v2_1.ucNumOfVRAMModule) {
ATOM_INIT_REG_BLOCK *reg_block =
(ATOM_INIT_REG_BLOCK *)
((u8 *)vram_info + le16_to_cpu(vram_info->v2_1.usMemClkPatchTblOffset));
ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data =
(ATOM_MEMORY_SETTING_DATA_BLOCK *)
((u8 *)reg_block + (2 * sizeof(u16)) +
le16_to_cpu(reg_block->usRegIndexTblSize));
ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
num_entries = (u8)((le16_to_cpu(reg_block->usRegIndexTblSize)) /
sizeof(ATOM_INIT_REG_INDEX_FORMAT)) - 1;
if (num_entries > VBIOS_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
while (i < num_entries) {
if (format->ucPreRegDataLength & ACCESS_PLACEHOLDER)
break;
reg_table->mc_reg_address[i].s1 =
(u16)(le16_to_cpu(format->usRegIndex));
reg_table->mc_reg_address[i].pre_reg_data =
(u8)(format->ucPreRegDataLength);
i++;
format = (ATOM_INIT_REG_INDEX_FORMAT *)
((u8 *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
}
reg_table->last = i;
while ((le32_to_cpu(*(u32 *)reg_data) != END_OF_REG_DATA_BLOCK) &&
(num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES)) {
t_mem_id = (u8)((le32_to_cpu(*(u32 *)reg_data) & MEM_ID_MASK)
>> MEM_ID_SHIFT);
if (module_index == t_mem_id) {
reg_table->mc_reg_table_entry[num_ranges].mclk_max =
(u32)((le32_to_cpu(*(u32 *)reg_data) & CLOCK_RANGE_MASK)
>> CLOCK_RANGE_SHIFT);
for (i = 0, j = 1; i < reg_table->last; i++) {
if ((reg_table->mc_reg_address[i].pre_reg_data & LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
reg_table->mc_reg_table_entry[num_ranges].mc_data[i] =
(u32)le32_to_cpu(*((u32 *)reg_data + j));
j++;
} else if ((reg_table->mc_reg_address[i].pre_reg_data & LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
reg_table->mc_reg_table_entry[num_ranges].mc_data[i] =
reg_table->mc_reg_table_entry[num_ranges].mc_data[i - 1];
}
}
num_ranges++;
}
reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
((u8 *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize));
}
if (le32_to_cpu(*(u32 *)reg_data) != END_OF_REG_DATA_BLOCK)
return -EINVAL;
reg_table->num_entries = num_ranges;
} else
return -EINVAL;
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
break;
default:
DRM_ERROR("Unknown table version %d, %d\n", frev, crev);
return -EINVAL;
}
return 0;
}
return -EINVAL;
}
bool amdgpu_atombios_has_gpu_virtualization_table(struct amdgpu_device *adev)
{
int index = GetIndexIntoMasterTable(DATA, GPUVirtualizationInfo);
u8 frev, crev;
u16 data_offset, size;
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset))
return true;
return false;
}
void amdgpu_atombios_scratch_regs_lock(struct amdgpu_device *adev, bool lock)
{
uint32_t bios_6_scratch;
bios_6_scratch = RREG32(adev->bios_scratch_reg_offset + 6);
if (lock) {
bios_6_scratch |= ATOM_S6_CRITICAL_STATE;
bios_6_scratch &= ~ATOM_S6_ACC_MODE;
} else {
bios_6_scratch &= ~ATOM_S6_CRITICAL_STATE;
bios_6_scratch |= ATOM_S6_ACC_MODE;
}
WREG32(adev->bios_scratch_reg_offset + 6, bios_6_scratch);
}
void amdgpu_atombios_scratch_regs_init(struct amdgpu_device *adev)
{
uint32_t bios_2_scratch, bios_6_scratch;
adev->bios_scratch_reg_offset = mmBIOS_SCRATCH_0;
bios_2_scratch = RREG32(adev->bios_scratch_reg_offset + 2);
bios_6_scratch = RREG32(adev->bios_scratch_reg_offset + 6);
/* let the bios control the backlight */
bios_2_scratch &= ~ATOM_S2_VRI_BRIGHT_ENABLE;
/* tell the bios not to handle mode switching */
bios_6_scratch |= ATOM_S6_ACC_BLOCK_DISPLAY_SWITCH;
/* clear the vbios dpms state */
bios_2_scratch &= ~ATOM_S2_DEVICE_DPMS_STATE;
WREG32(adev->bios_scratch_reg_offset + 2, bios_2_scratch);
WREG32(adev->bios_scratch_reg_offset + 6, bios_6_scratch);
}
void amdgpu_atombios_scratch_regs_save(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < AMDGPU_BIOS_NUM_SCRATCH; i++)
adev->bios_scratch[i] = RREG32(adev->bios_scratch_reg_offset + i);
}
void amdgpu_atombios_scratch_regs_restore(struct amdgpu_device *adev)
{
int i;
/*
* VBIOS will check ASIC_INIT_COMPLETE bit to decide if
* execute ASIC_Init posting via driver
*/
adev->bios_scratch[7] &= ~ATOM_S7_ASIC_INIT_COMPLETE_MASK;
for (i = 0; i < AMDGPU_BIOS_NUM_SCRATCH; i++)
WREG32(adev->bios_scratch_reg_offset + i, adev->bios_scratch[i]);
}
void amdgpu_atombios_scratch_regs_engine_hung(struct amdgpu_device *adev,
bool hung)
{
u32 tmp = RREG32(adev->bios_scratch_reg_offset + 3);
if (hung)
tmp |= ATOM_S3_ASIC_GUI_ENGINE_HUNG;
else
tmp &= ~ATOM_S3_ASIC_GUI_ENGINE_HUNG;
WREG32(adev->bios_scratch_reg_offset + 3, tmp);
}
bool amdgpu_atombios_scratch_need_asic_init(struct amdgpu_device *adev)
{
u32 tmp = RREG32(adev->bios_scratch_reg_offset + 7);
if (tmp & ATOM_S7_ASIC_INIT_COMPLETE_MASK)
return false;
else
return true;
}
/* Atom needs data in little endian format
* so swap as appropriate when copying data to
* or from atom. Note that atom operates on
* dw units.
*/
void amdgpu_atombios_copy_swap(u8 *dst, u8 *src, u8 num_bytes, bool to_le)
{
#ifdef __BIG_ENDIAN
u8 src_tmp[20], dst_tmp[20]; /* used for byteswapping */
u32 *dst32, *src32;
int i;
memcpy(src_tmp, src, num_bytes);
src32 = (u32 *)src_tmp;
dst32 = (u32 *)dst_tmp;
if (to_le) {
for (i = 0; i < ((num_bytes + 3) / 4); i++)
dst32[i] = cpu_to_le32(src32[i]);
memcpy(dst, dst_tmp, num_bytes);
} else {
u8 dws = num_bytes & ~3;
for (i = 0; i < ((num_bytes + 3) / 4); i++)
dst32[i] = le32_to_cpu(src32[i]);
memcpy(dst, dst_tmp, dws);
if (num_bytes % 4) {
for (i = 0; i < (num_bytes % 4); i++)
dst[dws+i] = dst_tmp[dws+i];
}
}
#else
memcpy(dst, src, num_bytes);
#endif
}
int amdgpu_atombios_allocate_fb_scratch(struct amdgpu_device *adev)
{
struct atom_context *ctx = adev->mode_info.atom_context;
int index = GetIndexIntoMasterTable(DATA, VRAM_UsageByFirmware);
uint16_t data_offset;
int usage_bytes = 0;
struct _ATOM_VRAM_USAGE_BY_FIRMWARE *firmware_usage;
if (amdgpu_atom_parse_data_header(ctx, index, NULL, NULL, NULL, &data_offset)) {
firmware_usage = (struct _ATOM_VRAM_USAGE_BY_FIRMWARE *)(ctx->bios + data_offset);
DRM_DEBUG("atom firmware requested %08x %dkb\n",
le32_to_cpu(firmware_usage->asFirmwareVramReserveInfo[0].ulStartAddrUsedByFirmware),
le16_to_cpu(firmware_usage->asFirmwareVramReserveInfo[0].usFirmwareUseInKb));
usage_bytes = le16_to_cpu(firmware_usage->asFirmwareVramReserveInfo[0].usFirmwareUseInKb) * 1024;
}
ctx->scratch_size_bytes = 0;
if (usage_bytes == 0)
usage_bytes = 20 * 1024;
/* allocate some scratch memory */
ctx->scratch = kzalloc(usage_bytes, GFP_KERNEL);
if (!ctx->scratch)
return -ENOMEM;
ctx->scratch_size_bytes = usage_bytes;
return 0;
}