mirror of https://gitee.com/openkylin/linux.git
686 lines
18 KiB
C
686 lines
18 KiB
C
/*
|
|
* Copyright 2009 Jerome Glisse.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
*/
|
|
/*
|
|
* Authors:
|
|
* Jerome Glisse <glisse@freedesktop.org>
|
|
* Dave Airlie
|
|
*/
|
|
#include <linux/seq_file.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/kref.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/firmware.h>
|
|
#include <drm/drmP.h>
|
|
#include "amdgpu.h"
|
|
#include "amdgpu_trace.h"
|
|
|
|
/*
|
|
* Fences
|
|
* Fences mark an event in the GPUs pipeline and are used
|
|
* for GPU/CPU synchronization. When the fence is written,
|
|
* it is expected that all buffers associated with that fence
|
|
* are no longer in use by the associated ring on the GPU and
|
|
* that the the relevant GPU caches have been flushed.
|
|
*/
|
|
|
|
struct amdgpu_fence {
|
|
struct dma_fence base;
|
|
|
|
/* RB, DMA, etc. */
|
|
struct amdgpu_ring *ring;
|
|
};
|
|
|
|
static struct kmem_cache *amdgpu_fence_slab;
|
|
|
|
int amdgpu_fence_slab_init(void)
|
|
{
|
|
amdgpu_fence_slab = kmem_cache_create(
|
|
"amdgpu_fence", sizeof(struct amdgpu_fence), 0,
|
|
SLAB_HWCACHE_ALIGN, NULL);
|
|
if (!amdgpu_fence_slab)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void amdgpu_fence_slab_fini(void)
|
|
{
|
|
rcu_barrier();
|
|
kmem_cache_destroy(amdgpu_fence_slab);
|
|
}
|
|
/*
|
|
* Cast helper
|
|
*/
|
|
static const struct dma_fence_ops amdgpu_fence_ops;
|
|
static inline struct amdgpu_fence *to_amdgpu_fence(struct dma_fence *f)
|
|
{
|
|
struct amdgpu_fence *__f = container_of(f, struct amdgpu_fence, base);
|
|
|
|
if (__f->base.ops == &amdgpu_fence_ops)
|
|
return __f;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_write - write a fence value
|
|
*
|
|
* @ring: ring the fence is associated with
|
|
* @seq: sequence number to write
|
|
*
|
|
* Writes a fence value to memory (all asics).
|
|
*/
|
|
static void amdgpu_fence_write(struct amdgpu_ring *ring, u32 seq)
|
|
{
|
|
struct amdgpu_fence_driver *drv = &ring->fence_drv;
|
|
|
|
if (drv->cpu_addr)
|
|
*drv->cpu_addr = cpu_to_le32(seq);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_read - read a fence value
|
|
*
|
|
* @ring: ring the fence is associated with
|
|
*
|
|
* Reads a fence value from memory (all asics).
|
|
* Returns the value of the fence read from memory.
|
|
*/
|
|
static u32 amdgpu_fence_read(struct amdgpu_ring *ring)
|
|
{
|
|
struct amdgpu_fence_driver *drv = &ring->fence_drv;
|
|
u32 seq = 0;
|
|
|
|
if (drv->cpu_addr)
|
|
seq = le32_to_cpu(*drv->cpu_addr);
|
|
else
|
|
seq = atomic_read(&drv->last_seq);
|
|
|
|
return seq;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_emit - emit a fence on the requested ring
|
|
*
|
|
* @ring: ring the fence is associated with
|
|
* @f: resulting fence object
|
|
*
|
|
* Emits a fence command on the requested ring (all asics).
|
|
* Returns 0 on success, -ENOMEM on failure.
|
|
*/
|
|
int amdgpu_fence_emit(struct amdgpu_ring *ring, struct dma_fence **f)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
struct amdgpu_fence *fence;
|
|
struct dma_fence *old, **ptr;
|
|
uint32_t seq;
|
|
|
|
fence = kmem_cache_alloc(amdgpu_fence_slab, GFP_KERNEL);
|
|
if (fence == NULL)
|
|
return -ENOMEM;
|
|
|
|
seq = ++ring->fence_drv.sync_seq;
|
|
fence->ring = ring;
|
|
dma_fence_init(&fence->base, &amdgpu_fence_ops,
|
|
&ring->fence_drv.lock,
|
|
adev->fence_context + ring->idx,
|
|
seq);
|
|
amdgpu_ring_emit_fence(ring, ring->fence_drv.gpu_addr,
|
|
seq, AMDGPU_FENCE_FLAG_INT);
|
|
|
|
ptr = &ring->fence_drv.fences[seq & ring->fence_drv.num_fences_mask];
|
|
/* This function can't be called concurrently anyway, otherwise
|
|
* emitting the fence would mess up the hardware ring buffer.
|
|
*/
|
|
old = rcu_dereference_protected(*ptr, 1);
|
|
if (old && !dma_fence_is_signaled(old)) {
|
|
DRM_INFO("rcu slot is busy\n");
|
|
dma_fence_wait(old, false);
|
|
}
|
|
|
|
rcu_assign_pointer(*ptr, dma_fence_get(&fence->base));
|
|
|
|
*f = &fence->base;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_schedule_fallback - schedule fallback check
|
|
*
|
|
* @ring: pointer to struct amdgpu_ring
|
|
*
|
|
* Start a timer as fallback to our interrupts.
|
|
*/
|
|
static void amdgpu_fence_schedule_fallback(struct amdgpu_ring *ring)
|
|
{
|
|
mod_timer(&ring->fence_drv.fallback_timer,
|
|
jiffies + AMDGPU_FENCE_JIFFIES_TIMEOUT);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_process - check for fence activity
|
|
*
|
|
* @ring: pointer to struct amdgpu_ring
|
|
*
|
|
* Checks the current fence value and calculates the last
|
|
* signalled fence value. Wakes the fence queue if the
|
|
* sequence number has increased.
|
|
*/
|
|
void amdgpu_fence_process(struct amdgpu_ring *ring)
|
|
{
|
|
struct amdgpu_fence_driver *drv = &ring->fence_drv;
|
|
uint32_t seq, last_seq;
|
|
int r;
|
|
|
|
do {
|
|
last_seq = atomic_read(&ring->fence_drv.last_seq);
|
|
seq = amdgpu_fence_read(ring);
|
|
|
|
} while (atomic_cmpxchg(&drv->last_seq, last_seq, seq) != last_seq);
|
|
|
|
if (seq != ring->fence_drv.sync_seq)
|
|
amdgpu_fence_schedule_fallback(ring);
|
|
|
|
if (unlikely(seq == last_seq))
|
|
return;
|
|
|
|
last_seq &= drv->num_fences_mask;
|
|
seq &= drv->num_fences_mask;
|
|
|
|
do {
|
|
struct dma_fence *fence, **ptr;
|
|
|
|
++last_seq;
|
|
last_seq &= drv->num_fences_mask;
|
|
ptr = &drv->fences[last_seq];
|
|
|
|
/* There is always exactly one thread signaling this fence slot */
|
|
fence = rcu_dereference_protected(*ptr, 1);
|
|
RCU_INIT_POINTER(*ptr, NULL);
|
|
|
|
if (!fence)
|
|
continue;
|
|
|
|
r = dma_fence_signal(fence);
|
|
if (!r)
|
|
DMA_FENCE_TRACE(fence, "signaled from irq context\n");
|
|
else
|
|
BUG();
|
|
|
|
dma_fence_put(fence);
|
|
} while (last_seq != seq);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_fallback - fallback for hardware interrupts
|
|
*
|
|
* @work: delayed work item
|
|
*
|
|
* Checks for fence activity.
|
|
*/
|
|
static void amdgpu_fence_fallback(unsigned long arg)
|
|
{
|
|
struct amdgpu_ring *ring = (void *)arg;
|
|
|
|
amdgpu_fence_process(ring);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_wait_empty - wait for all fences to signal
|
|
*
|
|
* @adev: amdgpu device pointer
|
|
* @ring: ring index the fence is associated with
|
|
*
|
|
* Wait for all fences on the requested ring to signal (all asics).
|
|
* Returns 0 if the fences have passed, error for all other cases.
|
|
*/
|
|
int amdgpu_fence_wait_empty(struct amdgpu_ring *ring)
|
|
{
|
|
uint64_t seq = ACCESS_ONCE(ring->fence_drv.sync_seq);
|
|
struct dma_fence *fence, **ptr;
|
|
int r;
|
|
|
|
if (!seq)
|
|
return 0;
|
|
|
|
ptr = &ring->fence_drv.fences[seq & ring->fence_drv.num_fences_mask];
|
|
rcu_read_lock();
|
|
fence = rcu_dereference(*ptr);
|
|
if (!fence || !dma_fence_get_rcu(fence)) {
|
|
rcu_read_unlock();
|
|
return 0;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
r = dma_fence_wait(fence, false);
|
|
dma_fence_put(fence);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_count_emitted - get the count of emitted fences
|
|
*
|
|
* @ring: ring the fence is associated with
|
|
*
|
|
* Get the number of fences emitted on the requested ring (all asics).
|
|
* Returns the number of emitted fences on the ring. Used by the
|
|
* dynpm code to ring track activity.
|
|
*/
|
|
unsigned amdgpu_fence_count_emitted(struct amdgpu_ring *ring)
|
|
{
|
|
uint64_t emitted;
|
|
|
|
/* We are not protected by ring lock when reading the last sequence
|
|
* but it's ok to report slightly wrong fence count here.
|
|
*/
|
|
amdgpu_fence_process(ring);
|
|
emitted = 0x100000000ull;
|
|
emitted -= atomic_read(&ring->fence_drv.last_seq);
|
|
emitted += ACCESS_ONCE(ring->fence_drv.sync_seq);
|
|
return lower_32_bits(emitted);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_driver_start_ring - make the fence driver
|
|
* ready for use on the requested ring.
|
|
*
|
|
* @ring: ring to start the fence driver on
|
|
* @irq_src: interrupt source to use for this ring
|
|
* @irq_type: interrupt type to use for this ring
|
|
*
|
|
* Make the fence driver ready for processing (all asics).
|
|
* Not all asics have all rings, so each asic will only
|
|
* start the fence driver on the rings it has.
|
|
* Returns 0 for success, errors for failure.
|
|
*/
|
|
int amdgpu_fence_driver_start_ring(struct amdgpu_ring *ring,
|
|
struct amdgpu_irq_src *irq_src,
|
|
unsigned irq_type)
|
|
{
|
|
struct amdgpu_device *adev = ring->adev;
|
|
uint64_t index;
|
|
|
|
if (ring != &adev->uvd.ring) {
|
|
ring->fence_drv.cpu_addr = &adev->wb.wb[ring->fence_offs];
|
|
ring->fence_drv.gpu_addr = adev->wb.gpu_addr + (ring->fence_offs * 4);
|
|
} else {
|
|
/* put fence directly behind firmware */
|
|
index = ALIGN(adev->uvd.fw->size, 8);
|
|
ring->fence_drv.cpu_addr = adev->uvd.cpu_addr + index;
|
|
ring->fence_drv.gpu_addr = adev->uvd.gpu_addr + index;
|
|
}
|
|
amdgpu_fence_write(ring, atomic_read(&ring->fence_drv.last_seq));
|
|
amdgpu_irq_get(adev, irq_src, irq_type);
|
|
|
|
ring->fence_drv.irq_src = irq_src;
|
|
ring->fence_drv.irq_type = irq_type;
|
|
ring->fence_drv.initialized = true;
|
|
|
|
dev_info(adev->dev, "fence driver on ring %d use gpu addr 0x%016llx, "
|
|
"cpu addr 0x%p\n", ring->idx,
|
|
ring->fence_drv.gpu_addr, ring->fence_drv.cpu_addr);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_driver_init_ring - init the fence driver
|
|
* for the requested ring.
|
|
*
|
|
* @ring: ring to init the fence driver on
|
|
* @num_hw_submission: number of entries on the hardware queue
|
|
*
|
|
* Init the fence driver for the requested ring (all asics).
|
|
* Helper function for amdgpu_fence_driver_init().
|
|
*/
|
|
int amdgpu_fence_driver_init_ring(struct amdgpu_ring *ring,
|
|
unsigned num_hw_submission)
|
|
{
|
|
long timeout;
|
|
int r;
|
|
|
|
/* Check that num_hw_submission is a power of two */
|
|
if ((num_hw_submission & (num_hw_submission - 1)) != 0)
|
|
return -EINVAL;
|
|
|
|
ring->fence_drv.cpu_addr = NULL;
|
|
ring->fence_drv.gpu_addr = 0;
|
|
ring->fence_drv.sync_seq = 0;
|
|
atomic_set(&ring->fence_drv.last_seq, 0);
|
|
ring->fence_drv.initialized = false;
|
|
|
|
setup_timer(&ring->fence_drv.fallback_timer, amdgpu_fence_fallback,
|
|
(unsigned long)ring);
|
|
|
|
ring->fence_drv.num_fences_mask = num_hw_submission * 2 - 1;
|
|
spin_lock_init(&ring->fence_drv.lock);
|
|
ring->fence_drv.fences = kcalloc(num_hw_submission * 2, sizeof(void *),
|
|
GFP_KERNEL);
|
|
if (!ring->fence_drv.fences)
|
|
return -ENOMEM;
|
|
|
|
/* No need to setup the GPU scheduler for KIQ ring */
|
|
if (ring->funcs->type != AMDGPU_RING_TYPE_KIQ) {
|
|
timeout = msecs_to_jiffies(amdgpu_lockup_timeout);
|
|
if (timeout == 0) {
|
|
/*
|
|
* FIXME:
|
|
* Delayed workqueue cannot use it directly,
|
|
* so the scheduler will not use delayed workqueue if
|
|
* MAX_SCHEDULE_TIMEOUT is set.
|
|
* Currently keep it simple and silly.
|
|
*/
|
|
timeout = MAX_SCHEDULE_TIMEOUT;
|
|
}
|
|
r = amd_sched_init(&ring->sched, &amdgpu_sched_ops,
|
|
num_hw_submission,
|
|
timeout, ring->name);
|
|
if (r) {
|
|
DRM_ERROR("Failed to create scheduler on ring %s.\n",
|
|
ring->name);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_driver_init - init the fence driver
|
|
* for all possible rings.
|
|
*
|
|
* @adev: amdgpu device pointer
|
|
*
|
|
* Init the fence driver for all possible rings (all asics).
|
|
* Not all asics have all rings, so each asic will only
|
|
* start the fence driver on the rings it has using
|
|
* amdgpu_fence_driver_start_ring().
|
|
* Returns 0 for success.
|
|
*/
|
|
int amdgpu_fence_driver_init(struct amdgpu_device *adev)
|
|
{
|
|
if (amdgpu_debugfs_fence_init(adev))
|
|
dev_err(adev->dev, "fence debugfs file creation failed\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_driver_fini - tear down the fence driver
|
|
* for all possible rings.
|
|
*
|
|
* @adev: amdgpu device pointer
|
|
*
|
|
* Tear down the fence driver for all possible rings (all asics).
|
|
*/
|
|
void amdgpu_fence_driver_fini(struct amdgpu_device *adev)
|
|
{
|
|
unsigned i, j;
|
|
int r;
|
|
|
|
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
|
|
struct amdgpu_ring *ring = adev->rings[i];
|
|
|
|
if (!ring || !ring->fence_drv.initialized)
|
|
continue;
|
|
r = amdgpu_fence_wait_empty(ring);
|
|
if (r) {
|
|
/* no need to trigger GPU reset as we are unloading */
|
|
amdgpu_fence_driver_force_completion(adev);
|
|
}
|
|
amdgpu_irq_put(adev, ring->fence_drv.irq_src,
|
|
ring->fence_drv.irq_type);
|
|
amd_sched_fini(&ring->sched);
|
|
del_timer_sync(&ring->fence_drv.fallback_timer);
|
|
for (j = 0; j <= ring->fence_drv.num_fences_mask; ++j)
|
|
dma_fence_put(ring->fence_drv.fences[j]);
|
|
kfree(ring->fence_drv.fences);
|
|
ring->fence_drv.fences = NULL;
|
|
ring->fence_drv.initialized = false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_driver_suspend - suspend the fence driver
|
|
* for all possible rings.
|
|
*
|
|
* @adev: amdgpu device pointer
|
|
*
|
|
* Suspend the fence driver for all possible rings (all asics).
|
|
*/
|
|
void amdgpu_fence_driver_suspend(struct amdgpu_device *adev)
|
|
{
|
|
int i, r;
|
|
|
|
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
|
|
struct amdgpu_ring *ring = adev->rings[i];
|
|
if (!ring || !ring->fence_drv.initialized)
|
|
continue;
|
|
|
|
/* wait for gpu to finish processing current batch */
|
|
r = amdgpu_fence_wait_empty(ring);
|
|
if (r) {
|
|
/* delay GPU reset to resume */
|
|
amdgpu_fence_driver_force_completion(adev);
|
|
}
|
|
|
|
/* disable the interrupt */
|
|
amdgpu_irq_put(adev, ring->fence_drv.irq_src,
|
|
ring->fence_drv.irq_type);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_driver_resume - resume the fence driver
|
|
* for all possible rings.
|
|
*
|
|
* @adev: amdgpu device pointer
|
|
*
|
|
* Resume the fence driver for all possible rings (all asics).
|
|
* Not all asics have all rings, so each asic will only
|
|
* start the fence driver on the rings it has using
|
|
* amdgpu_fence_driver_start_ring().
|
|
* Returns 0 for success.
|
|
*/
|
|
void amdgpu_fence_driver_resume(struct amdgpu_device *adev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
|
|
struct amdgpu_ring *ring = adev->rings[i];
|
|
if (!ring || !ring->fence_drv.initialized)
|
|
continue;
|
|
|
|
/* enable the interrupt */
|
|
amdgpu_irq_get(adev, ring->fence_drv.irq_src,
|
|
ring->fence_drv.irq_type);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_driver_force_completion - force all fence waiter to complete
|
|
*
|
|
* @adev: amdgpu device pointer
|
|
*
|
|
* In case of GPU reset failure make sure no process keep waiting on fence
|
|
* that will never complete.
|
|
*/
|
|
void amdgpu_fence_driver_force_completion(struct amdgpu_device *adev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
|
|
struct amdgpu_ring *ring = adev->rings[i];
|
|
if (!ring || !ring->fence_drv.initialized)
|
|
continue;
|
|
|
|
amdgpu_fence_write(ring, ring->fence_drv.sync_seq);
|
|
}
|
|
}
|
|
|
|
void amdgpu_fence_driver_force_completion_ring(struct amdgpu_ring *ring)
|
|
{
|
|
if (ring)
|
|
amdgpu_fence_write(ring, ring->fence_drv.sync_seq);
|
|
}
|
|
|
|
/*
|
|
* Common fence implementation
|
|
*/
|
|
|
|
static const char *amdgpu_fence_get_driver_name(struct dma_fence *fence)
|
|
{
|
|
return "amdgpu";
|
|
}
|
|
|
|
static const char *amdgpu_fence_get_timeline_name(struct dma_fence *f)
|
|
{
|
|
struct amdgpu_fence *fence = to_amdgpu_fence(f);
|
|
return (const char *)fence->ring->name;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_enable_signaling - enable signalling on fence
|
|
* @fence: fence
|
|
*
|
|
* This function is called with fence_queue lock held, and adds a callback
|
|
* to fence_queue that checks if this fence is signaled, and if so it
|
|
* signals the fence and removes itself.
|
|
*/
|
|
static bool amdgpu_fence_enable_signaling(struct dma_fence *f)
|
|
{
|
|
struct amdgpu_fence *fence = to_amdgpu_fence(f);
|
|
struct amdgpu_ring *ring = fence->ring;
|
|
|
|
if (!timer_pending(&ring->fence_drv.fallback_timer))
|
|
amdgpu_fence_schedule_fallback(ring);
|
|
|
|
DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", ring->idx);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_free - free up the fence memory
|
|
*
|
|
* @rcu: RCU callback head
|
|
*
|
|
* Free up the fence memory after the RCU grace period.
|
|
*/
|
|
static void amdgpu_fence_free(struct rcu_head *rcu)
|
|
{
|
|
struct dma_fence *f = container_of(rcu, struct dma_fence, rcu);
|
|
struct amdgpu_fence *fence = to_amdgpu_fence(f);
|
|
kmem_cache_free(amdgpu_fence_slab, fence);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_fence_release - callback that fence can be freed
|
|
*
|
|
* @fence: fence
|
|
*
|
|
* This function is called when the reference count becomes zero.
|
|
* It just RCU schedules freeing up the fence.
|
|
*/
|
|
static void amdgpu_fence_release(struct dma_fence *f)
|
|
{
|
|
call_rcu(&f->rcu, amdgpu_fence_free);
|
|
}
|
|
|
|
static const struct dma_fence_ops amdgpu_fence_ops = {
|
|
.get_driver_name = amdgpu_fence_get_driver_name,
|
|
.get_timeline_name = amdgpu_fence_get_timeline_name,
|
|
.enable_signaling = amdgpu_fence_enable_signaling,
|
|
.wait = dma_fence_default_wait,
|
|
.release = amdgpu_fence_release,
|
|
};
|
|
|
|
/*
|
|
* Fence debugfs
|
|
*/
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
static int amdgpu_debugfs_fence_info(struct seq_file *m, void *data)
|
|
{
|
|
struct drm_info_node *node = (struct drm_info_node *)m->private;
|
|
struct drm_device *dev = node->minor->dev;
|
|
struct amdgpu_device *adev = dev->dev_private;
|
|
int i;
|
|
|
|
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
|
|
struct amdgpu_ring *ring = adev->rings[i];
|
|
if (!ring || !ring->fence_drv.initialized)
|
|
continue;
|
|
|
|
amdgpu_fence_process(ring);
|
|
|
|
seq_printf(m, "--- ring %d (%s) ---\n", i, ring->name);
|
|
seq_printf(m, "Last signaled fence 0x%08x\n",
|
|
atomic_read(&ring->fence_drv.last_seq));
|
|
seq_printf(m, "Last emitted 0x%08x\n",
|
|
ring->fence_drv.sync_seq);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_debugfs_gpu_reset - manually trigger a gpu reset
|
|
*
|
|
* Manually trigger a gpu reset at the next fence wait.
|
|
*/
|
|
static int amdgpu_debugfs_gpu_reset(struct seq_file *m, void *data)
|
|
{
|
|
struct drm_info_node *node = (struct drm_info_node *) m->private;
|
|
struct drm_device *dev = node->minor->dev;
|
|
struct amdgpu_device *adev = dev->dev_private;
|
|
|
|
seq_printf(m, "gpu reset\n");
|
|
amdgpu_gpu_reset(adev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct drm_info_list amdgpu_debugfs_fence_list[] = {
|
|
{"amdgpu_fence_info", &amdgpu_debugfs_fence_info, 0, NULL},
|
|
{"amdgpu_gpu_reset", &amdgpu_debugfs_gpu_reset, 0, NULL}
|
|
};
|
|
|
|
static const struct drm_info_list amdgpu_debugfs_fence_list_sriov[] = {
|
|
{"amdgpu_fence_info", &amdgpu_debugfs_fence_info, 0, NULL},
|
|
};
|
|
#endif
|
|
|
|
int amdgpu_debugfs_fence_init(struct amdgpu_device *adev)
|
|
{
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
if (amdgpu_sriov_vf(adev))
|
|
return amdgpu_debugfs_add_files(adev, amdgpu_debugfs_fence_list_sriov, 1);
|
|
return amdgpu_debugfs_add_files(adev, amdgpu_debugfs_fence_list, 2);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|