linux/drivers/crypto/inside-secure/safexcel_hash.c

3142 lines
88 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017 Marvell
*
* Antoine Tenart <antoine.tenart@free-electrons.com>
*/
#include <crypto/aes.h>
#include <crypto/hmac.h>
#include <crypto/md5.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/sha3.h>
#include <crypto/skcipher.h>
#include <crypto/sm3.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include "safexcel.h"
struct safexcel_ahash_ctx {
struct safexcel_context base;
u32 alg;
u8 key_sz;
bool cbcmac;
bool do_fallback;
bool fb_init_done;
bool fb_do_setkey;
struct crypto_cipher *kaes;
struct crypto_ahash *fback;
struct crypto_shash *shpre;
struct shash_desc *shdesc;
};
struct safexcel_ahash_req {
bool last_req;
bool finish;
bool hmac;
bool needs_inv;
bool hmac_zlen;
bool len_is_le;
bool not_first;
bool xcbcmac;
int nents;
dma_addr_t result_dma;
u32 digest;
u8 state_sz; /* expected state size, only set once */
u8 block_sz; /* block size, only set once */
u8 digest_sz; /* output digest size, only set once */
__le32 state[SHA3_512_BLOCK_SIZE /
sizeof(__le32)] __aligned(sizeof(__le32));
u64 len;
u64 processed;
u8 cache[HASH_CACHE_SIZE] __aligned(sizeof(u32));
dma_addr_t cache_dma;
unsigned int cache_sz;
u8 cache_next[HASH_CACHE_SIZE] __aligned(sizeof(u32));
};
static inline u64 safexcel_queued_len(struct safexcel_ahash_req *req)
{
return req->len - req->processed;
}
static void safexcel_hash_token(struct safexcel_command_desc *cdesc,
u32 input_length, u32 result_length,
bool cbcmac)
{
struct safexcel_token *token =
(struct safexcel_token *)cdesc->control_data.token;
token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[0].packet_length = input_length;
token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
input_length &= 15;
if (unlikely(cbcmac && input_length)) {
token[0].stat = 0;
token[1].opcode = EIP197_TOKEN_OPCODE_INSERT;
token[1].packet_length = 16 - input_length;
token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
token[1].instructions = EIP197_TOKEN_INS_TYPE_HASH;
} else {
token[0].stat = EIP197_TOKEN_STAT_LAST_HASH;
eip197_noop_token(&token[1]);
}
token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[2].packet_length = result_length;
token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
eip197_noop_token(&token[3]);
}
static void safexcel_context_control(struct safexcel_ahash_ctx *ctx,
struct safexcel_ahash_req *req,
struct safexcel_command_desc *cdesc)
{
struct safexcel_crypto_priv *priv = ctx->base.priv;
u64 count = 0;
cdesc->control_data.control0 = ctx->alg;
cdesc->control_data.control1 = 0;
/*
* Copy the input digest if needed, and setup the context
* fields. Do this now as we need it to setup the first command
* descriptor.
*/
if (unlikely(req->digest == CONTEXT_CONTROL_DIGEST_XCM)) {
if (req->xcbcmac)
memcpy(ctx->base.ctxr->data, &ctx->base.ipad, ctx->key_sz);
else
memcpy(ctx->base.ctxr->data, req->state, req->state_sz);
if (!req->finish && req->xcbcmac)
cdesc->control_data.control0 |=
CONTEXT_CONTROL_DIGEST_XCM |
CONTEXT_CONTROL_TYPE_HASH_OUT |
CONTEXT_CONTROL_NO_FINISH_HASH |
CONTEXT_CONTROL_SIZE(req->state_sz /
sizeof(u32));
else
cdesc->control_data.control0 |=
CONTEXT_CONTROL_DIGEST_XCM |
CONTEXT_CONTROL_TYPE_HASH_OUT |
CONTEXT_CONTROL_SIZE(req->state_sz /
sizeof(u32));
return;
} else if (!req->processed) {
/* First - and possibly only - block of basic hash only */
if (req->finish)
cdesc->control_data.control0 |= req->digest |
CONTEXT_CONTROL_TYPE_HASH_OUT |
CONTEXT_CONTROL_RESTART_HASH |
/* ensure its not 0! */
CONTEXT_CONTROL_SIZE(1);
else
cdesc->control_data.control0 |= req->digest |
CONTEXT_CONTROL_TYPE_HASH_OUT |
CONTEXT_CONTROL_RESTART_HASH |
CONTEXT_CONTROL_NO_FINISH_HASH |
/* ensure its not 0! */
CONTEXT_CONTROL_SIZE(1);
return;
}
/* Hash continuation or HMAC, setup (inner) digest from state */
memcpy(ctx->base.ctxr->data, req->state, req->state_sz);
if (req->finish) {
/* Compute digest count for hash/HMAC finish operations */
if ((req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) ||
req->hmac_zlen || (req->processed != req->block_sz)) {
count = req->processed / EIP197_COUNTER_BLOCK_SIZE;
/* This is a hardware limitation, as the
* counter must fit into an u32. This represents
* a fairly big amount of input data, so we
* shouldn't see this.
*/
if (unlikely(count & 0xffffffff00000000ULL)) {
dev_warn(priv->dev,
"Input data is too big\n");
return;
}
}
if ((req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) ||
/* Special case: zero length HMAC */
req->hmac_zlen ||
/* PE HW < 4.4 cannot do HMAC continue, fake using hash */
(req->processed != req->block_sz)) {
/* Basic hash continue operation, need digest + cnt */
cdesc->control_data.control0 |=
CONTEXT_CONTROL_SIZE((req->state_sz >> 2) + 1) |
CONTEXT_CONTROL_TYPE_HASH_OUT |
CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
/* For zero-len HMAC, don't finalize, already padded! */
if (req->hmac_zlen)
cdesc->control_data.control0 |=
CONTEXT_CONTROL_NO_FINISH_HASH;
cdesc->control_data.control1 |=
CONTEXT_CONTROL_DIGEST_CNT;
ctx->base.ctxr->data[req->state_sz >> 2] =
cpu_to_le32(count);
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
/* Clear zero-length HMAC flag for next operation! */
req->hmac_zlen = false;
} else { /* HMAC */
/* Need outer digest for HMAC finalization */
memcpy(ctx->base.ctxr->data + (req->state_sz >> 2),
&ctx->base.opad, req->state_sz);
/* Single pass HMAC - no digest count */
cdesc->control_data.control0 |=
CONTEXT_CONTROL_SIZE(req->state_sz >> 1) |
CONTEXT_CONTROL_TYPE_HASH_OUT |
CONTEXT_CONTROL_DIGEST_HMAC;
}
} else { /* Hash continuation, do not finish yet */
cdesc->control_data.control0 |=
CONTEXT_CONTROL_SIZE(req->state_sz >> 2) |
CONTEXT_CONTROL_DIGEST_PRECOMPUTED |
CONTEXT_CONTROL_TYPE_HASH_OUT |
CONTEXT_CONTROL_NO_FINISH_HASH;
}
}
static int safexcel_ahash_enqueue(struct ahash_request *areq);
static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct safexcel_result_desc *rdesc;
struct ahash_request *areq = ahash_request_cast(async);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_req *sreq = ahash_request_ctx(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
u64 cache_len;
*ret = 0;
rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
if (IS_ERR(rdesc)) {
dev_err(priv->dev,
"hash: result: could not retrieve the result descriptor\n");
*ret = PTR_ERR(rdesc);
} else {
*ret = safexcel_rdesc_check_errors(priv, rdesc);
}
safexcel_complete(priv, ring);
if (sreq->nents) {
dma_unmap_sg(priv->dev, areq->src, sreq->nents, DMA_TO_DEVICE);
sreq->nents = 0;
}
if (sreq->result_dma) {
dma_unmap_single(priv->dev, sreq->result_dma, sreq->digest_sz,
DMA_FROM_DEVICE);
sreq->result_dma = 0;
}
if (sreq->cache_dma) {
dma_unmap_single(priv->dev, sreq->cache_dma, sreq->cache_sz,
DMA_TO_DEVICE);
sreq->cache_dma = 0;
sreq->cache_sz = 0;
}
if (sreq->finish) {
if (sreq->hmac &&
(sreq->digest != CONTEXT_CONTROL_DIGEST_HMAC)) {
/* Faking HMAC using hash - need to do outer hash */
memcpy(sreq->cache, sreq->state,
crypto_ahash_digestsize(ahash));
memcpy(sreq->state, &ctx->base.opad, sreq->digest_sz);
sreq->len = sreq->block_sz +
crypto_ahash_digestsize(ahash);
sreq->processed = sreq->block_sz;
sreq->hmac = 0;
if (priv->flags & EIP197_TRC_CACHE)
ctx->base.needs_inv = true;
areq->nbytes = 0;
safexcel_ahash_enqueue(areq);
*should_complete = false; /* Not done yet */
return 1;
}
if (unlikely(sreq->digest == CONTEXT_CONTROL_DIGEST_XCM &&
ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_CRC32)) {
/* Undo final XOR with 0xffffffff ...*/
*(__le32 *)areq->result = ~sreq->state[0];
} else {
memcpy(areq->result, sreq->state,
crypto_ahash_digestsize(ahash));
}
}
cache_len = safexcel_queued_len(sreq);
if (cache_len)
memcpy(sreq->cache, sreq->cache_next, cache_len);
*should_complete = true;
return 1;
}
static int safexcel_ahash_send_req(struct crypto_async_request *async, int ring,
int *commands, int *results)
{
struct ahash_request *areq = ahash_request_cast(async);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_crypto_priv *priv = ctx->base.priv;
struct safexcel_command_desc *cdesc, *first_cdesc = NULL;
struct safexcel_result_desc *rdesc;
struct scatterlist *sg;
struct safexcel_token *dmmy;
int i, extra = 0, n_cdesc = 0, ret = 0, cache_len, skip = 0;
u64 queued, len;
queued = safexcel_queued_len(req);
if (queued <= HASH_CACHE_SIZE)
cache_len = queued;
else
cache_len = queued - areq->nbytes;
if (!req->finish && !req->last_req) {
/* If this is not the last request and the queued data does not
* fit into full cache blocks, cache it for the next send call.
*/
extra = queued & (HASH_CACHE_SIZE - 1);
/* If this is not the last request and the queued data
* is a multiple of a block, cache the last one for now.
*/
if (!extra)
extra = HASH_CACHE_SIZE;
sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
req->cache_next, extra,
areq->nbytes - extra);
queued -= extra;
if (!queued) {
*commands = 0;
*results = 0;
return 0;
}
extra = 0;
}
if (unlikely(req->xcbcmac && req->processed > AES_BLOCK_SIZE)) {
if (unlikely(cache_len < AES_BLOCK_SIZE)) {
/*
* Cache contains less than 1 full block, complete.
*/
extra = AES_BLOCK_SIZE - cache_len;
if (queued > cache_len) {
/* More data follows: borrow bytes */
u64 tmp = queued - cache_len;
skip = min_t(u64, tmp, extra);
sg_pcopy_to_buffer(areq->src,
sg_nents(areq->src),
req->cache + cache_len,
skip, 0);
}
extra -= skip;
memset(req->cache + cache_len + skip, 0, extra);
if (!ctx->cbcmac && extra) {
// 10- padding for XCBCMAC & CMAC
req->cache[cache_len + skip] = 0x80;
// HW will use K2 iso K3 - compensate!
for (i = 0; i < AES_BLOCK_SIZE / 4; i++) {
u32 *cache = (void *)req->cache;
u32 *ipad = ctx->base.ipad.word;
u32 x;
x = ipad[i] ^ ipad[i + 4];
cache[i] ^= swab(x);
}
}
cache_len = AES_BLOCK_SIZE;
queued = queued + extra;
}
/* XCBC continue: XOR previous result into 1st word */
crypto_xor(req->cache, (const u8 *)req->state, AES_BLOCK_SIZE);
}
len = queued;
/* Add a command descriptor for the cached data, if any */
if (cache_len) {
req->cache_dma = dma_map_single(priv->dev, req->cache,
cache_len, DMA_TO_DEVICE);
if (dma_mapping_error(priv->dev, req->cache_dma))
return -EINVAL;
req->cache_sz = cache_len;
first_cdesc = safexcel_add_cdesc(priv, ring, 1,
(cache_len == len),
req->cache_dma, cache_len,
len, ctx->base.ctxr_dma,
&dmmy);
if (IS_ERR(first_cdesc)) {
ret = PTR_ERR(first_cdesc);
goto unmap_cache;
}
n_cdesc++;
queued -= cache_len;
if (!queued)
goto send_command;
}
/* Now handle the current ahash request buffer(s) */
req->nents = dma_map_sg(priv->dev, areq->src,
sg_nents_for_len(areq->src,
areq->nbytes),
DMA_TO_DEVICE);
if (!req->nents) {
ret = -ENOMEM;
goto cdesc_rollback;
}
for_each_sg(areq->src, sg, req->nents, i) {
int sglen = sg_dma_len(sg);
if (unlikely(sglen <= skip)) {
skip -= sglen;
continue;
}
/* Do not overflow the request */
if ((queued + skip) <= sglen)
sglen = queued;
else
sglen -= skip;
cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
!(queued - sglen),
sg_dma_address(sg) + skip, sglen,
len, ctx->base.ctxr_dma, &dmmy);
if (IS_ERR(cdesc)) {
ret = PTR_ERR(cdesc);
goto unmap_sg;
}
if (!n_cdesc)
first_cdesc = cdesc;
n_cdesc++;
queued -= sglen;
if (!queued)
break;
skip = 0;
}
send_command:
/* Setup the context options */
safexcel_context_control(ctx, req, first_cdesc);
/* Add the token */
safexcel_hash_token(first_cdesc, len, req->digest_sz, ctx->cbcmac);
req->result_dma = dma_map_single(priv->dev, req->state, req->digest_sz,
DMA_FROM_DEVICE);
if (dma_mapping_error(priv->dev, req->result_dma)) {
ret = -EINVAL;
goto unmap_sg;
}
/* Add a result descriptor */
rdesc = safexcel_add_rdesc(priv, ring, 1, 1, req->result_dma,
req->digest_sz);
if (IS_ERR(rdesc)) {
ret = PTR_ERR(rdesc);
goto unmap_result;
}
safexcel_rdr_req_set(priv, ring, rdesc, &areq->base);
req->processed += len - extra;
*commands = n_cdesc;
*results = 1;
return 0;
unmap_result:
dma_unmap_single(priv->dev, req->result_dma, req->digest_sz,
DMA_FROM_DEVICE);
unmap_sg:
if (req->nents) {
dma_unmap_sg(priv->dev, areq->src, req->nents, DMA_TO_DEVICE);
req->nents = 0;
}
cdesc_rollback:
for (i = 0; i < n_cdesc; i++)
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
unmap_cache:
if (req->cache_dma) {
dma_unmap_single(priv->dev, req->cache_dma, req->cache_sz,
DMA_TO_DEVICE);
req->cache_dma = 0;
req->cache_sz = 0;
}
return ret;
}
static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct safexcel_result_desc *rdesc;
struct ahash_request *areq = ahash_request_cast(async);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
int enq_ret;
*ret = 0;
rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
if (IS_ERR(rdesc)) {
dev_err(priv->dev,
"hash: invalidate: could not retrieve the result descriptor\n");
*ret = PTR_ERR(rdesc);
} else {
*ret = safexcel_rdesc_check_errors(priv, rdesc);
}
safexcel_complete(priv, ring);
if (ctx->base.exit_inv) {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
*should_complete = true;
return 1;
}
ring = safexcel_select_ring(priv);
ctx->base.ring = ring;
spin_lock_bh(&priv->ring[ring].queue_lock);
enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async);
spin_unlock_bh(&priv->ring[ring].queue_lock);
if (enq_ret != -EINPROGRESS)
*ret = enq_ret;
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
*should_complete = false;
return 1;
}
static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct ahash_request *areq = ahash_request_cast(async);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
int err;
BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && req->needs_inv);
if (req->needs_inv) {
req->needs_inv = false;
err = safexcel_handle_inv_result(priv, ring, async,
should_complete, ret);
} else {
err = safexcel_handle_req_result(priv, ring, async,
should_complete, ret);
}
return err;
}
static int safexcel_ahash_send_inv(struct crypto_async_request *async,
int ring, int *commands, int *results)
{
struct ahash_request *areq = ahash_request_cast(async);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
int ret;
ret = safexcel_invalidate_cache(async, ctx->base.priv,
ctx->base.ctxr_dma, ring);
if (unlikely(ret))
return ret;
*commands = 1;
*results = 1;
return 0;
}
static int safexcel_ahash_send(struct crypto_async_request *async,
int ring, int *commands, int *results)
{
struct ahash_request *areq = ahash_request_cast(async);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
int ret;
if (req->needs_inv)
ret = safexcel_ahash_send_inv(async, ring, commands, results);
else
ret = safexcel_ahash_send_req(async, ring, commands, results);
return ret;
}
static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->base.priv;
EIP197_REQUEST_ON_STACK(req, ahash, EIP197_AHASH_REQ_SIZE);
struct safexcel_ahash_req *rctx = ahash_request_ctx(req);
struct safexcel_inv_result result = {};
int ring = ctx->base.ring;
memset(req, 0, EIP197_AHASH_REQ_SIZE);
/* create invalidation request */
init_completion(&result.completion);
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_inv_complete, &result);
ahash_request_set_tfm(req, __crypto_ahash_cast(tfm));
ctx = crypto_tfm_ctx(req->base.tfm);
ctx->base.exit_inv = true;
rctx->needs_inv = true;
spin_lock_bh(&priv->ring[ring].queue_lock);
crypto_enqueue_request(&priv->ring[ring].queue, &req->base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
wait_for_completion(&result.completion);
if (result.error) {
dev_warn(priv->dev, "hash: completion error (%d)\n",
result.error);
return result.error;
}
return 0;
}
/* safexcel_ahash_cache: cache data until at least one request can be sent to
* the engine, aka. when there is at least 1 block size in the pipe.
*/
static int safexcel_ahash_cache(struct ahash_request *areq)
{
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
u64 cache_len;
/* cache_len: everything accepted by the driver but not sent yet,
* tot sz handled by update() - last req sz - tot sz handled by send()
*/
cache_len = safexcel_queued_len(req);
/*
* In case there isn't enough bytes to proceed (less than a
* block size), cache the data until we have enough.
*/
if (cache_len + areq->nbytes <= HASH_CACHE_SIZE) {
sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
req->cache + cache_len,
areq->nbytes, 0);
return 0;
}
/* We couldn't cache all the data */
return -E2BIG;
}
static int safexcel_ahash_enqueue(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct safexcel_crypto_priv *priv = ctx->base.priv;
int ret, ring;
req->needs_inv = false;
if (ctx->base.ctxr) {
if (priv->flags & EIP197_TRC_CACHE && !ctx->base.needs_inv &&
/* invalidate for *any* non-XCBC continuation */
((req->not_first && !req->xcbcmac) ||
/* invalidate if (i)digest changed */
memcmp(ctx->base.ctxr->data, req->state, req->state_sz) ||
/* invalidate for HMAC finish with odigest changed */
(req->finish && req->hmac &&
memcmp(ctx->base.ctxr->data + (req->state_sz>>2),
&ctx->base.opad, req->state_sz))))
/*
* We're still setting needs_inv here, even though it is
* cleared right away, because the needs_inv flag can be
* set in other functions and we want to keep the same
* logic.
*/
ctx->base.needs_inv = true;
if (ctx->base.needs_inv) {
ctx->base.needs_inv = false;
req->needs_inv = true;
}
} else {
ctx->base.ring = safexcel_select_ring(priv);
ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
EIP197_GFP_FLAGS(areq->base),
&ctx->base.ctxr_dma);
if (!ctx->base.ctxr)
return -ENOMEM;
}
req->not_first = true;
ring = ctx->base.ring;
spin_lock_bh(&priv->ring[ring].queue_lock);
ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
return ret;
}
static int safexcel_ahash_update(struct ahash_request *areq)
{
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
int ret;
/* If the request is 0 length, do nothing */
if (!areq->nbytes)
return 0;
/* Add request to the cache if it fits */
ret = safexcel_ahash_cache(areq);
/* Update total request length */
req->len += areq->nbytes;
/* If not all data could fit into the cache, go process the excess.
* Also go process immediately for an HMAC IV precompute, which
* will never be finished at all, but needs to be processed anyway.
*/
if ((ret && !req->finish) || req->last_req)
return safexcel_ahash_enqueue(areq);
return 0;
}
static int safexcel_ahash_final(struct ahash_request *areq)
{
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
req->finish = true;
if (unlikely(!req->len && !areq->nbytes)) {
/*
* If we have an overall 0 length *hash* request:
* The HW cannot do 0 length hash, so we provide the correct
* result directly here.
*/
if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5)
memcpy(areq->result, md5_zero_message_hash,
MD5_DIGEST_SIZE);
else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
memcpy(areq->result, sha1_zero_message_hash,
SHA1_DIGEST_SIZE);
else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224)
memcpy(areq->result, sha224_zero_message_hash,
SHA224_DIGEST_SIZE);
else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
memcpy(areq->result, sha256_zero_message_hash,
SHA256_DIGEST_SIZE);
else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA384)
memcpy(areq->result, sha384_zero_message_hash,
SHA384_DIGEST_SIZE);
else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA512)
memcpy(areq->result, sha512_zero_message_hash,
SHA512_DIGEST_SIZE);
else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SM3) {
memcpy(areq->result,
EIP197_SM3_ZEROM_HASH, SM3_DIGEST_SIZE);
}
return 0;
} else if (unlikely(req->digest == CONTEXT_CONTROL_DIGEST_XCM &&
ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5 &&
req->len == sizeof(u32) && !areq->nbytes)) {
/* Zero length CRC32 */
memcpy(areq->result, &ctx->base.ipad, sizeof(u32));
return 0;
} else if (unlikely(ctx->cbcmac && req->len == AES_BLOCK_SIZE &&
!areq->nbytes)) {
/* Zero length CBC MAC */
memset(areq->result, 0, AES_BLOCK_SIZE);
return 0;
} else if (unlikely(req->xcbcmac && req->len == AES_BLOCK_SIZE &&
!areq->nbytes)) {
/* Zero length (X)CBC/CMAC */
int i;
for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++) {
u32 *result = (void *)areq->result;
/* K3 */
result[i] = swab(ctx->base.ipad.word[i + 4]);
}
areq->result[0] ^= 0x80; // 10- padding
crypto_cipher_encrypt_one(ctx->kaes, areq->result, areq->result);
return 0;
} else if (unlikely(req->hmac &&
(req->len == req->block_sz) &&
!areq->nbytes)) {
/*
* If we have an overall 0 length *HMAC* request:
* For HMAC, we need to finalize the inner digest
* and then perform the outer hash.
*/
/* generate pad block in the cache */
/* start with a hash block of all zeroes */
memset(req->cache, 0, req->block_sz);
/* set the first byte to 0x80 to 'append a 1 bit' */
req->cache[0] = 0x80;
/* add the length in bits in the last 2 bytes */
if (req->len_is_le) {
/* Little endian length word (e.g. MD5) */
req->cache[req->block_sz-8] = (req->block_sz << 3) &
255;
req->cache[req->block_sz-7] = (req->block_sz >> 5);
} else {
/* Big endian length word (e.g. any SHA) */
req->cache[req->block_sz-2] = (req->block_sz >> 5);
req->cache[req->block_sz-1] = (req->block_sz << 3) &
255;
}
req->len += req->block_sz; /* plus 1 hash block */
/* Set special zero-length HMAC flag */
req->hmac_zlen = true;
/* Finalize HMAC */
req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
} else if (req->hmac) {
/* Finalize HMAC */
req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
}
return safexcel_ahash_enqueue(areq);
}
static int safexcel_ahash_finup(struct ahash_request *areq)
{
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
req->finish = true;
safexcel_ahash_update(areq);
return safexcel_ahash_final(areq);
}
static int safexcel_ahash_export(struct ahash_request *areq, void *out)
{
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct safexcel_ahash_export_state *export = out;
export->len = req->len;
export->processed = req->processed;
export->digest = req->digest;
memcpy(export->state, req->state, req->state_sz);
memcpy(export->cache, req->cache, HASH_CACHE_SIZE);
return 0;
}
static int safexcel_ahash_import(struct ahash_request *areq, const void *in)
{
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
const struct safexcel_ahash_export_state *export = in;
int ret;
ret = crypto_ahash_init(areq);
if (ret)
return ret;
req->len = export->len;
req->processed = export->processed;
req->digest = export->digest;
memcpy(req->cache, export->cache, HASH_CACHE_SIZE);
memcpy(req->state, export->state, req->state_sz);
return 0;
}
static int safexcel_ahash_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_alg_template *tmpl =
container_of(__crypto_ahash_alg(tfm->__crt_alg),
struct safexcel_alg_template, alg.ahash);
ctx->base.priv = tmpl->priv;
ctx->base.send = safexcel_ahash_send;
ctx->base.handle_result = safexcel_handle_result;
ctx->fb_do_setkey = false;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct safexcel_ahash_req));
return 0;
}
static int safexcel_sha1_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA1_DIGEST_SIZE;
req->digest_sz = SHA1_DIGEST_SIZE;
req->block_sz = SHA1_BLOCK_SIZE;
return 0;
}
static int safexcel_sha1_digest(struct ahash_request *areq)
{
int ret = safexcel_sha1_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->base.priv;
int ret;
/* context not allocated, skip invalidation */
if (!ctx->base.ctxr)
return;
if (priv->flags & EIP197_TRC_CACHE) {
ret = safexcel_ahash_exit_inv(tfm);
if (ret)
dev_warn(priv->dev, "hash: invalidation error %d\n", ret);
} else {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
}
}
struct safexcel_alg_template safexcel_alg_sha1 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA1,
.alg.ahash = {
.init = safexcel_sha1_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_sha1_digest,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "safexcel-sha1",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sha1_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Start from ipad precompute */
memcpy(req->state, &ctx->base.ipad, SHA1_DIGEST_SIZE);
/* Already processed the key^ipad part now! */
req->len = SHA1_BLOCK_SIZE;
req->processed = SHA1_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA1_DIGEST_SIZE;
req->digest_sz = SHA1_DIGEST_SIZE;
req->block_sz = SHA1_BLOCK_SIZE;
req->hmac = true;
return 0;
}
static int safexcel_hmac_sha1_digest(struct ahash_request *areq)
{
int ret = safexcel_hmac_sha1_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_ahash_result {
struct completion completion;
int error;
};
static void safexcel_ahash_complete(struct crypto_async_request *req, int error)
{
struct safexcel_ahash_result *result = req->data;
if (error == -EINPROGRESS)
return;
result->error = error;
complete(&result->completion);
}
static int safexcel_hmac_init_pad(struct ahash_request *areq,
unsigned int blocksize, const u8 *key,
unsigned int keylen, u8 *ipad, u8 *opad)
{
struct safexcel_ahash_result result;
struct scatterlist sg;
int ret, i;
u8 *keydup;
if (keylen <= blocksize) {
memcpy(ipad, key, keylen);
} else {
keydup = kmemdup(key, keylen, GFP_KERNEL);
if (!keydup)
return -ENOMEM;
ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_ahash_complete, &result);
sg_init_one(&sg, keydup, keylen);
ahash_request_set_crypt(areq, &sg, ipad, keylen);
init_completion(&result.completion);
ret = crypto_ahash_digest(areq);
if (ret == -EINPROGRESS || ret == -EBUSY) {
wait_for_completion_interruptible(&result.completion);
ret = result.error;
}
/* Avoid leaking */
kfree_sensitive(keydup);
if (ret)
return ret;
keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
}
memset(ipad + keylen, 0, blocksize - keylen);
memcpy(opad, ipad, blocksize);
for (i = 0; i < blocksize; i++) {
ipad[i] ^= HMAC_IPAD_VALUE;
opad[i] ^= HMAC_OPAD_VALUE;
}
return 0;
}
static int safexcel_hmac_init_iv(struct ahash_request *areq,
unsigned int blocksize, u8 *pad, void *state)
{
struct safexcel_ahash_result result;
struct safexcel_ahash_req *req;
struct scatterlist sg;
int ret;
ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_ahash_complete, &result);
sg_init_one(&sg, pad, blocksize);
ahash_request_set_crypt(areq, &sg, pad, blocksize);
init_completion(&result.completion);
ret = crypto_ahash_init(areq);
if (ret)
return ret;
req = ahash_request_ctx(areq);
req->hmac = true;
req->last_req = true;
ret = crypto_ahash_update(areq);
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
return ret;
wait_for_completion_interruptible(&result.completion);
if (result.error)
return result.error;
return crypto_ahash_export(areq, state);
}
static int __safexcel_hmac_setkey(const char *alg, const u8 *key,
unsigned int keylen,
void *istate, void *ostate)
{
struct ahash_request *areq;
struct crypto_ahash *tfm;
unsigned int blocksize;
u8 *ipad, *opad;
int ret;
tfm = crypto_alloc_ahash(alg, 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
areq = ahash_request_alloc(tfm, GFP_KERNEL);
if (!areq) {
ret = -ENOMEM;
goto free_ahash;
}
crypto_ahash_clear_flags(tfm, ~0);
blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
ipad = kcalloc(2, blocksize, GFP_KERNEL);
if (!ipad) {
ret = -ENOMEM;
goto free_request;
}
opad = ipad + blocksize;
ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad);
if (ret)
goto free_ipad;
ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate);
if (ret)
goto free_ipad;
ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate);
free_ipad:
kfree(ipad);
free_request:
ahash_request_free(areq);
free_ahash:
crypto_free_ahash(tfm);
return ret;
}
int safexcel_hmac_setkey(struct safexcel_context *base, const u8 *key,
unsigned int keylen, const char *alg,
unsigned int state_sz)
{
struct safexcel_crypto_priv *priv = base->priv;
struct safexcel_ahash_export_state istate, ostate;
int ret;
ret = __safexcel_hmac_setkey(alg, key, keylen, &istate, &ostate);
if (ret)
return ret;
if (priv->flags & EIP197_TRC_CACHE && base->ctxr &&
(memcmp(&base->ipad, istate.state, state_sz) ||
memcmp(&base->opad, ostate.state, state_sz)))
base->needs_inv = true;
memcpy(&base->ipad, &istate.state, state_sz);
memcpy(&base->opad, &ostate.state, state_sz);
return 0;
}
static int safexcel_hmac_alg_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen, const char *alg,
unsigned int state_sz)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
return safexcel_hmac_setkey(&ctx->base, key, keylen, alg, state_sz);
}
static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha1",
SHA1_DIGEST_SIZE);
}
struct safexcel_alg_template safexcel_alg_hmac_sha1 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA1,
.alg.ahash = {
.init = safexcel_hmac_sha1_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_hmac_sha1_digest,
.setkey = safexcel_hmac_sha1_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "safexcel-hmac-sha1",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sha256_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA256_DIGEST_SIZE;
req->digest_sz = SHA256_DIGEST_SIZE;
req->block_sz = SHA256_BLOCK_SIZE;
return 0;
}
static int safexcel_sha256_digest(struct ahash_request *areq)
{
int ret = safexcel_sha256_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_sha256 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA2_256,
.alg.ahash = {
.init = safexcel_sha256_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_sha256_digest,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "safexcel-sha256",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sha224_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA256_DIGEST_SIZE;
req->digest_sz = SHA256_DIGEST_SIZE;
req->block_sz = SHA256_BLOCK_SIZE;
return 0;
}
static int safexcel_sha224_digest(struct ahash_request *areq)
{
int ret = safexcel_sha224_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_sha224 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA2_256,
.alg.ahash = {
.init = safexcel_sha224_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_sha224_digest,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha224",
.cra_driver_name = "safexcel-sha224",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sha224_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha224",
SHA256_DIGEST_SIZE);
}
static int safexcel_hmac_sha224_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Start from ipad precompute */
memcpy(req->state, &ctx->base.ipad, SHA256_DIGEST_SIZE);
/* Already processed the key^ipad part now! */
req->len = SHA256_BLOCK_SIZE;
req->processed = SHA256_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA256_DIGEST_SIZE;
req->digest_sz = SHA256_DIGEST_SIZE;
req->block_sz = SHA256_BLOCK_SIZE;
req->hmac = true;
return 0;
}
static int safexcel_hmac_sha224_digest(struct ahash_request *areq)
{
int ret = safexcel_hmac_sha224_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_hmac_sha224 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA2_256,
.alg.ahash = {
.init = safexcel_hmac_sha224_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_hmac_sha224_digest,
.setkey = safexcel_hmac_sha224_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "safexcel-hmac-sha224",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha256",
SHA256_DIGEST_SIZE);
}
static int safexcel_hmac_sha256_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Start from ipad precompute */
memcpy(req->state, &ctx->base.ipad, SHA256_DIGEST_SIZE);
/* Already processed the key^ipad part now! */
req->len = SHA256_BLOCK_SIZE;
req->processed = SHA256_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA256_DIGEST_SIZE;
req->digest_sz = SHA256_DIGEST_SIZE;
req->block_sz = SHA256_BLOCK_SIZE;
req->hmac = true;
return 0;
}
static int safexcel_hmac_sha256_digest(struct ahash_request *areq)
{
int ret = safexcel_hmac_sha256_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_hmac_sha256 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA2_256,
.alg.ahash = {
.init = safexcel_hmac_sha256_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_hmac_sha256_digest,
.setkey = safexcel_hmac_sha256_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "safexcel-hmac-sha256",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sha512_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA512_DIGEST_SIZE;
req->digest_sz = SHA512_DIGEST_SIZE;
req->block_sz = SHA512_BLOCK_SIZE;
return 0;
}
static int safexcel_sha512_digest(struct ahash_request *areq)
{
int ret = safexcel_sha512_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_sha512 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA2_512,
.alg.ahash = {
.init = safexcel_sha512_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_sha512_digest,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha512",
.cra_driver_name = "safexcel-sha512",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sha384_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA512_DIGEST_SIZE;
req->digest_sz = SHA512_DIGEST_SIZE;
req->block_sz = SHA512_BLOCK_SIZE;
return 0;
}
static int safexcel_sha384_digest(struct ahash_request *areq)
{
int ret = safexcel_sha384_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_sha384 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA2_512,
.alg.ahash = {
.init = safexcel_sha384_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_sha384_digest,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha384",
.cra_driver_name = "safexcel-sha384",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sha512_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha512",
SHA512_DIGEST_SIZE);
}
static int safexcel_hmac_sha512_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Start from ipad precompute */
memcpy(req->state, &ctx->base.ipad, SHA512_DIGEST_SIZE);
/* Already processed the key^ipad part now! */
req->len = SHA512_BLOCK_SIZE;
req->processed = SHA512_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA512_DIGEST_SIZE;
req->digest_sz = SHA512_DIGEST_SIZE;
req->block_sz = SHA512_BLOCK_SIZE;
req->hmac = true;
return 0;
}
static int safexcel_hmac_sha512_digest(struct ahash_request *areq)
{
int ret = safexcel_hmac_sha512_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_hmac_sha512 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA2_512,
.alg.ahash = {
.init = safexcel_hmac_sha512_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_hmac_sha512_digest,
.setkey = safexcel_hmac_sha512_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sha512)",
.cra_driver_name = "safexcel-hmac-sha512",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sha384_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha384",
SHA512_DIGEST_SIZE);
}
static int safexcel_hmac_sha384_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Start from ipad precompute */
memcpy(req->state, &ctx->base.ipad, SHA512_DIGEST_SIZE);
/* Already processed the key^ipad part now! */
req->len = SHA512_BLOCK_SIZE;
req->processed = SHA512_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA512_DIGEST_SIZE;
req->digest_sz = SHA512_DIGEST_SIZE;
req->block_sz = SHA512_BLOCK_SIZE;
req->hmac = true;
return 0;
}
static int safexcel_hmac_sha384_digest(struct ahash_request *areq)
{
int ret = safexcel_hmac_sha384_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_hmac_sha384 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA2_512,
.alg.ahash = {
.init = safexcel_hmac_sha384_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_hmac_sha384_digest,
.setkey = safexcel_hmac_sha384_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sha384)",
.cra_driver_name = "safexcel-hmac-sha384",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_md5_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_MD5;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = MD5_DIGEST_SIZE;
req->digest_sz = MD5_DIGEST_SIZE;
req->block_sz = MD5_HMAC_BLOCK_SIZE;
return 0;
}
static int safexcel_md5_digest(struct ahash_request *areq)
{
int ret = safexcel_md5_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_md5 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_MD5,
.alg.ahash = {
.init = safexcel_md5_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_md5_digest,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "md5",
.cra_driver_name = "safexcel-md5",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_md5_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Start from ipad precompute */
memcpy(req->state, &ctx->base.ipad, MD5_DIGEST_SIZE);
/* Already processed the key^ipad part now! */
req->len = MD5_HMAC_BLOCK_SIZE;
req->processed = MD5_HMAC_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_MD5;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = MD5_DIGEST_SIZE;
req->digest_sz = MD5_DIGEST_SIZE;
req->block_sz = MD5_HMAC_BLOCK_SIZE;
req->len_is_le = true; /* MD5 is little endian! ... */
req->hmac = true;
return 0;
}
static int safexcel_hmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-md5",
MD5_DIGEST_SIZE);
}
static int safexcel_hmac_md5_digest(struct ahash_request *areq)
{
int ret = safexcel_hmac_md5_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_hmac_md5 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_MD5,
.alg.ahash = {
.init = safexcel_hmac_md5_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_hmac_md5_digest,
.setkey = safexcel_hmac_md5_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(md5)",
.cra_driver_name = "safexcel-hmac-md5",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_crc32_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
int ret = safexcel_ahash_cra_init(tfm);
/* Default 'key' is all zeroes */
memset(&ctx->base.ipad, 0, sizeof(u32));
return ret;
}
static int safexcel_crc32_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Start from loaded key */
req->state[0] = cpu_to_le32(~ctx->base.ipad.word[0]);
/* Set processed to non-zero to enable invalidation detection */
req->len = sizeof(u32);
req->processed = sizeof(u32);
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_CRC32;
req->digest = CONTEXT_CONTROL_DIGEST_XCM;
req->state_sz = sizeof(u32);
req->digest_sz = sizeof(u32);
req->block_sz = sizeof(u32);
return 0;
}
static int safexcel_crc32_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
if (keylen != sizeof(u32))
return -EINVAL;
memcpy(&ctx->base.ipad, key, sizeof(u32));
return 0;
}
static int safexcel_crc32_digest(struct ahash_request *areq)
{
return safexcel_crc32_init(areq) ?: safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_crc32 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = 0,
.alg.ahash = {
.init = safexcel_crc32_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_crc32_digest,
.setkey = safexcel_crc32_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = sizeof(u32),
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "crc32",
.cra_driver_name = "safexcel-crc32",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_OPTIONAL_KEY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_crc32_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_cbcmac_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Start from loaded keys */
memcpy(req->state, &ctx->base.ipad, ctx->key_sz);
/* Set processed to non-zero to enable invalidation detection */
req->len = AES_BLOCK_SIZE;
req->processed = AES_BLOCK_SIZE;
req->digest = CONTEXT_CONTROL_DIGEST_XCM;
req->state_sz = ctx->key_sz;
req->digest_sz = AES_BLOCK_SIZE;
req->block_sz = AES_BLOCK_SIZE;
req->xcbcmac = true;
return 0;
}
static int safexcel_cbcmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int len)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct crypto_aes_ctx aes;
int ret, i;
ret = aes_expandkey(&aes, key, len);
if (ret)
return ret;
memset(&ctx->base.ipad, 0, 2 * AES_BLOCK_SIZE);
for (i = 0; i < len / sizeof(u32); i++)
ctx->base.ipad.be[i + 8] = cpu_to_be32(aes.key_enc[i]);
if (len == AES_KEYSIZE_192) {
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC192;
ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE;
} else if (len == AES_KEYSIZE_256) {
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC256;
ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE;
} else {
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128;
ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE;
}
ctx->cbcmac = true;
memzero_explicit(&aes, sizeof(aes));
return 0;
}
static int safexcel_cbcmac_digest(struct ahash_request *areq)
{
return safexcel_cbcmac_init(areq) ?: safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_cbcmac = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = 0,
.alg.ahash = {
.init = safexcel_cbcmac_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_cbcmac_digest,
.setkey = safexcel_cbcmac_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = AES_BLOCK_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "cbcmac(aes)",
.cra_driver_name = "safexcel-cbcmac-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_xcbcmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int len)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct crypto_aes_ctx aes;
u32 key_tmp[3 * AES_BLOCK_SIZE / sizeof(u32)];
int ret, i;
ret = aes_expandkey(&aes, key, len);
if (ret)
return ret;
/* precompute the XCBC key material */
crypto_cipher_clear_flags(ctx->kaes, CRYPTO_TFM_REQ_MASK);
crypto_cipher_set_flags(ctx->kaes, crypto_ahash_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
ret = crypto_cipher_setkey(ctx->kaes, key, len);
if (ret)
return ret;
crypto_cipher_encrypt_one(ctx->kaes, (u8 *)key_tmp + 2 * AES_BLOCK_SIZE,
"\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1");
crypto_cipher_encrypt_one(ctx->kaes, (u8 *)key_tmp,
"\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2");
crypto_cipher_encrypt_one(ctx->kaes, (u8 *)key_tmp + AES_BLOCK_SIZE,
"\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3");
for (i = 0; i < 3 * AES_BLOCK_SIZE / sizeof(u32); i++)
ctx->base.ipad.word[i] = swab(key_tmp[i]);
crypto_cipher_clear_flags(ctx->kaes, CRYPTO_TFM_REQ_MASK);
crypto_cipher_set_flags(ctx->kaes, crypto_ahash_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
ret = crypto_cipher_setkey(ctx->kaes,
(u8 *)key_tmp + 2 * AES_BLOCK_SIZE,
AES_MIN_KEY_SIZE);
if (ret)
return ret;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128;
ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE;
ctx->cbcmac = false;
memzero_explicit(&aes, sizeof(aes));
return 0;
}
static int safexcel_xcbcmac_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_ahash_cra_init(tfm);
ctx->kaes = crypto_alloc_cipher("aes", 0, 0);
return PTR_ERR_OR_ZERO(ctx->kaes);
}
static void safexcel_xcbcmac_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_cipher(ctx->kaes);
safexcel_ahash_cra_exit(tfm);
}
struct safexcel_alg_template safexcel_alg_xcbcmac = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = 0,
.alg.ahash = {
.init = safexcel_cbcmac_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_cbcmac_digest,
.setkey = safexcel_xcbcmac_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = AES_BLOCK_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "xcbc(aes)",
.cra_driver_name = "safexcel-xcbc-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_xcbcmac_cra_init,
.cra_exit = safexcel_xcbcmac_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int len)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct crypto_aes_ctx aes;
__be64 consts[4];
u64 _const[2];
u8 msb_mask, gfmask;
int ret, i;
ret = aes_expandkey(&aes, key, len);
if (ret)
return ret;
for (i = 0; i < len / sizeof(u32); i++)
ctx->base.ipad.word[i + 8] = swab(aes.key_enc[i]);
/* precompute the CMAC key material */
crypto_cipher_clear_flags(ctx->kaes, CRYPTO_TFM_REQ_MASK);
crypto_cipher_set_flags(ctx->kaes, crypto_ahash_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
ret = crypto_cipher_setkey(ctx->kaes, key, len);
if (ret)
return ret;
/* code below borrowed from crypto/cmac.c */
/* encrypt the zero block */
memset(consts, 0, AES_BLOCK_SIZE);
crypto_cipher_encrypt_one(ctx->kaes, (u8 *)consts, (u8 *)consts);
gfmask = 0x87;
_const[0] = be64_to_cpu(consts[1]);
_const[1] = be64_to_cpu(consts[0]);
/* gf(2^128) multiply zero-ciphertext with u and u^2 */
for (i = 0; i < 4; i += 2) {
msb_mask = ((s64)_const[1] >> 63) & gfmask;
_const[1] = (_const[1] << 1) | (_const[0] >> 63);
_const[0] = (_const[0] << 1) ^ msb_mask;
consts[i + 0] = cpu_to_be64(_const[1]);
consts[i + 1] = cpu_to_be64(_const[0]);
}
/* end of code borrowed from crypto/cmac.c */
for (i = 0; i < 2 * AES_BLOCK_SIZE / sizeof(u32); i++)
ctx->base.ipad.be[i] = cpu_to_be32(((u32 *)consts)[i]);
if (len == AES_KEYSIZE_192) {
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC192;
ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE;
} else if (len == AES_KEYSIZE_256) {
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC256;
ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE;
} else {
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128;
ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE;
}
ctx->cbcmac = false;
memzero_explicit(&aes, sizeof(aes));
return 0;
}
struct safexcel_alg_template safexcel_alg_cmac = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = 0,
.alg.ahash = {
.init = safexcel_cbcmac_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_cbcmac_digest,
.setkey = safexcel_cmac_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = AES_BLOCK_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "cmac(aes)",
.cra_driver_name = "safexcel-cmac-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_xcbcmac_cra_init,
.cra_exit = safexcel_xcbcmac_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sm3_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SM3;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SM3_DIGEST_SIZE;
req->digest_sz = SM3_DIGEST_SIZE;
req->block_sz = SM3_BLOCK_SIZE;
return 0;
}
static int safexcel_sm3_digest(struct ahash_request *areq)
{
int ret = safexcel_sm3_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_sm3 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SM3,
.alg.ahash = {
.init = safexcel_sm3_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_sm3_digest,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SM3_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sm3",
.cra_driver_name = "safexcel-sm3",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SM3_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sm3_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sm3",
SM3_DIGEST_SIZE);
}
static int safexcel_hmac_sm3_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Start from ipad precompute */
memcpy(req->state, &ctx->base.ipad, SM3_DIGEST_SIZE);
/* Already processed the key^ipad part now! */
req->len = SM3_BLOCK_SIZE;
req->processed = SM3_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SM3;
req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SM3_DIGEST_SIZE;
req->digest_sz = SM3_DIGEST_SIZE;
req->block_sz = SM3_BLOCK_SIZE;
req->hmac = true;
return 0;
}
static int safexcel_hmac_sm3_digest(struct ahash_request *areq)
{
int ret = safexcel_hmac_sm3_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_hmac_sm3 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SM3,
.alg.ahash = {
.init = safexcel_hmac_sm3_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_hmac_sm3_digest,
.setkey = safexcel_hmac_sm3_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SM3_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sm3)",
.cra_driver_name = "safexcel-hmac-sm3",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SM3_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sha3_224_init(struct ahash_request *areq)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_224;
req->digest = CONTEXT_CONTROL_DIGEST_INITIAL;
req->state_sz = SHA3_224_DIGEST_SIZE;
req->digest_sz = SHA3_224_DIGEST_SIZE;
req->block_sz = SHA3_224_BLOCK_SIZE;
ctx->do_fallback = false;
ctx->fb_init_done = false;
return 0;
}
static int safexcel_sha3_fbcheck(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *subreq = ahash_request_ctx(req);
int ret = 0;
if (ctx->do_fallback) {
ahash_request_set_tfm(subreq, ctx->fback);
ahash_request_set_callback(subreq, req->base.flags,
req->base.complete, req->base.data);
ahash_request_set_crypt(subreq, req->src, req->result,
req->nbytes);
if (!ctx->fb_init_done) {
if (ctx->fb_do_setkey) {
/* Set fallback cipher HMAC key */
u8 key[SHA3_224_BLOCK_SIZE];
memcpy(key, &ctx->base.ipad,
crypto_ahash_blocksize(ctx->fback) / 2);
memcpy(key +
crypto_ahash_blocksize(ctx->fback) / 2,
&ctx->base.opad,
crypto_ahash_blocksize(ctx->fback) / 2);
ret = crypto_ahash_setkey(ctx->fback, key,
crypto_ahash_blocksize(ctx->fback));
memzero_explicit(key,
crypto_ahash_blocksize(ctx->fback));
ctx->fb_do_setkey = false;
}
ret = ret ?: crypto_ahash_init(subreq);
ctx->fb_init_done = true;
}
}
return ret;
}
static int safexcel_sha3_update(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *subreq = ahash_request_ctx(req);
ctx->do_fallback = true;
return safexcel_sha3_fbcheck(req) ?: crypto_ahash_update(subreq);
}
static int safexcel_sha3_final(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *subreq = ahash_request_ctx(req);
ctx->do_fallback = true;
return safexcel_sha3_fbcheck(req) ?: crypto_ahash_final(subreq);
}
static int safexcel_sha3_finup(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *subreq = ahash_request_ctx(req);
ctx->do_fallback |= !req->nbytes;
if (ctx->do_fallback)
/* Update or ex/import happened or len 0, cannot use the HW */
return safexcel_sha3_fbcheck(req) ?:
crypto_ahash_finup(subreq);
else
return safexcel_ahash_finup(req);
}
static int safexcel_sha3_digest_fallback(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *subreq = ahash_request_ctx(req);
ctx->do_fallback = true;
ctx->fb_init_done = false;
return safexcel_sha3_fbcheck(req) ?: crypto_ahash_finup(subreq);
}
static int safexcel_sha3_224_digest(struct ahash_request *req)
{
if (req->nbytes)
return safexcel_sha3_224_init(req) ?: safexcel_ahash_finup(req);
/* HW cannot do zero length hash, use fallback instead */
return safexcel_sha3_digest_fallback(req);
}
static int safexcel_sha3_export(struct ahash_request *req, void *out)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *subreq = ahash_request_ctx(req);
ctx->do_fallback = true;
return safexcel_sha3_fbcheck(req) ?: crypto_ahash_export(subreq, out);
}
static int safexcel_sha3_import(struct ahash_request *req, const void *in)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *subreq = ahash_request_ctx(req);
ctx->do_fallback = true;
return safexcel_sha3_fbcheck(req) ?: crypto_ahash_import(subreq, in);
// return safexcel_ahash_import(req, in);
}
static int safexcel_sha3_cra_init(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_ahash_cra_init(tfm);
/* Allocate fallback implementation */
ctx->fback = crypto_alloc_ahash(crypto_tfm_alg_name(tfm), 0,
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fback))
return PTR_ERR(ctx->fback);
/* Update statesize from fallback algorithm! */
crypto_hash_alg_common(ahash)->statesize =
crypto_ahash_statesize(ctx->fback);
crypto_ahash_set_reqsize(ahash, max(sizeof(struct safexcel_ahash_req),
sizeof(struct ahash_request) +
crypto_ahash_reqsize(ctx->fback)));
return 0;
}
static void safexcel_sha3_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_ahash(ctx->fback);
safexcel_ahash_cra_exit(tfm);
}
struct safexcel_alg_template safexcel_alg_sha3_224 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA3,
.alg.ahash = {
.init = safexcel_sha3_224_init,
.update = safexcel_sha3_update,
.final = safexcel_sha3_final,
.finup = safexcel_sha3_finup,
.digest = safexcel_sha3_224_digest,
.export = safexcel_sha3_export,
.import = safexcel_sha3_import,
.halg = {
.digestsize = SHA3_224_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha3-224",
.cra_driver_name = "safexcel-sha3-224",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA3_224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_sha3_cra_init,
.cra_exit = safexcel_sha3_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sha3_256_init(struct ahash_request *areq)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_256;
req->digest = CONTEXT_CONTROL_DIGEST_INITIAL;
req->state_sz = SHA3_256_DIGEST_SIZE;
req->digest_sz = SHA3_256_DIGEST_SIZE;
req->block_sz = SHA3_256_BLOCK_SIZE;
ctx->do_fallback = false;
ctx->fb_init_done = false;
return 0;
}
static int safexcel_sha3_256_digest(struct ahash_request *req)
{
if (req->nbytes)
return safexcel_sha3_256_init(req) ?: safexcel_ahash_finup(req);
/* HW cannot do zero length hash, use fallback instead */
return safexcel_sha3_digest_fallback(req);
}
struct safexcel_alg_template safexcel_alg_sha3_256 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA3,
.alg.ahash = {
.init = safexcel_sha3_256_init,
.update = safexcel_sha3_update,
.final = safexcel_sha3_final,
.finup = safexcel_sha3_finup,
.digest = safexcel_sha3_256_digest,
.export = safexcel_sha3_export,
.import = safexcel_sha3_import,
.halg = {
.digestsize = SHA3_256_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha3-256",
.cra_driver_name = "safexcel-sha3-256",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA3_256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_sha3_cra_init,
.cra_exit = safexcel_sha3_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sha3_384_init(struct ahash_request *areq)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_384;
req->digest = CONTEXT_CONTROL_DIGEST_INITIAL;
req->state_sz = SHA3_384_DIGEST_SIZE;
req->digest_sz = SHA3_384_DIGEST_SIZE;
req->block_sz = SHA3_384_BLOCK_SIZE;
ctx->do_fallback = false;
ctx->fb_init_done = false;
return 0;
}
static int safexcel_sha3_384_digest(struct ahash_request *req)
{
if (req->nbytes)
return safexcel_sha3_384_init(req) ?: safexcel_ahash_finup(req);
/* HW cannot do zero length hash, use fallback instead */
return safexcel_sha3_digest_fallback(req);
}
struct safexcel_alg_template safexcel_alg_sha3_384 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA3,
.alg.ahash = {
.init = safexcel_sha3_384_init,
.update = safexcel_sha3_update,
.final = safexcel_sha3_final,
.finup = safexcel_sha3_finup,
.digest = safexcel_sha3_384_digest,
.export = safexcel_sha3_export,
.import = safexcel_sha3_import,
.halg = {
.digestsize = SHA3_384_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha3-384",
.cra_driver_name = "safexcel-sha3-384",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA3_384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_sha3_cra_init,
.cra_exit = safexcel_sha3_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sha3_512_init(struct ahash_request *areq)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_512;
req->digest = CONTEXT_CONTROL_DIGEST_INITIAL;
req->state_sz = SHA3_512_DIGEST_SIZE;
req->digest_sz = SHA3_512_DIGEST_SIZE;
req->block_sz = SHA3_512_BLOCK_SIZE;
ctx->do_fallback = false;
ctx->fb_init_done = false;
return 0;
}
static int safexcel_sha3_512_digest(struct ahash_request *req)
{
if (req->nbytes)
return safexcel_sha3_512_init(req) ?: safexcel_ahash_finup(req);
/* HW cannot do zero length hash, use fallback instead */
return safexcel_sha3_digest_fallback(req);
}
struct safexcel_alg_template safexcel_alg_sha3_512 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA3,
.alg.ahash = {
.init = safexcel_sha3_512_init,
.update = safexcel_sha3_update,
.final = safexcel_sha3_final,
.finup = safexcel_sha3_finup,
.digest = safexcel_sha3_512_digest,
.export = safexcel_sha3_export,
.import = safexcel_sha3_import,
.halg = {
.digestsize = SHA3_512_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha3-512",
.cra_driver_name = "safexcel-sha3-512",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA3_512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_sha3_cra_init,
.cra_exit = safexcel_sha3_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sha3_cra_init(struct crypto_tfm *tfm, const char *alg)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
int ret;
ret = safexcel_sha3_cra_init(tfm);
if (ret)
return ret;
/* Allocate precalc basic digest implementation */
ctx->shpre = crypto_alloc_shash(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->shpre))
return PTR_ERR(ctx->shpre);
ctx->shdesc = kmalloc(sizeof(*ctx->shdesc) +
crypto_shash_descsize(ctx->shpre), GFP_KERNEL);
if (!ctx->shdesc) {
crypto_free_shash(ctx->shpre);
return -ENOMEM;
}
ctx->shdesc->tfm = ctx->shpre;
return 0;
}
static void safexcel_hmac_sha3_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_ahash(ctx->fback);
crypto_free_shash(ctx->shpre);
kfree(ctx->shdesc);
safexcel_ahash_cra_exit(tfm);
}
static int safexcel_hmac_sha3_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
int ret = 0;
if (keylen > crypto_ahash_blocksize(tfm)) {
/*
* If the key is larger than the blocksize, then hash it
* first using our fallback cipher
*/
ret = crypto_shash_digest(ctx->shdesc, key, keylen,
ctx->base.ipad.byte);
keylen = crypto_shash_digestsize(ctx->shpre);
/*
* If the digest is larger than half the blocksize, we need to
* move the rest to opad due to the way our HMAC infra works.
*/
if (keylen > crypto_ahash_blocksize(tfm) / 2)
/* Buffers overlap, need to use memmove iso memcpy! */
memmove(&ctx->base.opad,
ctx->base.ipad.byte +
crypto_ahash_blocksize(tfm) / 2,
keylen - crypto_ahash_blocksize(tfm) / 2);
} else {
/*
* Copy the key to our ipad & opad buffers
* Note that ipad and opad each contain one half of the key,
* to match the existing HMAC driver infrastructure.
*/
if (keylen <= crypto_ahash_blocksize(tfm) / 2) {
memcpy(&ctx->base.ipad, key, keylen);
} else {
memcpy(&ctx->base.ipad, key,
crypto_ahash_blocksize(tfm) / 2);
memcpy(&ctx->base.opad,
key + crypto_ahash_blocksize(tfm) / 2,
keylen - crypto_ahash_blocksize(tfm) / 2);
}
}
/* Pad key with zeroes */
if (keylen <= crypto_ahash_blocksize(tfm) / 2) {
memset(ctx->base.ipad.byte + keylen, 0,
crypto_ahash_blocksize(tfm) / 2 - keylen);
memset(&ctx->base.opad, 0, crypto_ahash_blocksize(tfm) / 2);
} else {
memset(ctx->base.opad.byte + keylen -
crypto_ahash_blocksize(tfm) / 2, 0,
crypto_ahash_blocksize(tfm) - keylen);
}
/* If doing fallback, still need to set the new key! */
ctx->fb_do_setkey = true;
return ret;
}
static int safexcel_hmac_sha3_224_init(struct ahash_request *areq)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Copy (half of) the key */
memcpy(req->state, &ctx->base.ipad, SHA3_224_BLOCK_SIZE / 2);
/* Start of HMAC should have len == processed == blocksize */
req->len = SHA3_224_BLOCK_SIZE;
req->processed = SHA3_224_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_224;
req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
req->state_sz = SHA3_224_BLOCK_SIZE / 2;
req->digest_sz = SHA3_224_DIGEST_SIZE;
req->block_sz = SHA3_224_BLOCK_SIZE;
req->hmac = true;
ctx->do_fallback = false;
ctx->fb_init_done = false;
return 0;
}
static int safexcel_hmac_sha3_224_digest(struct ahash_request *req)
{
if (req->nbytes)
return safexcel_hmac_sha3_224_init(req) ?:
safexcel_ahash_finup(req);
/* HW cannot do zero length HMAC, use fallback instead */
return safexcel_sha3_digest_fallback(req);
}
static int safexcel_hmac_sha3_224_cra_init(struct crypto_tfm *tfm)
{
return safexcel_hmac_sha3_cra_init(tfm, "sha3-224");
}
struct safexcel_alg_template safexcel_alg_hmac_sha3_224 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA3,
.alg.ahash = {
.init = safexcel_hmac_sha3_224_init,
.update = safexcel_sha3_update,
.final = safexcel_sha3_final,
.finup = safexcel_sha3_finup,
.digest = safexcel_hmac_sha3_224_digest,
.setkey = safexcel_hmac_sha3_setkey,
.export = safexcel_sha3_export,
.import = safexcel_sha3_import,
.halg = {
.digestsize = SHA3_224_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sha3-224)",
.cra_driver_name = "safexcel-hmac-sha3-224",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA3_224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_hmac_sha3_224_cra_init,
.cra_exit = safexcel_hmac_sha3_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sha3_256_init(struct ahash_request *areq)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Copy (half of) the key */
memcpy(req->state, &ctx->base.ipad, SHA3_256_BLOCK_SIZE / 2);
/* Start of HMAC should have len == processed == blocksize */
req->len = SHA3_256_BLOCK_SIZE;
req->processed = SHA3_256_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_256;
req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
req->state_sz = SHA3_256_BLOCK_SIZE / 2;
req->digest_sz = SHA3_256_DIGEST_SIZE;
req->block_sz = SHA3_256_BLOCK_SIZE;
req->hmac = true;
ctx->do_fallback = false;
ctx->fb_init_done = false;
return 0;
}
static int safexcel_hmac_sha3_256_digest(struct ahash_request *req)
{
if (req->nbytes)
return safexcel_hmac_sha3_256_init(req) ?:
safexcel_ahash_finup(req);
/* HW cannot do zero length HMAC, use fallback instead */
return safexcel_sha3_digest_fallback(req);
}
static int safexcel_hmac_sha3_256_cra_init(struct crypto_tfm *tfm)
{
return safexcel_hmac_sha3_cra_init(tfm, "sha3-256");
}
struct safexcel_alg_template safexcel_alg_hmac_sha3_256 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA3,
.alg.ahash = {
.init = safexcel_hmac_sha3_256_init,
.update = safexcel_sha3_update,
.final = safexcel_sha3_final,
.finup = safexcel_sha3_finup,
.digest = safexcel_hmac_sha3_256_digest,
.setkey = safexcel_hmac_sha3_setkey,
.export = safexcel_sha3_export,
.import = safexcel_sha3_import,
.halg = {
.digestsize = SHA3_256_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sha3-256)",
.cra_driver_name = "safexcel-hmac-sha3-256",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA3_256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_hmac_sha3_256_cra_init,
.cra_exit = safexcel_hmac_sha3_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sha3_384_init(struct ahash_request *areq)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Copy (half of) the key */
memcpy(req->state, &ctx->base.ipad, SHA3_384_BLOCK_SIZE / 2);
/* Start of HMAC should have len == processed == blocksize */
req->len = SHA3_384_BLOCK_SIZE;
req->processed = SHA3_384_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_384;
req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
req->state_sz = SHA3_384_BLOCK_SIZE / 2;
req->digest_sz = SHA3_384_DIGEST_SIZE;
req->block_sz = SHA3_384_BLOCK_SIZE;
req->hmac = true;
ctx->do_fallback = false;
ctx->fb_init_done = false;
return 0;
}
static int safexcel_hmac_sha3_384_digest(struct ahash_request *req)
{
if (req->nbytes)
return safexcel_hmac_sha3_384_init(req) ?:
safexcel_ahash_finup(req);
/* HW cannot do zero length HMAC, use fallback instead */
return safexcel_sha3_digest_fallback(req);
}
static int safexcel_hmac_sha3_384_cra_init(struct crypto_tfm *tfm)
{
return safexcel_hmac_sha3_cra_init(tfm, "sha3-384");
}
struct safexcel_alg_template safexcel_alg_hmac_sha3_384 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA3,
.alg.ahash = {
.init = safexcel_hmac_sha3_384_init,
.update = safexcel_sha3_update,
.final = safexcel_sha3_final,
.finup = safexcel_sha3_finup,
.digest = safexcel_hmac_sha3_384_digest,
.setkey = safexcel_hmac_sha3_setkey,
.export = safexcel_sha3_export,
.import = safexcel_sha3_import,
.halg = {
.digestsize = SHA3_384_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sha3-384)",
.cra_driver_name = "safexcel-hmac-sha3-384",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA3_384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_hmac_sha3_384_cra_init,
.cra_exit = safexcel_hmac_sha3_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sha3_512_init(struct ahash_request *areq)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
/* Copy (half of) the key */
memcpy(req->state, &ctx->base.ipad, SHA3_512_BLOCK_SIZE / 2);
/* Start of HMAC should have len == processed == blocksize */
req->len = SHA3_512_BLOCK_SIZE;
req->processed = SHA3_512_BLOCK_SIZE;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_512;
req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
req->state_sz = SHA3_512_BLOCK_SIZE / 2;
req->digest_sz = SHA3_512_DIGEST_SIZE;
req->block_sz = SHA3_512_BLOCK_SIZE;
req->hmac = true;
ctx->do_fallback = false;
ctx->fb_init_done = false;
return 0;
}
static int safexcel_hmac_sha3_512_digest(struct ahash_request *req)
{
if (req->nbytes)
return safexcel_hmac_sha3_512_init(req) ?:
safexcel_ahash_finup(req);
/* HW cannot do zero length HMAC, use fallback instead */
return safexcel_sha3_digest_fallback(req);
}
static int safexcel_hmac_sha3_512_cra_init(struct crypto_tfm *tfm)
{
return safexcel_hmac_sha3_cra_init(tfm, "sha3-512");
}
struct safexcel_alg_template safexcel_alg_hmac_sha3_512 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.algo_mask = SAFEXCEL_ALG_SHA3,
.alg.ahash = {
.init = safexcel_hmac_sha3_512_init,
.update = safexcel_sha3_update,
.final = safexcel_sha3_final,
.finup = safexcel_sha3_finup,
.digest = safexcel_hmac_sha3_512_digest,
.setkey = safexcel_hmac_sha3_setkey,
.export = safexcel_sha3_export,
.import = safexcel_sha3_import,
.halg = {
.digestsize = SHA3_512_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sha3-512)",
.cra_driver_name = "safexcel-hmac-sha3-512",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA3_512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_hmac_sha3_512_cra_init,
.cra_exit = safexcel_hmac_sha3_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};