linux/arch/arm/mm/context.c

281 lines
7.7 KiB
C

/*
* linux/arch/arm/mm/context.c
*
* Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
* Copyright (C) 2012 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/percpu.h>
#include <asm/mmu_context.h>
#include <asm/smp_plat.h>
#include <asm/thread_notify.h>
#include <asm/tlbflush.h>
#include <asm/proc-fns.h>
/*
* On ARMv6, we have the following structure in the Context ID:
*
* 31 7 0
* +-------------------------+-----------+
* | process ID | ASID |
* +-------------------------+-----------+
* | context ID |
* +-------------------------------------+
*
* The ASID is used to tag entries in the CPU caches and TLBs.
* The context ID is used by debuggers and trace logic, and
* should be unique within all running processes.
*
* In big endian operation, the two 32 bit words are swapped if accessed
* by non-64-bit operations.
*/
#define ASID_FIRST_VERSION (1ULL << ASID_BITS)
#define NUM_USER_ASIDS ASID_FIRST_VERSION
static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
static atomic64_t asid_generation = ATOMIC64_INIT(ASID_FIRST_VERSION);
static DECLARE_BITMAP(asid_map, NUM_USER_ASIDS);
static DEFINE_PER_CPU(atomic64_t, active_asids);
static DEFINE_PER_CPU(u64, reserved_asids);
static cpumask_t tlb_flush_pending;
#ifdef CONFIG_ARM_ERRATA_798181
void a15_erratum_get_cpumask(int this_cpu, struct mm_struct *mm,
cpumask_t *mask)
{
int cpu;
unsigned long flags;
u64 context_id, asid;
raw_spin_lock_irqsave(&cpu_asid_lock, flags);
context_id = mm->context.id.counter;
for_each_online_cpu(cpu) {
if (cpu == this_cpu)
continue;
/*
* We only need to send an IPI if the other CPUs are
* running the same ASID as the one being invalidated.
*/
asid = per_cpu(active_asids, cpu).counter;
if (asid == 0)
asid = per_cpu(reserved_asids, cpu);
if (context_id == asid)
cpumask_set_cpu(cpu, mask);
}
raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
}
#endif
#ifdef CONFIG_ARM_LPAE
/*
* With LPAE, the ASID and page tables are updated atomicly, so there is
* no need for a reserved set of tables (the active ASID tracking prevents
* any issues across a rollover).
*/
#define cpu_set_reserved_ttbr0()
#else
static void cpu_set_reserved_ttbr0(void)
{
u32 ttb;
/*
* Copy TTBR1 into TTBR0.
* This points at swapper_pg_dir, which contains only global
* entries so any speculative walks are perfectly safe.
*/
asm volatile(
" mrc p15, 0, %0, c2, c0, 1 @ read TTBR1\n"
" mcr p15, 0, %0, c2, c0, 0 @ set TTBR0\n"
: "=r" (ttb));
isb();
}
#endif
#ifdef CONFIG_PID_IN_CONTEXTIDR
static int contextidr_notifier(struct notifier_block *unused, unsigned long cmd,
void *t)
{
u32 contextidr;
pid_t pid;
struct thread_info *thread = t;
if (cmd != THREAD_NOTIFY_SWITCH)
return NOTIFY_DONE;
pid = task_pid_nr(thread->task) << ASID_BITS;
asm volatile(
" mrc p15, 0, %0, c13, c0, 1\n"
" and %0, %0, %2\n"
" orr %0, %0, %1\n"
" mcr p15, 0, %0, c13, c0, 1\n"
: "=r" (contextidr), "+r" (pid)
: "I" (~ASID_MASK));
isb();
return NOTIFY_OK;
}
static struct notifier_block contextidr_notifier_block = {
.notifier_call = contextidr_notifier,
};
static int __init contextidr_notifier_init(void)
{
return thread_register_notifier(&contextidr_notifier_block);
}
arch_initcall(contextidr_notifier_init);
#endif
static void flush_context(unsigned int cpu)
{
int i;
u64 asid;
/* Update the list of reserved ASIDs and the ASID bitmap. */
bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
for_each_possible_cpu(i) {
asid = atomic64_xchg(&per_cpu(active_asids, i), 0);
/*
* If this CPU has already been through a
* rollover, but hasn't run another task in
* the meantime, we must preserve its reserved
* ASID, as this is the only trace we have of
* the process it is still running.
*/
if (asid == 0)
asid = per_cpu(reserved_asids, i);
__set_bit(asid & ~ASID_MASK, asid_map);
per_cpu(reserved_asids, i) = asid;
}
/* Queue a TLB invalidate and flush the I-cache if necessary. */
cpumask_setall(&tlb_flush_pending);
if (icache_is_vivt_asid_tagged())
__flush_icache_all();
}
static bool check_update_reserved_asid(u64 asid, u64 newasid)
{
int cpu;
bool hit = false;
/*
* Iterate over the set of reserved ASIDs looking for a match.
* If we find one, then we can update our mm to use newasid
* (i.e. the same ASID in the current generation) but we can't
* exit the loop early, since we need to ensure that all copies
* of the old ASID are updated to reflect the mm. Failure to do
* so could result in us missing the reserved ASID in a future
* generation.
*/
for_each_possible_cpu(cpu) {
if (per_cpu(reserved_asids, cpu) == asid) {
hit = true;
per_cpu(reserved_asids, cpu) = newasid;
}
}
return hit;
}
static u64 new_context(struct mm_struct *mm, unsigned int cpu)
{
static u32 cur_idx = 1;
u64 asid = atomic64_read(&mm->context.id);
u64 generation = atomic64_read(&asid_generation);
if (asid != 0) {
u64 newasid = generation | (asid & ~ASID_MASK);
/*
* If our current ASID was active during a rollover, we
* can continue to use it and this was just a false alarm.
*/
if (check_update_reserved_asid(asid, newasid))
return newasid;
/*
* We had a valid ASID in a previous life, so try to re-use
* it if possible.,
*/
asid &= ~ASID_MASK;
if (!__test_and_set_bit(asid, asid_map))
return newasid;
}
/*
* Allocate a free ASID. If we can't find one, take a note of the
* currently active ASIDs and mark the TLBs as requiring flushes.
* We always count from ASID #1, as we reserve ASID #0 to switch
* via TTBR0 and to avoid speculative page table walks from hitting
* in any partial walk caches, which could be populated from
* overlapping level-1 descriptors used to map both the module
* area and the userspace stack.
*/
asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
if (asid == NUM_USER_ASIDS) {
generation = atomic64_add_return(ASID_FIRST_VERSION,
&asid_generation);
flush_context(cpu);
asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
}
__set_bit(asid, asid_map);
cur_idx = asid;
cpumask_clear(mm_cpumask(mm));
return asid | generation;
}
void check_and_switch_context(struct mm_struct *mm, struct task_struct *tsk)
{
unsigned long flags;
unsigned int cpu = smp_processor_id();
u64 asid;
if (unlikely(mm->context.vmalloc_seq != init_mm.context.vmalloc_seq))
__check_vmalloc_seq(mm);
/*
* We cannot update the pgd and the ASID atomicly with classic
* MMU, so switch exclusively to global mappings to avoid
* speculative page table walking with the wrong TTBR.
*/
cpu_set_reserved_ttbr0();
asid = atomic64_read(&mm->context.id);
if (!((asid ^ atomic64_read(&asid_generation)) >> ASID_BITS)
&& atomic64_xchg(&per_cpu(active_asids, cpu), asid))
goto switch_mm_fastpath;
raw_spin_lock_irqsave(&cpu_asid_lock, flags);
/* Check that our ASID belongs to the current generation. */
asid = atomic64_read(&mm->context.id);
if ((asid ^ atomic64_read(&asid_generation)) >> ASID_BITS) {
asid = new_context(mm, cpu);
atomic64_set(&mm->context.id, asid);
}
if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending)) {
local_flush_bp_all();
local_flush_tlb_all();
}
atomic64_set(&per_cpu(active_asids, cpu), asid);
cpumask_set_cpu(cpu, mm_cpumask(mm));
raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
switch_mm_fastpath:
cpu_switch_mm(mm->pgd, mm);
}