mirror of https://gitee.com/openkylin/linux.git
1052 lines
31 KiB
C
1052 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/mm/mmu_notifier.c
|
|
*
|
|
* Copyright (C) 2008 Qumranet, Inc.
|
|
* Copyright (C) 2008 SGI
|
|
* Christoph Lameter <cl@linux.com>
|
|
*/
|
|
|
|
#include <linux/rculist.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/export.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interval_tree.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/slab.h>
|
|
|
|
/* global SRCU for all MMs */
|
|
DEFINE_STATIC_SRCU(srcu);
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
|
|
.name = "mmu_notifier_invalidate_range_start"
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* The mmu notifier_mm structure is allocated and installed in
|
|
* mm->mmu_notifier_mm inside the mm_take_all_locks() protected
|
|
* critical section and it's released only when mm_count reaches zero
|
|
* in mmdrop().
|
|
*/
|
|
struct mmu_notifier_mm {
|
|
/* all mmu notifiers registered in this mm are queued in this list */
|
|
struct hlist_head list;
|
|
bool has_itree;
|
|
/* to serialize the list modifications and hlist_unhashed */
|
|
spinlock_t lock;
|
|
unsigned long invalidate_seq;
|
|
unsigned long active_invalidate_ranges;
|
|
struct rb_root_cached itree;
|
|
wait_queue_head_t wq;
|
|
struct hlist_head deferred_list;
|
|
};
|
|
|
|
/*
|
|
* This is a collision-retry read-side/write-side 'lock', a lot like a
|
|
* seqcount, however this allows multiple write-sides to hold it at
|
|
* once. Conceptually the write side is protecting the values of the PTEs in
|
|
* this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
|
|
* writer exists.
|
|
*
|
|
* Note that the core mm creates nested invalidate_range_start()/end() regions
|
|
* within the same thread, and runs invalidate_range_start()/end() in parallel
|
|
* on multiple CPUs. This is designed to not reduce concurrency or block
|
|
* progress on the mm side.
|
|
*
|
|
* As a secondary function, holding the full write side also serves to prevent
|
|
* writers for the itree, this is an optimization to avoid extra locking
|
|
* during invalidate_range_start/end notifiers.
|
|
*
|
|
* The write side has two states, fully excluded:
|
|
* - mm->active_invalidate_ranges != 0
|
|
* - mnn->invalidate_seq & 1 == True (odd)
|
|
* - some range on the mm_struct is being invalidated
|
|
* - the itree is not allowed to change
|
|
*
|
|
* And partially excluded:
|
|
* - mm->active_invalidate_ranges != 0
|
|
* - mnn->invalidate_seq & 1 == False (even)
|
|
* - some range on the mm_struct is being invalidated
|
|
* - the itree is allowed to change
|
|
*
|
|
* Operations on mmu_notifier_mm->invalidate_seq (under spinlock):
|
|
* seq |= 1 # Begin writing
|
|
* seq++ # Release the writing state
|
|
* seq & 1 # True if a writer exists
|
|
*
|
|
* The later state avoids some expensive work on inv_end in the common case of
|
|
* no mni monitoring the VA.
|
|
*/
|
|
static bool mn_itree_is_invalidating(struct mmu_notifier_mm *mmn_mm)
|
|
{
|
|
lockdep_assert_held(&mmn_mm->lock);
|
|
return mmn_mm->invalidate_seq & 1;
|
|
}
|
|
|
|
static struct mmu_interval_notifier *
|
|
mn_itree_inv_start_range(struct mmu_notifier_mm *mmn_mm,
|
|
const struct mmu_notifier_range *range,
|
|
unsigned long *seq)
|
|
{
|
|
struct interval_tree_node *node;
|
|
struct mmu_interval_notifier *res = NULL;
|
|
|
|
spin_lock(&mmn_mm->lock);
|
|
mmn_mm->active_invalidate_ranges++;
|
|
node = interval_tree_iter_first(&mmn_mm->itree, range->start,
|
|
range->end - 1);
|
|
if (node) {
|
|
mmn_mm->invalidate_seq |= 1;
|
|
res = container_of(node, struct mmu_interval_notifier,
|
|
interval_tree);
|
|
}
|
|
|
|
*seq = mmn_mm->invalidate_seq;
|
|
spin_unlock(&mmn_mm->lock);
|
|
return res;
|
|
}
|
|
|
|
static struct mmu_interval_notifier *
|
|
mn_itree_inv_next(struct mmu_interval_notifier *mni,
|
|
const struct mmu_notifier_range *range)
|
|
{
|
|
struct interval_tree_node *node;
|
|
|
|
node = interval_tree_iter_next(&mni->interval_tree, range->start,
|
|
range->end - 1);
|
|
if (!node)
|
|
return NULL;
|
|
return container_of(node, struct mmu_interval_notifier, interval_tree);
|
|
}
|
|
|
|
static void mn_itree_inv_end(struct mmu_notifier_mm *mmn_mm)
|
|
{
|
|
struct mmu_interval_notifier *mni;
|
|
struct hlist_node *next;
|
|
|
|
spin_lock(&mmn_mm->lock);
|
|
if (--mmn_mm->active_invalidate_ranges ||
|
|
!mn_itree_is_invalidating(mmn_mm)) {
|
|
spin_unlock(&mmn_mm->lock);
|
|
return;
|
|
}
|
|
|
|
/* Make invalidate_seq even */
|
|
mmn_mm->invalidate_seq++;
|
|
|
|
/*
|
|
* The inv_end incorporates a deferred mechanism like rtnl_unlock().
|
|
* Adds and removes are queued until the final inv_end happens then
|
|
* they are progressed. This arrangement for tree updates is used to
|
|
* avoid using a blocking lock during invalidate_range_start.
|
|
*/
|
|
hlist_for_each_entry_safe(mni, next, &mmn_mm->deferred_list,
|
|
deferred_item) {
|
|
if (RB_EMPTY_NODE(&mni->interval_tree.rb))
|
|
interval_tree_insert(&mni->interval_tree,
|
|
&mmn_mm->itree);
|
|
else
|
|
interval_tree_remove(&mni->interval_tree,
|
|
&mmn_mm->itree);
|
|
hlist_del(&mni->deferred_item);
|
|
}
|
|
spin_unlock(&mmn_mm->lock);
|
|
|
|
wake_up_all(&mmn_mm->wq);
|
|
}
|
|
|
|
/**
|
|
* mmu_interval_read_begin - Begin a read side critical section against a VA
|
|
* range
|
|
* mni: The range to use
|
|
*
|
|
* mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
|
|
* collision-retry scheme similar to seqcount for the VA range under mni. If
|
|
* the mm invokes invalidation during the critical section then
|
|
* mmu_interval_read_retry() will return true.
|
|
*
|
|
* This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
|
|
* require a blocking context. The critical region formed by this can sleep,
|
|
* and the required 'user_lock' can also be a sleeping lock.
|
|
*
|
|
* The caller is required to provide a 'user_lock' to serialize both teardown
|
|
* and setup.
|
|
*
|
|
* The return value should be passed to mmu_interval_read_retry().
|
|
*/
|
|
unsigned long mmu_interval_read_begin(struct mmu_interval_notifier *mni)
|
|
{
|
|
struct mmu_notifier_mm *mmn_mm = mni->mm->mmu_notifier_mm;
|
|
unsigned long seq;
|
|
bool is_invalidating;
|
|
|
|
/*
|
|
* If the mni has a different seq value under the user_lock than we
|
|
* started with then it has collided.
|
|
*
|
|
* If the mni currently has the same seq value as the mmn_mm seq, then
|
|
* it is currently between invalidate_start/end and is colliding.
|
|
*
|
|
* The locking looks broadly like this:
|
|
* mn_tree_invalidate_start(): mmu_interval_read_begin():
|
|
* spin_lock
|
|
* seq = READ_ONCE(mni->invalidate_seq);
|
|
* seq == mmn_mm->invalidate_seq
|
|
* spin_unlock
|
|
* spin_lock
|
|
* seq = ++mmn_mm->invalidate_seq
|
|
* spin_unlock
|
|
* op->invalidate_range():
|
|
* user_lock
|
|
* mmu_interval_set_seq()
|
|
* mni->invalidate_seq = seq
|
|
* user_unlock
|
|
*
|
|
* [Required: mmu_interval_read_retry() == true]
|
|
*
|
|
* mn_itree_inv_end():
|
|
* spin_lock
|
|
* seq = ++mmn_mm->invalidate_seq
|
|
* spin_unlock
|
|
*
|
|
* user_lock
|
|
* mmu_interval_read_retry():
|
|
* mni->invalidate_seq != seq
|
|
* user_unlock
|
|
*
|
|
* Barriers are not needed here as any races here are closed by an
|
|
* eventual mmu_interval_read_retry(), which provides a barrier via the
|
|
* user_lock.
|
|
*/
|
|
spin_lock(&mmn_mm->lock);
|
|
/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
|
|
seq = READ_ONCE(mni->invalidate_seq);
|
|
is_invalidating = seq == mmn_mm->invalidate_seq;
|
|
spin_unlock(&mmn_mm->lock);
|
|
|
|
/*
|
|
* mni->invalidate_seq must always be set to an odd value via
|
|
* mmu_interval_set_seq() using the provided cur_seq from
|
|
* mn_itree_inv_start_range(). This ensures that if seq does wrap we
|
|
* will always clear the below sleep in some reasonable time as
|
|
* mmn_mm->invalidate_seq is even in the idle state.
|
|
*/
|
|
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
|
|
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
|
|
if (is_invalidating)
|
|
wait_event(mmn_mm->wq,
|
|
READ_ONCE(mmn_mm->invalidate_seq) != seq);
|
|
|
|
/*
|
|
* Notice that mmu_interval_read_retry() can already be true at this
|
|
* point, avoiding loops here allows the caller to provide a global
|
|
* time bound.
|
|
*/
|
|
|
|
return seq;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
|
|
|
|
static void mn_itree_release(struct mmu_notifier_mm *mmn_mm,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct mmu_notifier_range range = {
|
|
.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
|
|
.event = MMU_NOTIFY_RELEASE,
|
|
.mm = mm,
|
|
.start = 0,
|
|
.end = ULONG_MAX,
|
|
};
|
|
struct mmu_interval_notifier *mni;
|
|
unsigned long cur_seq;
|
|
bool ret;
|
|
|
|
for (mni = mn_itree_inv_start_range(mmn_mm, &range, &cur_seq); mni;
|
|
mni = mn_itree_inv_next(mni, &range)) {
|
|
ret = mni->ops->invalidate(mni, &range, cur_seq);
|
|
WARN_ON(!ret);
|
|
}
|
|
|
|
mn_itree_inv_end(mmn_mm);
|
|
}
|
|
|
|
/*
|
|
* This function can't run concurrently against mmu_notifier_register
|
|
* because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
|
|
* runs with mm_users == 0. Other tasks may still invoke mmu notifiers
|
|
* in parallel despite there being no task using this mm any more,
|
|
* through the vmas outside of the exit_mmap context, such as with
|
|
* vmtruncate. This serializes against mmu_notifier_unregister with
|
|
* the mmu_notifier_mm->lock in addition to SRCU and it serializes
|
|
* against the other mmu notifiers with SRCU. struct mmu_notifier_mm
|
|
* can't go away from under us as exit_mmap holds an mm_count pin
|
|
* itself.
|
|
*/
|
|
static void mn_hlist_release(struct mmu_notifier_mm *mmn_mm,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct mmu_notifier *mn;
|
|
int id;
|
|
|
|
/*
|
|
* SRCU here will block mmu_notifier_unregister until
|
|
* ->release returns.
|
|
*/
|
|
id = srcu_read_lock(&srcu);
|
|
hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist)
|
|
/*
|
|
* If ->release runs before mmu_notifier_unregister it must be
|
|
* handled, as it's the only way for the driver to flush all
|
|
* existing sptes and stop the driver from establishing any more
|
|
* sptes before all the pages in the mm are freed.
|
|
*/
|
|
if (mn->ops->release)
|
|
mn->ops->release(mn, mm);
|
|
|
|
spin_lock(&mmn_mm->lock);
|
|
while (unlikely(!hlist_empty(&mmn_mm->list))) {
|
|
mn = hlist_entry(mmn_mm->list.first, struct mmu_notifier,
|
|
hlist);
|
|
/*
|
|
* We arrived before mmu_notifier_unregister so
|
|
* mmu_notifier_unregister will do nothing other than to wait
|
|
* for ->release to finish and for mmu_notifier_unregister to
|
|
* return.
|
|
*/
|
|
hlist_del_init_rcu(&mn->hlist);
|
|
}
|
|
spin_unlock(&mmn_mm->lock);
|
|
srcu_read_unlock(&srcu, id);
|
|
|
|
/*
|
|
* synchronize_srcu here prevents mmu_notifier_release from returning to
|
|
* exit_mmap (which would proceed with freeing all pages in the mm)
|
|
* until the ->release method returns, if it was invoked by
|
|
* mmu_notifier_unregister.
|
|
*
|
|
* The mmu_notifier_mm can't go away from under us because one mm_count
|
|
* is held by exit_mmap.
|
|
*/
|
|
synchronize_srcu(&srcu);
|
|
}
|
|
|
|
void __mmu_notifier_release(struct mm_struct *mm)
|
|
{
|
|
struct mmu_notifier_mm *mmn_mm = mm->mmu_notifier_mm;
|
|
|
|
if (mmn_mm->has_itree)
|
|
mn_itree_release(mmn_mm, mm);
|
|
|
|
if (!hlist_empty(&mmn_mm->list))
|
|
mn_hlist_release(mmn_mm, mm);
|
|
}
|
|
|
|
/*
|
|
* If no young bitflag is supported by the hardware, ->clear_flush_young can
|
|
* unmap the address and return 1 or 0 depending if the mapping previously
|
|
* existed or not.
|
|
*/
|
|
int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct mmu_notifier *mn;
|
|
int young = 0, id;
|
|
|
|
id = srcu_read_lock(&srcu);
|
|
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
|
|
if (mn->ops->clear_flush_young)
|
|
young |= mn->ops->clear_flush_young(mn, mm, start, end);
|
|
}
|
|
srcu_read_unlock(&srcu, id);
|
|
|
|
return young;
|
|
}
|
|
|
|
int __mmu_notifier_clear_young(struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct mmu_notifier *mn;
|
|
int young = 0, id;
|
|
|
|
id = srcu_read_lock(&srcu);
|
|
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
|
|
if (mn->ops->clear_young)
|
|
young |= mn->ops->clear_young(mn, mm, start, end);
|
|
}
|
|
srcu_read_unlock(&srcu, id);
|
|
|
|
return young;
|
|
}
|
|
|
|
int __mmu_notifier_test_young(struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
struct mmu_notifier *mn;
|
|
int young = 0, id;
|
|
|
|
id = srcu_read_lock(&srcu);
|
|
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
|
|
if (mn->ops->test_young) {
|
|
young = mn->ops->test_young(mn, mm, address);
|
|
if (young)
|
|
break;
|
|
}
|
|
}
|
|
srcu_read_unlock(&srcu, id);
|
|
|
|
return young;
|
|
}
|
|
|
|
void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
|
|
pte_t pte)
|
|
{
|
|
struct mmu_notifier *mn;
|
|
int id;
|
|
|
|
id = srcu_read_lock(&srcu);
|
|
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
|
|
if (mn->ops->change_pte)
|
|
mn->ops->change_pte(mn, mm, address, pte);
|
|
}
|
|
srcu_read_unlock(&srcu, id);
|
|
}
|
|
|
|
static int mn_itree_invalidate(struct mmu_notifier_mm *mmn_mm,
|
|
const struct mmu_notifier_range *range)
|
|
{
|
|
struct mmu_interval_notifier *mni;
|
|
unsigned long cur_seq;
|
|
|
|
for (mni = mn_itree_inv_start_range(mmn_mm, range, &cur_seq); mni;
|
|
mni = mn_itree_inv_next(mni, range)) {
|
|
bool ret;
|
|
|
|
ret = mni->ops->invalidate(mni, range, cur_seq);
|
|
if (!ret) {
|
|
if (WARN_ON(mmu_notifier_range_blockable(range)))
|
|
continue;
|
|
goto out_would_block;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
out_would_block:
|
|
/*
|
|
* On -EAGAIN the non-blocking caller is not allowed to call
|
|
* invalidate_range_end()
|
|
*/
|
|
mn_itree_inv_end(mmn_mm);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int mn_hlist_invalidate_range_start(struct mmu_notifier_mm *mmn_mm,
|
|
struct mmu_notifier_range *range)
|
|
{
|
|
struct mmu_notifier *mn;
|
|
int ret = 0;
|
|
int id;
|
|
|
|
id = srcu_read_lock(&srcu);
|
|
hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) {
|
|
if (mn->ops->invalidate_range_start) {
|
|
int _ret;
|
|
|
|
if (!mmu_notifier_range_blockable(range))
|
|
non_block_start();
|
|
_ret = mn->ops->invalidate_range_start(mn, range);
|
|
if (!mmu_notifier_range_blockable(range))
|
|
non_block_end();
|
|
if (_ret) {
|
|
pr_info("%pS callback failed with %d in %sblockable context.\n",
|
|
mn->ops->invalidate_range_start, _ret,
|
|
!mmu_notifier_range_blockable(range) ? "non-" : "");
|
|
WARN_ON(mmu_notifier_range_blockable(range) ||
|
|
_ret != -EAGAIN);
|
|
ret = _ret;
|
|
}
|
|
}
|
|
}
|
|
srcu_read_unlock(&srcu, id);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
|
|
{
|
|
struct mmu_notifier_mm *mmn_mm = range->mm->mmu_notifier_mm;
|
|
int ret;
|
|
|
|
if (mmn_mm->has_itree) {
|
|
ret = mn_itree_invalidate(mmn_mm, range);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
if (!hlist_empty(&mmn_mm->list))
|
|
return mn_hlist_invalidate_range_start(mmn_mm, range);
|
|
return 0;
|
|
}
|
|
|
|
static void mn_hlist_invalidate_end(struct mmu_notifier_mm *mmn_mm,
|
|
struct mmu_notifier_range *range,
|
|
bool only_end)
|
|
{
|
|
struct mmu_notifier *mn;
|
|
int id;
|
|
|
|
id = srcu_read_lock(&srcu);
|
|
hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) {
|
|
/*
|
|
* Call invalidate_range here too to avoid the need for the
|
|
* subsystem of having to register an invalidate_range_end
|
|
* call-back when there is invalidate_range already. Usually a
|
|
* subsystem registers either invalidate_range_start()/end() or
|
|
* invalidate_range(), so this will be no additional overhead
|
|
* (besides the pointer check).
|
|
*
|
|
* We skip call to invalidate_range() if we know it is safe ie
|
|
* call site use mmu_notifier_invalidate_range_only_end() which
|
|
* is safe to do when we know that a call to invalidate_range()
|
|
* already happen under page table lock.
|
|
*/
|
|
if (!only_end && mn->ops->invalidate_range)
|
|
mn->ops->invalidate_range(mn, range->mm,
|
|
range->start,
|
|
range->end);
|
|
if (mn->ops->invalidate_range_end) {
|
|
if (!mmu_notifier_range_blockable(range))
|
|
non_block_start();
|
|
mn->ops->invalidate_range_end(mn, range);
|
|
if (!mmu_notifier_range_blockable(range))
|
|
non_block_end();
|
|
}
|
|
}
|
|
srcu_read_unlock(&srcu, id);
|
|
}
|
|
|
|
void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
|
|
bool only_end)
|
|
{
|
|
struct mmu_notifier_mm *mmn_mm = range->mm->mmu_notifier_mm;
|
|
|
|
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
|
|
if (mmn_mm->has_itree)
|
|
mn_itree_inv_end(mmn_mm);
|
|
|
|
if (!hlist_empty(&mmn_mm->list))
|
|
mn_hlist_invalidate_end(mmn_mm, range, only_end);
|
|
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
|
|
}
|
|
|
|
void __mmu_notifier_invalidate_range(struct mm_struct *mm,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
struct mmu_notifier *mn;
|
|
int id;
|
|
|
|
id = srcu_read_lock(&srcu);
|
|
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
|
|
if (mn->ops->invalidate_range)
|
|
mn->ops->invalidate_range(mn, mm, start, end);
|
|
}
|
|
srcu_read_unlock(&srcu, id);
|
|
}
|
|
|
|
/*
|
|
* Same as mmu_notifier_register but here the caller must hold the mmap_sem in
|
|
* write mode. A NULL mn signals the notifier is being registered for itree
|
|
* mode.
|
|
*/
|
|
int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
|
|
{
|
|
struct mmu_notifier_mm *mmu_notifier_mm = NULL;
|
|
int ret;
|
|
|
|
lockdep_assert_held_write(&mm->mmap_sem);
|
|
BUG_ON(atomic_read(&mm->mm_users) <= 0);
|
|
|
|
if (IS_ENABLED(CONFIG_LOCKDEP)) {
|
|
fs_reclaim_acquire(GFP_KERNEL);
|
|
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
|
|
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
|
|
fs_reclaim_release(GFP_KERNEL);
|
|
}
|
|
|
|
if (!mm->mmu_notifier_mm) {
|
|
/*
|
|
* kmalloc cannot be called under mm_take_all_locks(), but we
|
|
* know that mm->mmu_notifier_mm can't change while we hold
|
|
* the write side of the mmap_sem.
|
|
*/
|
|
mmu_notifier_mm =
|
|
kzalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
|
|
if (!mmu_notifier_mm)
|
|
return -ENOMEM;
|
|
|
|
INIT_HLIST_HEAD(&mmu_notifier_mm->list);
|
|
spin_lock_init(&mmu_notifier_mm->lock);
|
|
mmu_notifier_mm->invalidate_seq = 2;
|
|
mmu_notifier_mm->itree = RB_ROOT_CACHED;
|
|
init_waitqueue_head(&mmu_notifier_mm->wq);
|
|
INIT_HLIST_HEAD(&mmu_notifier_mm->deferred_list);
|
|
}
|
|
|
|
ret = mm_take_all_locks(mm);
|
|
if (unlikely(ret))
|
|
goto out_clean;
|
|
|
|
/*
|
|
* Serialize the update against mmu_notifier_unregister. A
|
|
* side note: mmu_notifier_release can't run concurrently with
|
|
* us because we hold the mm_users pin (either implicitly as
|
|
* current->mm or explicitly with get_task_mm() or similar).
|
|
* We can't race against any other mmu notifier method either
|
|
* thanks to mm_take_all_locks().
|
|
*
|
|
* release semantics on the initialization of the mmu_notifier_mm's
|
|
* contents are provided for unlocked readers. acquire can only be
|
|
* used while holding the mmgrab or mmget, and is safe because once
|
|
* created the mmu_notififer_mm is not freed until the mm is
|
|
* destroyed. As above, users holding the mmap_sem or one of the
|
|
* mm_take_all_locks() do not need to use acquire semantics.
|
|
*/
|
|
if (mmu_notifier_mm)
|
|
smp_store_release(&mm->mmu_notifier_mm, mmu_notifier_mm);
|
|
|
|
if (mn) {
|
|
/* Pairs with the mmdrop in mmu_notifier_unregister_* */
|
|
mmgrab(mm);
|
|
mn->mm = mm;
|
|
mn->users = 1;
|
|
|
|
spin_lock(&mm->mmu_notifier_mm->lock);
|
|
hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list);
|
|
spin_unlock(&mm->mmu_notifier_mm->lock);
|
|
} else
|
|
mm->mmu_notifier_mm->has_itree = true;
|
|
|
|
mm_drop_all_locks(mm);
|
|
BUG_ON(atomic_read(&mm->mm_users) <= 0);
|
|
return 0;
|
|
|
|
out_clean:
|
|
kfree(mmu_notifier_mm);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__mmu_notifier_register);
|
|
|
|
/**
|
|
* mmu_notifier_register - Register a notifier on a mm
|
|
* @mn: The notifier to attach
|
|
* @mm: The mm to attach the notifier to
|
|
*
|
|
* Must not hold mmap_sem nor any other VM related lock when calling
|
|
* this registration function. Must also ensure mm_users can't go down
|
|
* to zero while this runs to avoid races with mmu_notifier_release,
|
|
* so mm has to be current->mm or the mm should be pinned safely such
|
|
* as with get_task_mm(). If the mm is not current->mm, the mm_users
|
|
* pin should be released by calling mmput after mmu_notifier_register
|
|
* returns.
|
|
*
|
|
* mmu_notifier_unregister() or mmu_notifier_put() must be always called to
|
|
* unregister the notifier.
|
|
*
|
|
* While the caller has a mmu_notifier get the mn->mm pointer will remain
|
|
* valid, and can be converted to an active mm pointer via mmget_not_zero().
|
|
*/
|
|
int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
|
|
{
|
|
int ret;
|
|
|
|
down_write(&mm->mmap_sem);
|
|
ret = __mmu_notifier_register(mn, mm);
|
|
up_write(&mm->mmap_sem);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_register);
|
|
|
|
static struct mmu_notifier *
|
|
find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
|
|
{
|
|
struct mmu_notifier *mn;
|
|
|
|
spin_lock(&mm->mmu_notifier_mm->lock);
|
|
hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) {
|
|
if (mn->ops != ops)
|
|
continue;
|
|
|
|
if (likely(mn->users != UINT_MAX))
|
|
mn->users++;
|
|
else
|
|
mn = ERR_PTR(-EOVERFLOW);
|
|
spin_unlock(&mm->mmu_notifier_mm->lock);
|
|
return mn;
|
|
}
|
|
spin_unlock(&mm->mmu_notifier_mm->lock);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* mmu_notifier_get_locked - Return the single struct mmu_notifier for
|
|
* the mm & ops
|
|
* @ops: The operations struct being subscribe with
|
|
* @mm : The mm to attach notifiers too
|
|
*
|
|
* This function either allocates a new mmu_notifier via
|
|
* ops->alloc_notifier(), or returns an already existing notifier on the
|
|
* list. The value of the ops pointer is used to determine when two notifiers
|
|
* are the same.
|
|
*
|
|
* Each call to mmu_notifier_get() must be paired with a call to
|
|
* mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem.
|
|
*
|
|
* While the caller has a mmu_notifier get the mm pointer will remain valid,
|
|
* and can be converted to an active mm pointer via mmget_not_zero().
|
|
*/
|
|
struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct mmu_notifier *mn;
|
|
int ret;
|
|
|
|
lockdep_assert_held_write(&mm->mmap_sem);
|
|
|
|
if (mm->mmu_notifier_mm) {
|
|
mn = find_get_mmu_notifier(mm, ops);
|
|
if (mn)
|
|
return mn;
|
|
}
|
|
|
|
mn = ops->alloc_notifier(mm);
|
|
if (IS_ERR(mn))
|
|
return mn;
|
|
mn->ops = ops;
|
|
ret = __mmu_notifier_register(mn, mm);
|
|
if (ret)
|
|
goto out_free;
|
|
return mn;
|
|
out_free:
|
|
mn->ops->free_notifier(mn);
|
|
return ERR_PTR(ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
|
|
|
|
/* this is called after the last mmu_notifier_unregister() returned */
|
|
void __mmu_notifier_mm_destroy(struct mm_struct *mm)
|
|
{
|
|
BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
|
|
kfree(mm->mmu_notifier_mm);
|
|
mm->mmu_notifier_mm = LIST_POISON1; /* debug */
|
|
}
|
|
|
|
/*
|
|
* This releases the mm_count pin automatically and frees the mm
|
|
* structure if it was the last user of it. It serializes against
|
|
* running mmu notifiers with SRCU and against mmu_notifier_unregister
|
|
* with the unregister lock + SRCU. All sptes must be dropped before
|
|
* calling mmu_notifier_unregister. ->release or any other notifier
|
|
* method may be invoked concurrently with mmu_notifier_unregister,
|
|
* and only after mmu_notifier_unregister returned we're guaranteed
|
|
* that ->release or any other method can't run anymore.
|
|
*/
|
|
void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
|
|
{
|
|
BUG_ON(atomic_read(&mm->mm_count) <= 0);
|
|
|
|
if (!hlist_unhashed(&mn->hlist)) {
|
|
/*
|
|
* SRCU here will force exit_mmap to wait for ->release to
|
|
* finish before freeing the pages.
|
|
*/
|
|
int id;
|
|
|
|
id = srcu_read_lock(&srcu);
|
|
/*
|
|
* exit_mmap will block in mmu_notifier_release to guarantee
|
|
* that ->release is called before freeing the pages.
|
|
*/
|
|
if (mn->ops->release)
|
|
mn->ops->release(mn, mm);
|
|
srcu_read_unlock(&srcu, id);
|
|
|
|
spin_lock(&mm->mmu_notifier_mm->lock);
|
|
/*
|
|
* Can not use list_del_rcu() since __mmu_notifier_release
|
|
* can delete it before we hold the lock.
|
|
*/
|
|
hlist_del_init_rcu(&mn->hlist);
|
|
spin_unlock(&mm->mmu_notifier_mm->lock);
|
|
}
|
|
|
|
/*
|
|
* Wait for any running method to finish, of course including
|
|
* ->release if it was run by mmu_notifier_release instead of us.
|
|
*/
|
|
synchronize_srcu(&srcu);
|
|
|
|
BUG_ON(atomic_read(&mm->mm_count) <= 0);
|
|
|
|
mmdrop(mm);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
|
|
|
|
static void mmu_notifier_free_rcu(struct rcu_head *rcu)
|
|
{
|
|
struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu);
|
|
struct mm_struct *mm = mn->mm;
|
|
|
|
mn->ops->free_notifier(mn);
|
|
/* Pairs with the get in __mmu_notifier_register() */
|
|
mmdrop(mm);
|
|
}
|
|
|
|
/**
|
|
* mmu_notifier_put - Release the reference on the notifier
|
|
* @mn: The notifier to act on
|
|
*
|
|
* This function must be paired with each mmu_notifier_get(), it releases the
|
|
* reference obtained by the get. If this is the last reference then process
|
|
* to free the notifier will be run asynchronously.
|
|
*
|
|
* Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
|
|
* when the mm_struct is destroyed. Instead free_notifier is always called to
|
|
* release any resources held by the user.
|
|
*
|
|
* As ops->release is not guaranteed to be called, the user must ensure that
|
|
* all sptes are dropped, and no new sptes can be established before
|
|
* mmu_notifier_put() is called.
|
|
*
|
|
* This function can be called from the ops->release callback, however the
|
|
* caller must still ensure it is called pairwise with mmu_notifier_get().
|
|
*
|
|
* Modules calling this function must call mmu_notifier_synchronize() in
|
|
* their __exit functions to ensure the async work is completed.
|
|
*/
|
|
void mmu_notifier_put(struct mmu_notifier *mn)
|
|
{
|
|
struct mm_struct *mm = mn->mm;
|
|
|
|
spin_lock(&mm->mmu_notifier_mm->lock);
|
|
if (WARN_ON(!mn->users) || --mn->users)
|
|
goto out_unlock;
|
|
hlist_del_init_rcu(&mn->hlist);
|
|
spin_unlock(&mm->mmu_notifier_mm->lock);
|
|
|
|
call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu);
|
|
return;
|
|
|
|
out_unlock:
|
|
spin_unlock(&mm->mmu_notifier_mm->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_put);
|
|
|
|
static int __mmu_interval_notifier_insert(
|
|
struct mmu_interval_notifier *mni, struct mm_struct *mm,
|
|
struct mmu_notifier_mm *mmn_mm, unsigned long start,
|
|
unsigned long length, const struct mmu_interval_notifier_ops *ops)
|
|
{
|
|
mni->mm = mm;
|
|
mni->ops = ops;
|
|
RB_CLEAR_NODE(&mni->interval_tree.rb);
|
|
mni->interval_tree.start = start;
|
|
/*
|
|
* Note that the representation of the intervals in the interval tree
|
|
* considers the ending point as contained in the interval.
|
|
*/
|
|
if (length == 0 ||
|
|
check_add_overflow(start, length - 1, &mni->interval_tree.last))
|
|
return -EOVERFLOW;
|
|
|
|
/* Must call with a mmget() held */
|
|
if (WARN_ON(atomic_read(&mm->mm_count) <= 0))
|
|
return -EINVAL;
|
|
|
|
/* pairs with mmdrop in mmu_interval_notifier_remove() */
|
|
mmgrab(mm);
|
|
|
|
/*
|
|
* If some invalidate_range_start/end region is going on in parallel
|
|
* we don't know what VA ranges are affected, so we must assume this
|
|
* new range is included.
|
|
*
|
|
* If the itree is invalidating then we are not allowed to change
|
|
* it. Retrying until invalidation is done is tricky due to the
|
|
* possibility for live lock, instead defer the add to
|
|
* mn_itree_inv_end() so this algorithm is deterministic.
|
|
*
|
|
* In all cases the value for the mni->invalidate_seq should be
|
|
* odd, see mmu_interval_read_begin()
|
|
*/
|
|
spin_lock(&mmn_mm->lock);
|
|
if (mmn_mm->active_invalidate_ranges) {
|
|
if (mn_itree_is_invalidating(mmn_mm))
|
|
hlist_add_head(&mni->deferred_item,
|
|
&mmn_mm->deferred_list);
|
|
else {
|
|
mmn_mm->invalidate_seq |= 1;
|
|
interval_tree_insert(&mni->interval_tree,
|
|
&mmn_mm->itree);
|
|
}
|
|
mni->invalidate_seq = mmn_mm->invalidate_seq;
|
|
} else {
|
|
WARN_ON(mn_itree_is_invalidating(mmn_mm));
|
|
/*
|
|
* The starting seq for a mni not under invalidation should be
|
|
* odd, not equal to the current invalidate_seq and
|
|
* invalidate_seq should not 'wrap' to the new seq any time
|
|
* soon.
|
|
*/
|
|
mni->invalidate_seq = mmn_mm->invalidate_seq - 1;
|
|
interval_tree_insert(&mni->interval_tree, &mmn_mm->itree);
|
|
}
|
|
spin_unlock(&mmn_mm->lock);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mmu_interval_notifier_insert - Insert an interval notifier
|
|
* @mni: Interval notifier to register
|
|
* @start: Starting virtual address to monitor
|
|
* @length: Length of the range to monitor
|
|
* @mm : mm_struct to attach to
|
|
*
|
|
* This function subscribes the interval notifier for notifications from the
|
|
* mm. Upon return the ops related to mmu_interval_notifier will be called
|
|
* whenever an event that intersects with the given range occurs.
|
|
*
|
|
* Upon return the range_notifier may not be present in the interval tree yet.
|
|
* The caller must use the normal interval notifier read flow via
|
|
* mmu_interval_read_begin() to establish SPTEs for this range.
|
|
*/
|
|
int mmu_interval_notifier_insert(struct mmu_interval_notifier *mni,
|
|
struct mm_struct *mm, unsigned long start,
|
|
unsigned long length,
|
|
const struct mmu_interval_notifier_ops *ops)
|
|
{
|
|
struct mmu_notifier_mm *mmn_mm;
|
|
int ret;
|
|
|
|
might_lock(&mm->mmap_sem);
|
|
|
|
mmn_mm = smp_load_acquire(&mm->mmu_notifier_mm);
|
|
if (!mmn_mm || !mmn_mm->has_itree) {
|
|
ret = mmu_notifier_register(NULL, mm);
|
|
if (ret)
|
|
return ret;
|
|
mmn_mm = mm->mmu_notifier_mm;
|
|
}
|
|
return __mmu_interval_notifier_insert(mni, mm, mmn_mm, start, length,
|
|
ops);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
|
|
|
|
int mmu_interval_notifier_insert_locked(
|
|
struct mmu_interval_notifier *mni, struct mm_struct *mm,
|
|
unsigned long start, unsigned long length,
|
|
const struct mmu_interval_notifier_ops *ops)
|
|
{
|
|
struct mmu_notifier_mm *mmn_mm;
|
|
int ret;
|
|
|
|
lockdep_assert_held_write(&mm->mmap_sem);
|
|
|
|
mmn_mm = mm->mmu_notifier_mm;
|
|
if (!mmn_mm || !mmn_mm->has_itree) {
|
|
ret = __mmu_notifier_register(NULL, mm);
|
|
if (ret)
|
|
return ret;
|
|
mmn_mm = mm->mmu_notifier_mm;
|
|
}
|
|
return __mmu_interval_notifier_insert(mni, mm, mmn_mm, start, length,
|
|
ops);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
|
|
|
|
/**
|
|
* mmu_interval_notifier_remove - Remove a interval notifier
|
|
* @mni: Interval notifier to unregister
|
|
*
|
|
* This function must be paired with mmu_interval_notifier_insert(). It cannot
|
|
* be called from any ops callback.
|
|
*
|
|
* Once this returns ops callbacks are no longer running on other CPUs and
|
|
* will not be called in future.
|
|
*/
|
|
void mmu_interval_notifier_remove(struct mmu_interval_notifier *mni)
|
|
{
|
|
struct mm_struct *mm = mni->mm;
|
|
struct mmu_notifier_mm *mmn_mm = mm->mmu_notifier_mm;
|
|
unsigned long seq = 0;
|
|
|
|
might_sleep();
|
|
|
|
spin_lock(&mmn_mm->lock);
|
|
if (mn_itree_is_invalidating(mmn_mm)) {
|
|
/*
|
|
* remove is being called after insert put this on the
|
|
* deferred list, but before the deferred list was processed.
|
|
*/
|
|
if (RB_EMPTY_NODE(&mni->interval_tree.rb)) {
|
|
hlist_del(&mni->deferred_item);
|
|
} else {
|
|
hlist_add_head(&mni->deferred_item,
|
|
&mmn_mm->deferred_list);
|
|
seq = mmn_mm->invalidate_seq;
|
|
}
|
|
} else {
|
|
WARN_ON(RB_EMPTY_NODE(&mni->interval_tree.rb));
|
|
interval_tree_remove(&mni->interval_tree, &mmn_mm->itree);
|
|
}
|
|
spin_unlock(&mmn_mm->lock);
|
|
|
|
/*
|
|
* The possible sleep on progress in the invalidation requires the
|
|
* caller not hold any locks held by invalidation callbacks.
|
|
*/
|
|
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
|
|
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
|
|
if (seq)
|
|
wait_event(mmn_mm->wq,
|
|
READ_ONCE(mmn_mm->invalidate_seq) != seq);
|
|
|
|
/* pairs with mmgrab in mmu_interval_notifier_insert() */
|
|
mmdrop(mm);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
|
|
|
|
/**
|
|
* mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
|
|
*
|
|
* This function ensures that all outstanding async SRU work from
|
|
* mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
|
|
* associated with an unused mmu_notifier will no longer be called.
|
|
*
|
|
* Before using the caller must ensure that all of its mmu_notifiers have been
|
|
* fully released via mmu_notifier_put().
|
|
*
|
|
* Modules using the mmu_notifier_put() API should call this in their __exit
|
|
* function to avoid module unloading races.
|
|
*/
|
|
void mmu_notifier_synchronize(void)
|
|
{
|
|
synchronize_srcu(&srcu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
|
|
|
|
bool
|
|
mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
|
|
{
|
|
if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
|
|
return false;
|
|
/* Return true if the vma still have the read flag set. */
|
|
return range->vma->vm_flags & VM_READ;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
|