mirror of https://gitee.com/openkylin/linux.git
539 lines
14 KiB
C
539 lines
14 KiB
C
/*
|
|
* several functions that help interpret ARC instructions
|
|
* used for unaligned accesses, kprobes and kgdb
|
|
*
|
|
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/disasm.h>
|
|
|
|
#if defined(CONFIG_KGDB) || defined(CONFIG_ARC_EMUL_UNALIGNED) || \
|
|
defined(CONFIG_KPROBES)
|
|
|
|
/* disasm_instr: Analyses instruction at addr, stores
|
|
* findings in *state
|
|
*/
|
|
void __kprobes disasm_instr(unsigned long addr, struct disasm_state *state,
|
|
int userspace, struct pt_regs *regs, struct callee_regs *cregs)
|
|
{
|
|
int fieldA = 0;
|
|
int fieldC = 0, fieldCisReg = 0;
|
|
uint16_t word1 = 0, word0 = 0;
|
|
int subopcode, is_linked, op_format;
|
|
uint16_t *ins_ptr;
|
|
uint16_t ins_buf[4];
|
|
int bytes_not_copied = 0;
|
|
|
|
memset(state, 0, sizeof(struct disasm_state));
|
|
|
|
/* This fetches the upper part of the 32 bit instruction
|
|
* in both the cases of Little Endian or Big Endian configurations. */
|
|
if (userspace) {
|
|
bytes_not_copied = copy_from_user(ins_buf,
|
|
(const void __user *) addr, 8);
|
|
if (bytes_not_copied > 6)
|
|
goto fault;
|
|
ins_ptr = ins_buf;
|
|
} else {
|
|
ins_ptr = (uint16_t *) addr;
|
|
}
|
|
|
|
word1 = *((uint16_t *)addr);
|
|
|
|
state->major_opcode = (word1 >> 11) & 0x1F;
|
|
|
|
/* Check if the instruction is 32 bit or 16 bit instruction */
|
|
if (state->major_opcode < 0x0B) {
|
|
if (bytes_not_copied > 4)
|
|
goto fault;
|
|
state->instr_len = 4;
|
|
word0 = *((uint16_t *)(addr+2));
|
|
state->words[0] = (word1 << 16) | word0;
|
|
} else {
|
|
state->instr_len = 2;
|
|
state->words[0] = word1;
|
|
}
|
|
|
|
/* Read the second word in case of limm */
|
|
word1 = *((uint16_t *)(addr + state->instr_len));
|
|
word0 = *((uint16_t *)(addr + state->instr_len + 2));
|
|
state->words[1] = (word1 << 16) | word0;
|
|
|
|
switch (state->major_opcode) {
|
|
case op_Bcc:
|
|
state->is_branch = 1;
|
|
|
|
/* unconditional branch s25, conditional branch s21 */
|
|
fieldA = (IS_BIT(state->words[0], 16)) ?
|
|
FIELD_s25(state->words[0]) :
|
|
FIELD_s21(state->words[0]);
|
|
|
|
state->delay_slot = IS_BIT(state->words[0], 5);
|
|
state->target = fieldA + (addr & ~0x3);
|
|
state->flow = direct_jump;
|
|
break;
|
|
|
|
case op_BLcc:
|
|
if (IS_BIT(state->words[0], 16)) {
|
|
/* Branch and Link*/
|
|
/* unconditional branch s25, conditional branch s21 */
|
|
fieldA = (IS_BIT(state->words[0], 17)) ?
|
|
(FIELD_s25(state->words[0]) & ~0x3) :
|
|
FIELD_s21(state->words[0]);
|
|
|
|
state->flow = direct_call;
|
|
} else {
|
|
/*Branch On Compare */
|
|
fieldA = FIELD_s9(state->words[0]) & ~0x3;
|
|
state->flow = direct_jump;
|
|
}
|
|
|
|
state->delay_slot = IS_BIT(state->words[0], 5);
|
|
state->target = fieldA + (addr & ~0x3);
|
|
state->is_branch = 1;
|
|
break;
|
|
|
|
case op_LD: /* LD<zz> a,[b,s9] */
|
|
state->write = 0;
|
|
state->di = BITS(state->words[0], 11, 11);
|
|
if (state->di)
|
|
break;
|
|
state->x = BITS(state->words[0], 6, 6);
|
|
state->zz = BITS(state->words[0], 7, 8);
|
|
state->aa = BITS(state->words[0], 9, 10);
|
|
state->wb_reg = FIELD_B(state->words[0]);
|
|
if (state->wb_reg == REG_LIMM) {
|
|
state->instr_len += 4;
|
|
state->aa = 0;
|
|
state->src1 = state->words[1];
|
|
} else {
|
|
state->src1 = get_reg(state->wb_reg, regs, cregs);
|
|
}
|
|
state->src2 = FIELD_s9(state->words[0]);
|
|
state->dest = FIELD_A(state->words[0]);
|
|
state->pref = (state->dest == REG_LIMM);
|
|
break;
|
|
|
|
case op_ST:
|
|
state->write = 1;
|
|
state->di = BITS(state->words[0], 5, 5);
|
|
if (state->di)
|
|
break;
|
|
state->aa = BITS(state->words[0], 3, 4);
|
|
state->zz = BITS(state->words[0], 1, 2);
|
|
state->src1 = FIELD_C(state->words[0]);
|
|
if (state->src1 == REG_LIMM) {
|
|
state->instr_len += 4;
|
|
state->src1 = state->words[1];
|
|
} else {
|
|
state->src1 = get_reg(state->src1, regs, cregs);
|
|
}
|
|
state->wb_reg = FIELD_B(state->words[0]);
|
|
if (state->wb_reg == REG_LIMM) {
|
|
state->aa = 0;
|
|
state->instr_len += 4;
|
|
state->src2 = state->words[1];
|
|
} else {
|
|
state->src2 = get_reg(state->wb_reg, regs, cregs);
|
|
}
|
|
state->src3 = FIELD_s9(state->words[0]);
|
|
break;
|
|
|
|
case op_MAJOR_4:
|
|
subopcode = MINOR_OPCODE(state->words[0]);
|
|
switch (subopcode) {
|
|
case 32: /* Jcc */
|
|
case 33: /* Jcc.D */
|
|
case 34: /* JLcc */
|
|
case 35: /* JLcc.D */
|
|
is_linked = 0;
|
|
|
|
if (subopcode == 33 || subopcode == 35)
|
|
state->delay_slot = 1;
|
|
|
|
if (subopcode == 34 || subopcode == 35)
|
|
is_linked = 1;
|
|
|
|
fieldCisReg = 0;
|
|
op_format = BITS(state->words[0], 22, 23);
|
|
if (op_format == 0 || ((op_format == 3) &&
|
|
(!IS_BIT(state->words[0], 5)))) {
|
|
fieldC = FIELD_C(state->words[0]);
|
|
|
|
if (fieldC == REG_LIMM) {
|
|
fieldC = state->words[1];
|
|
state->instr_len += 4;
|
|
} else {
|
|
fieldCisReg = 1;
|
|
}
|
|
} else if (op_format == 1 || ((op_format == 3)
|
|
&& (IS_BIT(state->words[0], 5)))) {
|
|
fieldC = FIELD_C(state->words[0]);
|
|
} else {
|
|
/* op_format == 2 */
|
|
fieldC = FIELD_s12(state->words[0]);
|
|
}
|
|
|
|
if (!fieldCisReg) {
|
|
state->target = fieldC;
|
|
state->flow = is_linked ?
|
|
direct_call : direct_jump;
|
|
} else {
|
|
state->target = get_reg(fieldC, regs, cregs);
|
|
state->flow = is_linked ?
|
|
indirect_call : indirect_jump;
|
|
}
|
|
state->is_branch = 1;
|
|
break;
|
|
|
|
case 40: /* LPcc */
|
|
if (BITS(state->words[0], 22, 23) == 3) {
|
|
/* Conditional LPcc u7 */
|
|
fieldC = FIELD_C(state->words[0]);
|
|
|
|
fieldC = fieldC << 1;
|
|
fieldC += (addr & ~0x03);
|
|
state->is_branch = 1;
|
|
state->flow = direct_jump;
|
|
state->target = fieldC;
|
|
}
|
|
/* For Unconditional lp, next pc is the fall through
|
|
* which is updated */
|
|
break;
|
|
|
|
case 48 ... 55: /* LD a,[b,c] */
|
|
state->di = BITS(state->words[0], 15, 15);
|
|
if (state->di)
|
|
break;
|
|
state->x = BITS(state->words[0], 16, 16);
|
|
state->zz = BITS(state->words[0], 17, 18);
|
|
state->aa = BITS(state->words[0], 22, 23);
|
|
state->wb_reg = FIELD_B(state->words[0]);
|
|
if (state->wb_reg == REG_LIMM) {
|
|
state->instr_len += 4;
|
|
state->src1 = state->words[1];
|
|
} else {
|
|
state->src1 = get_reg(state->wb_reg, regs,
|
|
cregs);
|
|
}
|
|
state->src2 = FIELD_C(state->words[0]);
|
|
if (state->src2 == REG_LIMM) {
|
|
state->instr_len += 4;
|
|
state->src2 = state->words[1];
|
|
} else {
|
|
state->src2 = get_reg(state->src2, regs,
|
|
cregs);
|
|
}
|
|
state->dest = FIELD_A(state->words[0]);
|
|
if (state->dest == REG_LIMM)
|
|
state->pref = 1;
|
|
break;
|
|
|
|
case 10: /* MOV */
|
|
/* still need to check for limm to extract instr len */
|
|
/* MOV is special case because it only takes 2 args */
|
|
switch (BITS(state->words[0], 22, 23)) {
|
|
case 0: /* OP a,b,c */
|
|
if (FIELD_C(state->words[0]) == REG_LIMM)
|
|
state->instr_len += 4;
|
|
break;
|
|
case 1: /* OP a,b,u6 */
|
|
break;
|
|
case 2: /* OP b,b,s12 */
|
|
break;
|
|
case 3: /* OP.cc b,b,c/u6 */
|
|
if ((!IS_BIT(state->words[0], 5)) &&
|
|
(FIELD_C(state->words[0]) == REG_LIMM))
|
|
state->instr_len += 4;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
|
|
default:
|
|
/* Not a Load, Jump or Loop instruction */
|
|
/* still need to check for limm to extract instr len */
|
|
switch (BITS(state->words[0], 22, 23)) {
|
|
case 0: /* OP a,b,c */
|
|
if ((FIELD_B(state->words[0]) == REG_LIMM) ||
|
|
(FIELD_C(state->words[0]) == REG_LIMM))
|
|
state->instr_len += 4;
|
|
break;
|
|
case 1: /* OP a,b,u6 */
|
|
break;
|
|
case 2: /* OP b,b,s12 */
|
|
break;
|
|
case 3: /* OP.cc b,b,c/u6 */
|
|
if ((!IS_BIT(state->words[0], 5)) &&
|
|
((FIELD_B(state->words[0]) == REG_LIMM) ||
|
|
(FIELD_C(state->words[0]) == REG_LIMM)))
|
|
state->instr_len += 4;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/* 16 Bit Instructions */
|
|
case op_LD_ADD: /* LD_S|LDB_S|LDW_S a,[b,c] */
|
|
state->zz = BITS(state->words[0], 3, 4);
|
|
state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
|
|
state->src2 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
|
|
state->dest = FIELD_S_A(state->words[0]);
|
|
break;
|
|
|
|
case op_ADD_MOV_CMP:
|
|
/* check for limm, ignore mov_s h,b (== mov_s 0,b) */
|
|
if ((BITS(state->words[0], 3, 4) < 3) &&
|
|
(FIELD_S_H(state->words[0]) == REG_LIMM))
|
|
state->instr_len += 4;
|
|
break;
|
|
|
|
case op_S:
|
|
subopcode = BITS(state->words[0], 5, 7);
|
|
switch (subopcode) {
|
|
case 0: /* j_s */
|
|
case 1: /* j_s.d */
|
|
case 2: /* jl_s */
|
|
case 3: /* jl_s.d */
|
|
state->target = get_reg(FIELD_S_B(state->words[0]),
|
|
regs, cregs);
|
|
state->delay_slot = subopcode & 1;
|
|
state->flow = (subopcode >= 2) ?
|
|
direct_call : indirect_jump;
|
|
break;
|
|
case 7:
|
|
switch (BITS(state->words[0], 8, 10)) {
|
|
case 4: /* jeq_s [blink] */
|
|
case 5: /* jne_s [blink] */
|
|
case 6: /* j_s [blink] */
|
|
case 7: /* j_s.d [blink] */
|
|
state->delay_slot = (subopcode == 7);
|
|
state->flow = indirect_jump;
|
|
state->target = get_reg(31, regs, cregs);
|
|
default:
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case op_LD_S: /* LD_S c, [b, u7] */
|
|
state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
|
|
state->src2 = FIELD_S_u7(state->words[0]);
|
|
state->dest = FIELD_S_C(state->words[0]);
|
|
break;
|
|
|
|
case op_LDB_S:
|
|
case op_STB_S:
|
|
/* no further handling required as byte accesses should not
|
|
* cause an unaligned access exception */
|
|
state->zz = 1;
|
|
break;
|
|
|
|
case op_LDWX_S: /* LDWX_S c, [b, u6] */
|
|
state->x = 1;
|
|
/* intentional fall-through */
|
|
|
|
case op_LDW_S: /* LDW_S c, [b, u6] */
|
|
state->zz = 2;
|
|
state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
|
|
state->src2 = FIELD_S_u6(state->words[0]);
|
|
state->dest = FIELD_S_C(state->words[0]);
|
|
break;
|
|
|
|
case op_ST_S: /* ST_S c, [b, u7] */
|
|
state->write = 1;
|
|
state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
|
|
state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
|
|
state->src3 = FIELD_S_u7(state->words[0]);
|
|
break;
|
|
|
|
case op_STW_S: /* STW_S c,[b,u6] */
|
|
state->write = 1;
|
|
state->zz = 2;
|
|
state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
|
|
state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
|
|
state->src3 = FIELD_S_u6(state->words[0]);
|
|
break;
|
|
|
|
case op_SP: /* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */
|
|
/* note: we are ignoring possibility of:
|
|
* ADD_S, SUB_S, PUSH_S, POP_S as these should not
|
|
* cause unaliged exception anyway */
|
|
state->write = BITS(state->words[0], 6, 6);
|
|
state->zz = BITS(state->words[0], 5, 5);
|
|
if (state->zz)
|
|
break; /* byte accesses should not come here */
|
|
if (!state->write) {
|
|
state->src1 = get_reg(28, regs, cregs);
|
|
state->src2 = FIELD_S_u7(state->words[0]);
|
|
state->dest = FIELD_S_B(state->words[0]);
|
|
} else {
|
|
state->src1 = get_reg(FIELD_S_B(state->words[0]), regs,
|
|
cregs);
|
|
state->src2 = get_reg(28, regs, cregs);
|
|
state->src3 = FIELD_S_u7(state->words[0]);
|
|
}
|
|
break;
|
|
|
|
case op_GP: /* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */
|
|
/* note: ADD_S r0, gp, s11 is ignored */
|
|
state->zz = BITS(state->words[0], 9, 10);
|
|
state->src1 = get_reg(26, regs, cregs);
|
|
state->src2 = state->zz ? FIELD_S_s10(state->words[0]) :
|
|
FIELD_S_s11(state->words[0]);
|
|
state->dest = 0;
|
|
break;
|
|
|
|
case op_Pcl: /* LD_S b,[pcl,u10] */
|
|
state->src1 = regs->ret & ~3;
|
|
state->src2 = FIELD_S_u10(state->words[0]);
|
|
state->dest = FIELD_S_B(state->words[0]);
|
|
break;
|
|
|
|
case op_BR_S:
|
|
state->target = FIELD_S_s8(state->words[0]) + (addr & ~0x03);
|
|
state->flow = direct_jump;
|
|
state->is_branch = 1;
|
|
break;
|
|
|
|
case op_B_S:
|
|
fieldA = (BITS(state->words[0], 9, 10) == 3) ?
|
|
FIELD_S_s7(state->words[0]) :
|
|
FIELD_S_s10(state->words[0]);
|
|
state->target = fieldA + (addr & ~0x03);
|
|
state->flow = direct_jump;
|
|
state->is_branch = 1;
|
|
break;
|
|
|
|
case op_BL_S:
|
|
state->target = FIELD_S_s13(state->words[0]) + (addr & ~0x03);
|
|
state->flow = direct_call;
|
|
state->is_branch = 1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (bytes_not_copied <= (8 - state->instr_len))
|
|
return;
|
|
|
|
fault: state->fault = 1;
|
|
}
|
|
|
|
long __kprobes get_reg(int reg, struct pt_regs *regs,
|
|
struct callee_regs *cregs)
|
|
{
|
|
long *p;
|
|
|
|
if (reg <= 12) {
|
|
p = ®s->r0;
|
|
return p[-reg];
|
|
}
|
|
|
|
if (cregs && (reg <= 25)) {
|
|
p = &cregs->r13;
|
|
return p[13-reg];
|
|
}
|
|
|
|
if (reg == 26)
|
|
return regs->r26;
|
|
if (reg == 27)
|
|
return regs->fp;
|
|
if (reg == 28)
|
|
return regs->sp;
|
|
if (reg == 31)
|
|
return regs->blink;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __kprobes set_reg(int reg, long val, struct pt_regs *regs,
|
|
struct callee_regs *cregs)
|
|
{
|
|
long *p;
|
|
|
|
switch (reg) {
|
|
case 0 ... 12:
|
|
p = ®s->r0;
|
|
p[-reg] = val;
|
|
break;
|
|
case 13 ... 25:
|
|
if (cregs) {
|
|
p = &cregs->r13;
|
|
p[13-reg] = val;
|
|
}
|
|
break;
|
|
case 26:
|
|
regs->r26 = val;
|
|
break;
|
|
case 27:
|
|
regs->fp = val;
|
|
break;
|
|
case 28:
|
|
regs->sp = val;
|
|
break;
|
|
case 31:
|
|
regs->blink = val;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disassembles the insn at @pc and sets @next_pc to next PC (which could be
|
|
* @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns).
|
|
*
|
|
* If @pc is a branch
|
|
* -@tgt_if_br is set to branch target.
|
|
* -If branch has delay slot, @next_pc updated with actual next PC.
|
|
*/
|
|
int __kprobes disasm_next_pc(unsigned long pc, struct pt_regs *regs,
|
|
struct callee_regs *cregs,
|
|
unsigned long *next_pc, unsigned long *tgt_if_br)
|
|
{
|
|
struct disasm_state instr;
|
|
|
|
memset(&instr, 0, sizeof(struct disasm_state));
|
|
disasm_instr(pc, &instr, 0, regs, cregs);
|
|
|
|
*next_pc = pc + instr.instr_len;
|
|
|
|
/* Instruction with possible two targets branch, jump and loop */
|
|
if (instr.is_branch)
|
|
*tgt_if_br = instr.target;
|
|
|
|
/* For the instructions with delay slots, the fall through is the
|
|
* instruction following the instruction in delay slot.
|
|
*/
|
|
if (instr.delay_slot) {
|
|
struct disasm_state instr_d;
|
|
|
|
disasm_instr(*next_pc, &instr_d, 0, regs, cregs);
|
|
|
|
*next_pc += instr_d.instr_len;
|
|
}
|
|
|
|
/* Zero Overhead Loop - end of the loop */
|
|
if (!(regs->status32 & STATUS32_L) && (*next_pc == regs->lp_end)
|
|
&& (regs->lp_count > 1)) {
|
|
*next_pc = regs->lp_start;
|
|
}
|
|
|
|
return instr.is_branch;
|
|
}
|
|
|
|
#endif /* CONFIG_KGDB || CONFIG_ARC_EMUL_UNALIGNED || CONFIG_KPROBES */
|