mirror of https://gitee.com/openkylin/linux.git
706 lines
20 KiB
C
706 lines
20 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2005-2008 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/socket.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <net/ip.h>
|
|
#include <net/checksum.h>
|
|
#include "net_driver.h"
|
|
#include "rx.h"
|
|
#include "efx.h"
|
|
#include "falcon.h"
|
|
#include "selftest.h"
|
|
#include "workarounds.h"
|
|
|
|
/* Number of RX descriptors pushed at once. */
|
|
#define EFX_RX_BATCH 8
|
|
|
|
/* Size of buffer allocated for skb header area. */
|
|
#define EFX_SKB_HEADERS 64u
|
|
|
|
/*
|
|
* rx_alloc_method - RX buffer allocation method
|
|
*
|
|
* This driver supports two methods for allocating and using RX buffers:
|
|
* each RX buffer may be backed by an skb or by an order-n page.
|
|
*
|
|
* When LRO is in use then the second method has a lower overhead,
|
|
* since we don't have to allocate then free skbs on reassembled frames.
|
|
*
|
|
* Values:
|
|
* - RX_ALLOC_METHOD_AUTO = 0
|
|
* - RX_ALLOC_METHOD_SKB = 1
|
|
* - RX_ALLOC_METHOD_PAGE = 2
|
|
*
|
|
* The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
|
|
* controlled by the parameters below.
|
|
*
|
|
* - Since pushing and popping descriptors are separated by the rx_queue
|
|
* size, so the watermarks should be ~rxd_size.
|
|
* - The performance win by using page-based allocation for LRO is less
|
|
* than the performance hit of using page-based allocation of non-LRO,
|
|
* so the watermarks should reflect this.
|
|
*
|
|
* Per channel we maintain a single variable, updated by each channel:
|
|
*
|
|
* rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
|
|
* RX_ALLOC_FACTOR_SKB)
|
|
* Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
|
|
* limits the hysteresis), and update the allocation strategy:
|
|
*
|
|
* rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
|
|
* RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
|
|
*/
|
|
static int rx_alloc_method = RX_ALLOC_METHOD_PAGE;
|
|
|
|
#define RX_ALLOC_LEVEL_LRO 0x2000
|
|
#define RX_ALLOC_LEVEL_MAX 0x3000
|
|
#define RX_ALLOC_FACTOR_LRO 1
|
|
#define RX_ALLOC_FACTOR_SKB (-2)
|
|
|
|
/* This is the percentage fill level below which new RX descriptors
|
|
* will be added to the RX descriptor ring.
|
|
*/
|
|
static unsigned int rx_refill_threshold = 90;
|
|
|
|
/* This is the percentage fill level to which an RX queue will be refilled
|
|
* when the "RX refill threshold" is reached.
|
|
*/
|
|
static unsigned int rx_refill_limit = 95;
|
|
|
|
/*
|
|
* RX maximum head room required.
|
|
*
|
|
* This must be at least 1 to prevent overflow and at least 2 to allow
|
|
* pipelined receives.
|
|
*/
|
|
#define EFX_RXD_HEAD_ROOM 2
|
|
|
|
static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
|
|
{
|
|
/* Offset is always within one page, so we don't need to consider
|
|
* the page order.
|
|
*/
|
|
return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
|
|
}
|
|
static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
|
|
{
|
|
return PAGE_SIZE << efx->rx_buffer_order;
|
|
}
|
|
|
|
|
|
/**
|
|
* efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation
|
|
*
|
|
* @rx_queue: Efx RX queue
|
|
* @rx_buf: RX buffer structure to populate
|
|
*
|
|
* This allocates memory for a new receive buffer, maps it for DMA,
|
|
* and populates a struct efx_rx_buffer with the relevant
|
|
* information. Return a negative error code or 0 on success.
|
|
*/
|
|
static int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct net_device *net_dev = efx->net_dev;
|
|
int skb_len = efx->rx_buffer_len;
|
|
|
|
rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
|
|
if (unlikely(!rx_buf->skb))
|
|
return -ENOMEM;
|
|
|
|
/* Adjust the SKB for padding and checksum */
|
|
skb_reserve(rx_buf->skb, NET_IP_ALIGN);
|
|
rx_buf->len = skb_len - NET_IP_ALIGN;
|
|
rx_buf->data = (char *)rx_buf->skb->data;
|
|
rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
rx_buf->dma_addr = pci_map_single(efx->pci_dev,
|
|
rx_buf->data, rx_buf->len,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if (unlikely(pci_dma_mapping_error(efx->pci_dev, rx_buf->dma_addr))) {
|
|
dev_kfree_skb_any(rx_buf->skb);
|
|
rx_buf->skb = NULL;
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* efx_init_rx_buffer_page - create new RX buffer using page-based allocation
|
|
*
|
|
* @rx_queue: Efx RX queue
|
|
* @rx_buf: RX buffer structure to populate
|
|
*
|
|
* This allocates memory for a new receive buffer, maps it for DMA,
|
|
* and populates a struct efx_rx_buffer with the relevant
|
|
* information. Return a negative error code or 0 on success.
|
|
*/
|
|
static int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
int bytes, space, offset;
|
|
|
|
bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
|
|
|
|
/* If there is space left in the previously allocated page,
|
|
* then use it. Otherwise allocate a new one */
|
|
rx_buf->page = rx_queue->buf_page;
|
|
if (rx_buf->page == NULL) {
|
|
dma_addr_t dma_addr;
|
|
|
|
rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
|
|
efx->rx_buffer_order);
|
|
if (unlikely(rx_buf->page == NULL))
|
|
return -ENOMEM;
|
|
|
|
dma_addr = pci_map_page(efx->pci_dev, rx_buf->page,
|
|
0, efx_rx_buf_size(efx),
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
|
|
__free_pages(rx_buf->page, efx->rx_buffer_order);
|
|
rx_buf->page = NULL;
|
|
return -EIO;
|
|
}
|
|
|
|
rx_queue->buf_page = rx_buf->page;
|
|
rx_queue->buf_dma_addr = dma_addr;
|
|
rx_queue->buf_data = (page_address(rx_buf->page) +
|
|
EFX_PAGE_IP_ALIGN);
|
|
}
|
|
|
|
rx_buf->len = bytes;
|
|
rx_buf->data = rx_queue->buf_data;
|
|
offset = efx_rx_buf_offset(rx_buf);
|
|
rx_buf->dma_addr = rx_queue->buf_dma_addr + offset;
|
|
|
|
/* Try to pack multiple buffers per page */
|
|
if (efx->rx_buffer_order == 0) {
|
|
/* The next buffer starts on the next 512 byte boundary */
|
|
rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff);
|
|
offset += ((bytes + 0x1ff) & ~0x1ff);
|
|
|
|
space = efx_rx_buf_size(efx) - offset;
|
|
if (space >= bytes) {
|
|
/* Refs dropped on kernel releasing each skb */
|
|
get_page(rx_queue->buf_page);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* This is the final RX buffer for this page, so mark it for
|
|
* unmapping */
|
|
rx_queue->buf_page = NULL;
|
|
rx_buf->unmap_addr = rx_queue->buf_dma_addr;
|
|
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/* This allocates memory for a new receive buffer, maps it for DMA,
|
|
* and populates a struct efx_rx_buffer with the relevant
|
|
* information.
|
|
*/
|
|
static int efx_init_rx_buffer(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *new_rx_buf)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (rx_queue->channel->rx_alloc_push_pages) {
|
|
new_rx_buf->skb = NULL;
|
|
rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf);
|
|
rx_queue->alloc_page_count++;
|
|
} else {
|
|
new_rx_buf->page = NULL;
|
|
rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf);
|
|
rx_queue->alloc_skb_count++;
|
|
}
|
|
|
|
if (unlikely(rc < 0))
|
|
EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__,
|
|
rx_queue->queue, rc);
|
|
return rc;
|
|
}
|
|
|
|
static void efx_unmap_rx_buffer(struct efx_nic *efx,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
if (rx_buf->page) {
|
|
EFX_BUG_ON_PARANOID(rx_buf->skb);
|
|
if (rx_buf->unmap_addr) {
|
|
pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr,
|
|
efx_rx_buf_size(efx),
|
|
PCI_DMA_FROMDEVICE);
|
|
rx_buf->unmap_addr = 0;
|
|
}
|
|
} else if (likely(rx_buf->skb)) {
|
|
pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
|
|
rx_buf->len, PCI_DMA_FROMDEVICE);
|
|
}
|
|
}
|
|
|
|
static void efx_free_rx_buffer(struct efx_nic *efx,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
if (rx_buf->page) {
|
|
__free_pages(rx_buf->page, efx->rx_buffer_order);
|
|
rx_buf->page = NULL;
|
|
} else if (likely(rx_buf->skb)) {
|
|
dev_kfree_skb_any(rx_buf->skb);
|
|
rx_buf->skb = NULL;
|
|
}
|
|
}
|
|
|
|
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
|
|
efx_free_rx_buffer(rx_queue->efx, rx_buf);
|
|
}
|
|
|
|
/**
|
|
* efx_fast_push_rx_descriptors - push new RX descriptors quickly
|
|
* @rx_queue: RX descriptor queue
|
|
* @retry: Recheck the fill level
|
|
* This will aim to fill the RX descriptor queue up to
|
|
* @rx_queue->@fast_fill_limit. If there is insufficient atomic
|
|
* memory to do so, the caller should retry.
|
|
*/
|
|
static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
|
|
int retry)
|
|
{
|
|
struct efx_rx_buffer *rx_buf;
|
|
unsigned fill_level, index;
|
|
int i, space, rc = 0;
|
|
|
|
/* Calculate current fill level. Do this outside the lock,
|
|
* because most of the time we'll end up not wanting to do the
|
|
* fill anyway.
|
|
*/
|
|
fill_level = (rx_queue->added_count - rx_queue->removed_count);
|
|
EFX_BUG_ON_PARANOID(fill_level >
|
|
rx_queue->efx->type->rxd_ring_mask + 1);
|
|
|
|
/* Don't fill if we don't need to */
|
|
if (fill_level >= rx_queue->fast_fill_trigger)
|
|
return 0;
|
|
|
|
/* Record minimum fill level */
|
|
if (unlikely(fill_level < rx_queue->min_fill)) {
|
|
if (fill_level)
|
|
rx_queue->min_fill = fill_level;
|
|
}
|
|
|
|
/* Acquire RX add lock. If this lock is contended, then a fast
|
|
* fill must already be in progress (e.g. in the refill
|
|
* tasklet), so we don't need to do anything
|
|
*/
|
|
if (!spin_trylock_bh(&rx_queue->add_lock))
|
|
return -1;
|
|
|
|
retry:
|
|
/* Recalculate current fill level now that we have the lock */
|
|
fill_level = (rx_queue->added_count - rx_queue->removed_count);
|
|
EFX_BUG_ON_PARANOID(fill_level >
|
|
rx_queue->efx->type->rxd_ring_mask + 1);
|
|
space = rx_queue->fast_fill_limit - fill_level;
|
|
if (space < EFX_RX_BATCH)
|
|
goto out_unlock;
|
|
|
|
EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
|
|
" level %d to level %d using %s allocation\n",
|
|
rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
|
|
rx_queue->channel->rx_alloc_push_pages ? "page" : "skb");
|
|
|
|
do {
|
|
for (i = 0; i < EFX_RX_BATCH; ++i) {
|
|
index = (rx_queue->added_count &
|
|
rx_queue->efx->type->rxd_ring_mask);
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
rc = efx_init_rx_buffer(rx_queue, rx_buf);
|
|
if (unlikely(rc))
|
|
goto out;
|
|
++rx_queue->added_count;
|
|
}
|
|
} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
|
|
|
|
EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
|
|
"to level %d\n", rx_queue->queue,
|
|
rx_queue->added_count - rx_queue->removed_count);
|
|
|
|
out:
|
|
/* Send write pointer to card. */
|
|
falcon_notify_rx_desc(rx_queue);
|
|
|
|
/* If the fast fill is running inside from the refill tasklet, then
|
|
* for SMP systems it may be running on a different CPU to
|
|
* RX event processing, which means that the fill level may now be
|
|
* out of date. */
|
|
if (unlikely(retry && (rc == 0)))
|
|
goto retry;
|
|
|
|
out_unlock:
|
|
spin_unlock_bh(&rx_queue->add_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* efx_fast_push_rx_descriptors - push new RX descriptors quickly
|
|
* @rx_queue: RX descriptor queue
|
|
*
|
|
* This will aim to fill the RX descriptor queue up to
|
|
* @rx_queue->@fast_fill_limit. If there is insufficient memory to do so,
|
|
* it will schedule a work item to immediately continue the fast fill
|
|
*/
|
|
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
|
|
{
|
|
int rc;
|
|
|
|
rc = __efx_fast_push_rx_descriptors(rx_queue, 0);
|
|
if (unlikely(rc)) {
|
|
/* Schedule the work item to run immediately. The hope is
|
|
* that work is immediately pending to free some memory
|
|
* (e.g. an RX event or TX completion)
|
|
*/
|
|
efx_schedule_slow_fill(rx_queue, 0);
|
|
}
|
|
}
|
|
|
|
void efx_rx_work(struct work_struct *data)
|
|
{
|
|
struct efx_rx_queue *rx_queue;
|
|
int rc;
|
|
|
|
rx_queue = container_of(data, struct efx_rx_queue, work.work);
|
|
|
|
if (unlikely(!rx_queue->channel->enabled))
|
|
return;
|
|
|
|
EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU "
|
|
"%d\n", rx_queue->queue, raw_smp_processor_id());
|
|
|
|
++rx_queue->slow_fill_count;
|
|
/* Push new RX descriptors, allowing at least 1 jiffy for
|
|
* the kernel to free some more memory. */
|
|
rc = __efx_fast_push_rx_descriptors(rx_queue, 1);
|
|
if (rc)
|
|
efx_schedule_slow_fill(rx_queue, 1);
|
|
}
|
|
|
|
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *rx_buf,
|
|
int len, bool *discard,
|
|
bool *leak_packet)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
|
|
|
|
if (likely(len <= max_len))
|
|
return;
|
|
|
|
/* The packet must be discarded, but this is only a fatal error
|
|
* if the caller indicated it was
|
|
*/
|
|
*discard = true;
|
|
|
|
if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
|
|
EFX_ERR_RL(efx, " RX queue %d seriously overlength "
|
|
"RX event (0x%x > 0x%x+0x%x). Leaking\n",
|
|
rx_queue->queue, len, max_len,
|
|
efx->type->rx_buffer_padding);
|
|
/* If this buffer was skb-allocated, then the meta
|
|
* data at the end of the skb will be trashed. So
|
|
* we have no choice but to leak the fragment.
|
|
*/
|
|
*leak_packet = (rx_buf->skb != NULL);
|
|
efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
|
|
} else {
|
|
EFX_ERR_RL(efx, " RX queue %d overlength RX event "
|
|
"(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
|
|
}
|
|
|
|
rx_queue->channel->n_rx_overlength++;
|
|
}
|
|
|
|
/* Pass a received packet up through the generic LRO stack
|
|
*
|
|
* Handles driverlink veto, and passes the fragment up via
|
|
* the appropriate LRO method
|
|
*/
|
|
static void efx_rx_packet_lro(struct efx_channel *channel,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
struct napi_struct *napi = &channel->napi_str;
|
|
|
|
/* Pass the skb/page into the LRO engine */
|
|
if (rx_buf->page) {
|
|
struct napi_gro_fraginfo info;
|
|
|
|
info.frags[0].page = rx_buf->page;
|
|
info.frags[0].page_offset = efx_rx_buf_offset(rx_buf);
|
|
info.frags[0].size = rx_buf->len;
|
|
info.nr_frags = 1;
|
|
info.ip_summed = CHECKSUM_UNNECESSARY;
|
|
info.len = rx_buf->len;
|
|
|
|
napi_gro_frags(napi, &info);
|
|
|
|
EFX_BUG_ON_PARANOID(rx_buf->skb);
|
|
rx_buf->page = NULL;
|
|
} else {
|
|
EFX_BUG_ON_PARANOID(!rx_buf->skb);
|
|
|
|
napi_gro_receive(napi, rx_buf->skb);
|
|
rx_buf->skb = NULL;
|
|
}
|
|
}
|
|
|
|
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
|
|
unsigned int len, bool checksummed, bool discard)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_rx_buffer *rx_buf;
|
|
bool leak_packet = false;
|
|
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
EFX_BUG_ON_PARANOID(!rx_buf->data);
|
|
EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
|
|
EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
|
|
|
|
/* This allows the refill path to post another buffer.
|
|
* EFX_RXD_HEAD_ROOM ensures that the slot we are using
|
|
* isn't overwritten yet.
|
|
*/
|
|
rx_queue->removed_count++;
|
|
|
|
/* Validate the length encoded in the event vs the descriptor pushed */
|
|
efx_rx_packet__check_len(rx_queue, rx_buf, len,
|
|
&discard, &leak_packet);
|
|
|
|
EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
|
|
rx_queue->queue, index,
|
|
(unsigned long long)rx_buf->dma_addr, len,
|
|
(checksummed ? " [SUMMED]" : ""),
|
|
(discard ? " [DISCARD]" : ""));
|
|
|
|
/* Discard packet, if instructed to do so */
|
|
if (unlikely(discard)) {
|
|
if (unlikely(leak_packet))
|
|
rx_queue->channel->n_skbuff_leaks++;
|
|
else
|
|
/* We haven't called efx_unmap_rx_buffer yet,
|
|
* so fini the entire rx_buffer here */
|
|
efx_fini_rx_buffer(rx_queue, rx_buf);
|
|
return;
|
|
}
|
|
|
|
/* Release card resources - assumes all RX buffers consumed in-order
|
|
* per RX queue
|
|
*/
|
|
efx_unmap_rx_buffer(efx, rx_buf);
|
|
|
|
/* Prefetch nice and early so data will (hopefully) be in cache by
|
|
* the time we look at it.
|
|
*/
|
|
prefetch(rx_buf->data);
|
|
|
|
/* Pipeline receives so that we give time for packet headers to be
|
|
* prefetched into cache.
|
|
*/
|
|
rx_buf->len = len;
|
|
if (rx_queue->channel->rx_pkt)
|
|
__efx_rx_packet(rx_queue->channel,
|
|
rx_queue->channel->rx_pkt,
|
|
rx_queue->channel->rx_pkt_csummed);
|
|
rx_queue->channel->rx_pkt = rx_buf;
|
|
rx_queue->channel->rx_pkt_csummed = checksummed;
|
|
}
|
|
|
|
/* Handle a received packet. Second half: Touches packet payload. */
|
|
void __efx_rx_packet(struct efx_channel *channel,
|
|
struct efx_rx_buffer *rx_buf, bool checksummed)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct sk_buff *skb;
|
|
|
|
/* If we're in loopback test, then pass the packet directly to the
|
|
* loopback layer, and free the rx_buf here
|
|
*/
|
|
if (unlikely(efx->loopback_selftest)) {
|
|
efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
|
|
efx_free_rx_buffer(efx, rx_buf);
|
|
goto done;
|
|
}
|
|
|
|
if (rx_buf->skb) {
|
|
prefetch(skb_shinfo(rx_buf->skb));
|
|
|
|
skb_put(rx_buf->skb, rx_buf->len);
|
|
|
|
/* Move past the ethernet header. rx_buf->data still points
|
|
* at the ethernet header */
|
|
rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
|
|
efx->net_dev);
|
|
}
|
|
|
|
if (likely(checksummed || rx_buf->page)) {
|
|
efx_rx_packet_lro(channel, rx_buf);
|
|
goto done;
|
|
}
|
|
|
|
/* We now own the SKB */
|
|
skb = rx_buf->skb;
|
|
rx_buf->skb = NULL;
|
|
|
|
EFX_BUG_ON_PARANOID(rx_buf->page);
|
|
EFX_BUG_ON_PARANOID(rx_buf->skb);
|
|
EFX_BUG_ON_PARANOID(!skb);
|
|
|
|
/* Set the SKB flags */
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
|
|
/* Pass the packet up */
|
|
netif_receive_skb(skb);
|
|
|
|
/* Update allocation strategy method */
|
|
channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
|
|
|
|
done:
|
|
;
|
|
}
|
|
|
|
void efx_rx_strategy(struct efx_channel *channel)
|
|
{
|
|
enum efx_rx_alloc_method method = rx_alloc_method;
|
|
|
|
/* Only makes sense to use page based allocation if LRO is enabled */
|
|
if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
|
|
method = RX_ALLOC_METHOD_SKB;
|
|
} else if (method == RX_ALLOC_METHOD_AUTO) {
|
|
/* Constrain the rx_alloc_level */
|
|
if (channel->rx_alloc_level < 0)
|
|
channel->rx_alloc_level = 0;
|
|
else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
|
|
channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
|
|
|
|
/* Decide on the allocation method */
|
|
method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
|
|
RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
|
|
}
|
|
|
|
/* Push the option */
|
|
channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
|
|
}
|
|
|
|
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned int rxq_size;
|
|
int rc;
|
|
|
|
EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
|
|
|
|
/* Allocate RX buffers */
|
|
rxq_size = (efx->type->rxd_ring_mask + 1) * sizeof(*rx_queue->buffer);
|
|
rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
|
|
if (!rx_queue->buffer)
|
|
return -ENOMEM;
|
|
|
|
rc = falcon_probe_rx(rx_queue);
|
|
if (rc) {
|
|
kfree(rx_queue->buffer);
|
|
rx_queue->buffer = NULL;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned int max_fill, trigger, limit;
|
|
|
|
EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
|
|
|
|
/* Initialise ptr fields */
|
|
rx_queue->added_count = 0;
|
|
rx_queue->notified_count = 0;
|
|
rx_queue->removed_count = 0;
|
|
rx_queue->min_fill = -1U;
|
|
rx_queue->min_overfill = -1U;
|
|
|
|
/* Initialise limit fields */
|
|
max_fill = efx->type->rxd_ring_mask + 1 - EFX_RXD_HEAD_ROOM;
|
|
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
|
|
limit = max_fill * min(rx_refill_limit, 100U) / 100U;
|
|
|
|
rx_queue->max_fill = max_fill;
|
|
rx_queue->fast_fill_trigger = trigger;
|
|
rx_queue->fast_fill_limit = limit;
|
|
|
|
/* Set up RX descriptor ring */
|
|
falcon_init_rx(rx_queue);
|
|
}
|
|
|
|
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
int i;
|
|
struct efx_rx_buffer *rx_buf;
|
|
|
|
EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
|
|
|
|
falcon_fini_rx(rx_queue);
|
|
|
|
/* Release RX buffers NB start at index 0 not current HW ptr */
|
|
if (rx_queue->buffer) {
|
|
for (i = 0; i <= rx_queue->efx->type->rxd_ring_mask; i++) {
|
|
rx_buf = efx_rx_buffer(rx_queue, i);
|
|
efx_fini_rx_buffer(rx_queue, rx_buf);
|
|
}
|
|
}
|
|
|
|
/* For a page that is part-way through splitting into RX buffers */
|
|
if (rx_queue->buf_page != NULL) {
|
|
pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr,
|
|
efx_rx_buf_size(rx_queue->efx),
|
|
PCI_DMA_FROMDEVICE);
|
|
__free_pages(rx_queue->buf_page,
|
|
rx_queue->efx->rx_buffer_order);
|
|
rx_queue->buf_page = NULL;
|
|
}
|
|
}
|
|
|
|
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
|
|
|
|
falcon_remove_rx(rx_queue);
|
|
|
|
kfree(rx_queue->buffer);
|
|
rx_queue->buffer = NULL;
|
|
}
|
|
|
|
|
|
module_param(rx_alloc_method, int, 0644);
|
|
MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
|
|
|
|
module_param(rx_refill_threshold, uint, 0444);
|
|
MODULE_PARM_DESC(rx_refill_threshold,
|
|
"RX descriptor ring fast/slow fill threshold (%)");
|
|
|