linux/fs/xfs/xfs_refcount_item.c

593 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_shared.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_refcount_item.h"
#include "xfs_log.h"
#include "xfs_refcount.h"
#include "xfs_error.h"
kmem_zone_t *xfs_cui_zone;
kmem_zone_t *xfs_cud_zone;
static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_cui_log_item, cui_item);
}
void
xfs_cui_item_free(
struct xfs_cui_log_item *cuip)
{
if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
kmem_free(cuip);
else
kmem_cache_free(xfs_cui_zone, cuip);
}
/*
* Freeing the CUI requires that we remove it from the AIL if it has already
* been placed there. However, the CUI may not yet have been placed in the AIL
* when called by xfs_cui_release() from CUD processing due to the ordering of
* committed vs unpin operations in bulk insert operations. Hence the reference
* count to ensure only the last caller frees the CUI.
*/
void
xfs_cui_release(
struct xfs_cui_log_item *cuip)
{
ASSERT(atomic_read(&cuip->cui_refcount) > 0);
if (atomic_dec_and_test(&cuip->cui_refcount)) {
xfs_trans_ail_remove(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR);
xfs_cui_item_free(cuip);
}
}
STATIC void
xfs_cui_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
*nvecs += 1;
*nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
}
/*
* This is called to fill in the vector of log iovecs for the
* given cui log item. We use only 1 iovec, and we point that
* at the cui_log_format structure embedded in the cui item.
* It is at this point that we assert that all of the extent
* slots in the cui item have been filled.
*/
STATIC void
xfs_cui_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
ASSERT(atomic_read(&cuip->cui_next_extent) ==
cuip->cui_format.cui_nextents);
cuip->cui_format.cui_type = XFS_LI_CUI;
cuip->cui_format.cui_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
}
/*
* The unpin operation is the last place an CUI is manipulated in the log. It is
* either inserted in the AIL or aborted in the event of a log I/O error. In
* either case, the CUI transaction has been successfully committed to make it
* this far. Therefore, we expect whoever committed the CUI to either construct
* and commit the CUD or drop the CUD's reference in the event of error. Simply
* drop the log's CUI reference now that the log is done with it.
*/
STATIC void
xfs_cui_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
xfs_cui_release(cuip);
}
/*
* The CUI has been either committed or aborted if the transaction has been
* cancelled. If the transaction was cancelled, an CUD isn't going to be
* constructed and thus we free the CUI here directly.
*/
STATIC void
xfs_cui_item_release(
struct xfs_log_item *lip)
{
xfs_cui_release(CUI_ITEM(lip));
}
static const struct xfs_item_ops xfs_cui_item_ops = {
.iop_size = xfs_cui_item_size,
.iop_format = xfs_cui_item_format,
.iop_unpin = xfs_cui_item_unpin,
.iop_release = xfs_cui_item_release,
};
/*
* Allocate and initialize an cui item with the given number of extents.
*/
struct xfs_cui_log_item *
xfs_cui_init(
struct xfs_mount *mp,
uint nextents)
{
struct xfs_cui_log_item *cuip;
ASSERT(nextents > 0);
if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
0);
else
cuip = kmem_zone_zalloc(xfs_cui_zone, 0);
xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
cuip->cui_format.cui_nextents = nextents;
cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
atomic_set(&cuip->cui_next_extent, 0);
atomic_set(&cuip->cui_refcount, 2);
return cuip;
}
static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_cud_log_item, cud_item);
}
STATIC void
xfs_cud_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
*nvecs += 1;
*nbytes += sizeof(struct xfs_cud_log_format);
}
/*
* This is called to fill in the vector of log iovecs for the
* given cud log item. We use only 1 iovec, and we point that
* at the cud_log_format structure embedded in the cud item.
* It is at this point that we assert that all of the extent
* slots in the cud item have been filled.
*/
STATIC void
xfs_cud_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
cudp->cud_format.cud_type = XFS_LI_CUD;
cudp->cud_format.cud_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
sizeof(struct xfs_cud_log_format));
}
/*
* The CUD is either committed or aborted if the transaction is cancelled. If
* the transaction is cancelled, drop our reference to the CUI and free the
* CUD.
*/
STATIC void
xfs_cud_item_release(
struct xfs_log_item *lip)
{
struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
xfs_cui_release(cudp->cud_cuip);
kmem_cache_free(xfs_cud_zone, cudp);
}
static const struct xfs_item_ops xfs_cud_item_ops = {
.flags = XFS_ITEM_RELEASE_WHEN_COMMITTED,
.iop_size = xfs_cud_item_size,
.iop_format = xfs_cud_item_format,
.iop_release = xfs_cud_item_release,
};
static struct xfs_cud_log_item *
xfs_trans_get_cud(
struct xfs_trans *tp,
struct xfs_cui_log_item *cuip)
{
struct xfs_cud_log_item *cudp;
cudp = kmem_zone_zalloc(xfs_cud_zone, 0);
xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
&xfs_cud_item_ops);
cudp->cud_cuip = cuip;
cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
xfs_trans_add_item(tp, &cudp->cud_item);
return cudp;
}
/*
* Finish an refcount update and log it to the CUD. Note that the
* transaction is marked dirty regardless of whether the refcount
* update succeeds or fails to support the CUI/CUD lifecycle rules.
*/
static int
xfs_trans_log_finish_refcount_update(
struct xfs_trans *tp,
struct xfs_cud_log_item *cudp,
enum xfs_refcount_intent_type type,
xfs_fsblock_t startblock,
xfs_extlen_t blockcount,
xfs_fsblock_t *new_fsb,
xfs_extlen_t *new_len,
struct xfs_btree_cur **pcur)
{
int error;
error = xfs_refcount_finish_one(tp, type, startblock,
blockcount, new_fsb, new_len, pcur);
/*
* Mark the transaction dirty, even on error. This ensures the
* transaction is aborted, which:
*
* 1.) releases the CUI and frees the CUD
* 2.) shuts down the filesystem
*/
tp->t_flags |= XFS_TRANS_DIRTY;
set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
return error;
}
/* Sort refcount intents by AG. */
static int
xfs_refcount_update_diff_items(
void *priv,
struct list_head *a,
struct list_head *b)
{
struct xfs_mount *mp = priv;
struct xfs_refcount_intent *ra;
struct xfs_refcount_intent *rb;
ra = container_of(a, struct xfs_refcount_intent, ri_list);
rb = container_of(b, struct xfs_refcount_intent, ri_list);
return XFS_FSB_TO_AGNO(mp, ra->ri_startblock) -
XFS_FSB_TO_AGNO(mp, rb->ri_startblock);
}
/* Get an CUI. */
STATIC void *
xfs_refcount_update_create_intent(
struct xfs_trans *tp,
unsigned int count)
{
struct xfs_cui_log_item *cuip;
ASSERT(tp != NULL);
ASSERT(count > 0);
cuip = xfs_cui_init(tp->t_mountp, count);
ASSERT(cuip != NULL);
/*
* Get a log_item_desc to point at the new item.
*/
xfs_trans_add_item(tp, &cuip->cui_item);
return cuip;
}
/* Set the phys extent flags for this reverse mapping. */
static void
xfs_trans_set_refcount_flags(
struct xfs_phys_extent *refc,
enum xfs_refcount_intent_type type)
{
refc->pe_flags = 0;
switch (type) {
case XFS_REFCOUNT_INCREASE:
case XFS_REFCOUNT_DECREASE:
case XFS_REFCOUNT_ALLOC_COW:
case XFS_REFCOUNT_FREE_COW:
refc->pe_flags |= type;
break;
default:
ASSERT(0);
}
}
/* Log refcount updates in the intent item. */
STATIC void
xfs_refcount_update_log_item(
struct xfs_trans *tp,
void *intent,
struct list_head *item)
{
struct xfs_cui_log_item *cuip = intent;
struct xfs_refcount_intent *refc;
uint next_extent;
struct xfs_phys_extent *ext;
refc = container_of(item, struct xfs_refcount_intent, ri_list);
tp->t_flags |= XFS_TRANS_DIRTY;
set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
/*
* atomic_inc_return gives us the value after the increment;
* we want to use it as an array index so we need to subtract 1 from
* it.
*/
next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
ASSERT(next_extent < cuip->cui_format.cui_nextents);
ext = &cuip->cui_format.cui_extents[next_extent];
ext->pe_startblock = refc->ri_startblock;
ext->pe_len = refc->ri_blockcount;
xfs_trans_set_refcount_flags(ext, refc->ri_type);
}
/* Get an CUD so we can process all the deferred refcount updates. */
STATIC void *
xfs_refcount_update_create_done(
struct xfs_trans *tp,
void *intent,
unsigned int count)
{
return xfs_trans_get_cud(tp, intent);
}
/* Process a deferred refcount update. */
STATIC int
xfs_refcount_update_finish_item(
struct xfs_trans *tp,
struct list_head *item,
void *done_item,
void **state)
{
struct xfs_refcount_intent *refc;
xfs_fsblock_t new_fsb;
xfs_extlen_t new_aglen;
int error;
refc = container_of(item, struct xfs_refcount_intent, ri_list);
error = xfs_trans_log_finish_refcount_update(tp, done_item,
refc->ri_type,
refc->ri_startblock,
refc->ri_blockcount,
&new_fsb, &new_aglen,
(struct xfs_btree_cur **)state);
/* Did we run out of reservation? Requeue what we didn't finish. */
if (!error && new_aglen > 0) {
ASSERT(refc->ri_type == XFS_REFCOUNT_INCREASE ||
refc->ri_type == XFS_REFCOUNT_DECREASE);
refc->ri_startblock = new_fsb;
refc->ri_blockcount = new_aglen;
return -EAGAIN;
}
kmem_free(refc);
return error;
}
/* Clean up after processing deferred refcounts. */
STATIC void
xfs_refcount_update_finish_cleanup(
struct xfs_trans *tp,
void *state,
int error)
{
struct xfs_btree_cur *rcur = state;
xfs_refcount_finish_one_cleanup(tp, rcur, error);
}
/* Abort all pending CUIs. */
STATIC void
xfs_refcount_update_abort_intent(
void *intent)
{
xfs_cui_release(intent);
}
/* Cancel a deferred refcount update. */
STATIC void
xfs_refcount_update_cancel_item(
struct list_head *item)
{
struct xfs_refcount_intent *refc;
refc = container_of(item, struct xfs_refcount_intent, ri_list);
kmem_free(refc);
}
const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
.max_items = XFS_CUI_MAX_FAST_EXTENTS,
.diff_items = xfs_refcount_update_diff_items,
.create_intent = xfs_refcount_update_create_intent,
.abort_intent = xfs_refcount_update_abort_intent,
.log_item = xfs_refcount_update_log_item,
.create_done = xfs_refcount_update_create_done,
.finish_item = xfs_refcount_update_finish_item,
.finish_cleanup = xfs_refcount_update_finish_cleanup,
.cancel_item = xfs_refcount_update_cancel_item,
};
/*
* Process a refcount update intent item that was recovered from the log.
* We need to update the refcountbt.
*/
int
xfs_cui_recover(
struct xfs_trans *parent_tp,
struct xfs_cui_log_item *cuip)
{
int i;
int error = 0;
unsigned int refc_type;
struct xfs_phys_extent *refc;
xfs_fsblock_t startblock_fsb;
bool op_ok;
struct xfs_cud_log_item *cudp;
struct xfs_trans *tp;
struct xfs_btree_cur *rcur = NULL;
enum xfs_refcount_intent_type type;
xfs_fsblock_t new_fsb;
xfs_extlen_t new_len;
struct xfs_bmbt_irec irec;
bool requeue_only = false;
struct xfs_mount *mp = parent_tp->t_mountp;
ASSERT(!test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags));
/*
* First check the validity of the extents described by the
* CUI. If any are bad, then assume that all are bad and
* just toss the CUI.
*/
for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
refc = &cuip->cui_format.cui_extents[i];
startblock_fsb = XFS_BB_TO_FSB(mp,
XFS_FSB_TO_DADDR(mp, refc->pe_startblock));
switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
case XFS_REFCOUNT_INCREASE:
case XFS_REFCOUNT_DECREASE:
case XFS_REFCOUNT_ALLOC_COW:
case XFS_REFCOUNT_FREE_COW:
op_ok = true;
break;
default:
op_ok = false;
break;
}
if (!op_ok || startblock_fsb == 0 ||
refc->pe_len == 0 ||
startblock_fsb >= mp->m_sb.sb_dblocks ||
refc->pe_len >= mp->m_sb.sb_agblocks ||
(refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) {
/*
* This will pull the CUI from the AIL and
* free the memory associated with it.
*/
set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags);
xfs_cui_release(cuip);
return -EFSCORRUPTED;
}
}
/*
* Under normal operation, refcount updates are deferred, so we
* wouldn't be adding them directly to a transaction. All
* refcount updates manage reservation usage internally and
* dynamically by deferring work that won't fit in the
* transaction. Normally, any work that needs to be deferred
* gets attached to the same defer_ops that scheduled the
* refcount update. However, we're in log recovery here, so we
* we use the passed in defer_ops and to finish up any work that
* doesn't fit. We need to reserve enough blocks to handle a
* full btree split on either end of the refcount range.
*/
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp);
if (error)
return error;
/*
* Recovery stashes all deferred ops during intent processing and
* finishes them on completion. Transfer current dfops state to this
* transaction and transfer the result back before we return.
*/
xfs_defer_move(tp, parent_tp);
cudp = xfs_trans_get_cud(tp, cuip);
for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
refc = &cuip->cui_format.cui_extents[i];
refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
switch (refc_type) {
case XFS_REFCOUNT_INCREASE:
case XFS_REFCOUNT_DECREASE:
case XFS_REFCOUNT_ALLOC_COW:
case XFS_REFCOUNT_FREE_COW:
type = refc_type;
break;
default:
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
error = -EFSCORRUPTED;
goto abort_error;
}
if (requeue_only) {
new_fsb = refc->pe_startblock;
new_len = refc->pe_len;
} else
error = xfs_trans_log_finish_refcount_update(tp, cudp,
type, refc->pe_startblock, refc->pe_len,
&new_fsb, &new_len, &rcur);
if (error)
goto abort_error;
/* Requeue what we didn't finish. */
if (new_len > 0) {
irec.br_startblock = new_fsb;
irec.br_blockcount = new_len;
switch (type) {
case XFS_REFCOUNT_INCREASE:
xfs_refcount_increase_extent(tp, &irec);
break;
case XFS_REFCOUNT_DECREASE:
xfs_refcount_decrease_extent(tp, &irec);
break;
case XFS_REFCOUNT_ALLOC_COW:
xfs_refcount_alloc_cow_extent(tp,
irec.br_startblock,
irec.br_blockcount);
break;
case XFS_REFCOUNT_FREE_COW:
xfs_refcount_free_cow_extent(tp,
irec.br_startblock,
irec.br_blockcount);
break;
default:
ASSERT(0);
}
requeue_only = true;
}
}
xfs_refcount_finish_one_cleanup(tp, rcur, error);
set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags);
xfs_defer_move(parent_tp, tp);
error = xfs_trans_commit(tp);
return error;
abort_error:
xfs_refcount_finish_one_cleanup(tp, rcur, error);
xfs_defer_move(parent_tp, tp);
xfs_trans_cancel(tp);
return error;
}