linux/drivers/power/supply/adp5061.c

745 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* ADP5061 I2C Programmable Linear Battery Charger
*
* Copyright 2018 Analog Devices Inc.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/mod_devicetable.h>
#include <linux/power_supply.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/regmap.h>
/* ADP5061 registers definition */
#define ADP5061_ID 0x00
#define ADP5061_REV 0x01
#define ADP5061_VINX_SET 0x02
#define ADP5061_TERM_SET 0x03
#define ADP5061_CHG_CURR 0x04
#define ADP5061_VOLTAGE_TH 0x05
#define ADP5061_TIMER_SET 0x06
#define ADP5061_FUNC_SET_1 0x07
#define ADP5061_FUNC_SET_2 0x08
#define ADP5061_INT_EN 0x09
#define ADP5061_INT_ACT 0x0A
#define ADP5061_CHG_STATUS_1 0x0B
#define ADP5061_CHG_STATUS_2 0x0C
#define ADP5061_FAULT 0x0D
#define ADP5061_BATTERY_SHORT 0x10
#define ADP5061_IEND 0x11
/* ADP5061_VINX_SET */
#define ADP5061_VINX_SET_ILIM_MSK GENMASK(3, 0)
#define ADP5061_VINX_SET_ILIM_MODE(x) (((x) & 0x0F) << 0)
/* ADP5061_TERM_SET */
#define ADP5061_TERM_SET_VTRM_MSK GENMASK(7, 2)
#define ADP5061_TERM_SET_VTRM_MODE(x) (((x) & 0x3F) << 2)
#define ADP5061_TERM_SET_CHG_VLIM_MSK GENMASK(1, 0)
#define ADP5061_TERM_SET_CHG_VLIM_MODE(x) (((x) & 0x03) << 0)
/* ADP5061_CHG_CURR */
#define ADP5061_CHG_CURR_ICHG_MSK GENMASK(6, 2)
#define ADP5061_CHG_CURR_ICHG_MODE(x) (((x) & 0x1F) << 2)
#define ADP5061_CHG_CURR_ITRK_DEAD_MSK GENMASK(1, 0)
#define ADP5061_CHG_CURR_ITRK_DEAD_MODE(x) (((x) & 0x03) << 0)
/* ADP5061_VOLTAGE_TH */
#define ADP5061_VOLTAGE_TH_DIS_RCH_MSK BIT(7)
#define ADP5061_VOLTAGE_TH_DIS_RCH_MODE(x) (((x) & 0x01) << 7)
#define ADP5061_VOLTAGE_TH_VRCH_MSK GENMASK(6, 5)
#define ADP5061_VOLTAGE_TH_VRCH_MODE(x) (((x) & 0x03) << 5)
#define ADP5061_VOLTAGE_TH_VTRK_DEAD_MSK GENMASK(4, 3)
#define ADP5061_VOLTAGE_TH_VTRK_DEAD_MODE(x) (((x) & 0x03) << 3)
#define ADP5061_VOLTAGE_TH_VWEAK_MSK GENMASK(2, 0)
#define ADP5061_VOLTAGE_TH_VWEAK_MODE(x) (((x) & 0x07) << 0)
/* ADP5061_CHG_STATUS_1 */
#define ADP5061_CHG_STATUS_1_VIN_OV(x) (((x) >> 7) & 0x1)
#define ADP5061_CHG_STATUS_1_VIN_OK(x) (((x) >> 6) & 0x1)
#define ADP5061_CHG_STATUS_1_VIN_ILIM(x) (((x) >> 5) & 0x1)
#define ADP5061_CHG_STATUS_1_THERM_LIM(x) (((x) >> 4) & 0x1)
#define ADP5061_CHG_STATUS_1_CHDONE(x) (((x) >> 3) & 0x1)
#define ADP5061_CHG_STATUS_1_CHG_STATUS(x) (((x) >> 0) & 0x7)
/* ADP5061_CHG_STATUS_2 */
#define ADP5061_CHG_STATUS_2_THR_STATUS(x) (((x) >> 5) & 0x7)
#define ADP5061_CHG_STATUS_2_RCH_LIM_INFO(x) (((x) >> 3) & 0x1)
#define ADP5061_CHG_STATUS_2_BAT_STATUS(x) (((x) >> 0) & 0x7)
/* ADP5061_IEND */
#define ADP5061_IEND_IEND_MSK GENMASK(7, 5)
#define ADP5061_IEND_IEND_MODE(x) (((x) & 0x07) << 5)
#define ADP5061_NO_BATTERY 0x01
#define ADP5061_ICHG_MAX 1300 // mA
enum adp5061_chg_status {
ADP5061_CHG_OFF,
ADP5061_CHG_TRICKLE,
ADP5061_CHG_FAST_CC,
ADP5061_CHG_FAST_CV,
ADP5061_CHG_COMPLETE,
ADP5061_CHG_LDO_MODE,
ADP5061_CHG_TIMER_EXP,
ADP5061_CHG_BAT_DET,
};
static const int adp5061_chg_type[4] = {
[ADP5061_CHG_OFF] = POWER_SUPPLY_CHARGE_TYPE_NONE,
[ADP5061_CHG_TRICKLE] = POWER_SUPPLY_CHARGE_TYPE_TRICKLE,
[ADP5061_CHG_FAST_CC] = POWER_SUPPLY_CHARGE_TYPE_FAST,
[ADP5061_CHG_FAST_CV] = POWER_SUPPLY_CHARGE_TYPE_FAST,
};
static const int adp5061_vweak_th[8] = {
2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400,
};
static const int adp5061_prechg_current[4] = {
5, 10, 20, 80,
};
static const int adp5061_vmin[4] = {
2000, 2500, 2600, 2900,
};
static const int adp5061_const_chg_vmax[4] = {
3200, 3400, 3700, 3800,
};
static const int adp5061_const_ichg[24] = {
50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650,
700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1200, 1300,
};
static const int adp5061_vmax[36] = {
3800, 3820, 3840, 3860, 3880, 3900, 3920, 3940, 3960, 3980,
4000, 4020, 4040, 4060, 4080, 4100, 4120, 4140, 4160, 4180,
4200, 4220, 4240, 4260, 4280, 4300, 4320, 4340, 4360, 4380,
4400, 4420, 4440, 4460, 4480, 4500,
};
static const int adp5061_in_current_lim[16] = {
100, 150, 200, 250, 300, 400, 500, 600, 700,
800, 900, 1000, 1200, 1500, 1800, 2100,
};
static const int adp5061_iend[8] = {
12500, 32500, 52500, 72500, 92500, 117500, 142500, 170000,
};
struct adp5061_state {
struct i2c_client *client;
struct regmap *regmap;
struct power_supply *psy;
};
static int adp5061_get_array_index(const int *array, u8 size, int val)
{
int i;
for (i = 1; i < size; i++) {
if (val < array[i])
break;
}
return i-1;
}
static int adp5061_get_status(struct adp5061_state *st,
u8 *status1, u8 *status2)
{
u8 buf[2];
int ret;
/* CHG_STATUS1 and CHG_STATUS2 are adjacent regs */
ret = regmap_bulk_read(st->regmap, ADP5061_CHG_STATUS_1,
&buf[0], 2);
if (ret < 0)
return ret;
*status1 = buf[0];
*status2 = buf[1];
return ret;
}
static int adp5061_get_input_current_limit(struct adp5061_state *st,
union power_supply_propval *val)
{
unsigned int regval;
int mode, ret;
ret = regmap_read(st->regmap, ADP5061_VINX_SET, &regval);
if (ret < 0)
return ret;
mode = ADP5061_VINX_SET_ILIM_MODE(regval);
val->intval = adp5061_in_current_lim[mode] * 1000;
return ret;
}
static int adp5061_set_input_current_limit(struct adp5061_state *st, int val)
{
int index;
/* Convert from uA to mA */
val /= 1000;
index = adp5061_get_array_index(adp5061_in_current_lim,
ARRAY_SIZE(adp5061_in_current_lim),
val);
if (index < 0)
return index;
return regmap_update_bits(st->regmap, ADP5061_VINX_SET,
ADP5061_VINX_SET_ILIM_MSK,
ADP5061_VINX_SET_ILIM_MODE(index));
}
static int adp5061_set_min_voltage(struct adp5061_state *st, int val)
{
int index;
/* Convert from uV to mV */
val /= 1000;
index = adp5061_get_array_index(adp5061_vmin,
ARRAY_SIZE(adp5061_vmin),
val);
if (index < 0)
return index;
return regmap_update_bits(st->regmap, ADP5061_VOLTAGE_TH,
ADP5061_VOLTAGE_TH_VTRK_DEAD_MSK,
ADP5061_VOLTAGE_TH_VTRK_DEAD_MODE(index));
}
static int adp5061_get_min_voltage(struct adp5061_state *st,
union power_supply_propval *val)
{
unsigned int regval;
int ret;
ret = regmap_read(st->regmap, ADP5061_VOLTAGE_TH, &regval);
if (ret < 0)
return ret;
regval = ((regval & ADP5061_VOLTAGE_TH_VTRK_DEAD_MSK) >> 3);
val->intval = adp5061_vmin[regval] * 1000;
return ret;
}
static int adp5061_get_chg_volt_lim(struct adp5061_state *st,
union power_supply_propval *val)
{
unsigned int regval;
int mode, ret;
ret = regmap_read(st->regmap, ADP5061_TERM_SET, &regval);
if (ret < 0)
return ret;
mode = ADP5061_TERM_SET_CHG_VLIM_MODE(regval);
val->intval = adp5061_const_chg_vmax[mode] * 1000;
return ret;
}
static int adp5061_get_max_voltage(struct adp5061_state *st,
union power_supply_propval *val)
{
unsigned int regval;
int ret;
ret = regmap_read(st->regmap, ADP5061_TERM_SET, &regval);
if (ret < 0)
return ret;
regval = ((regval & ADP5061_TERM_SET_VTRM_MSK) >> 2) - 0x0F;
if (regval >= ARRAY_SIZE(adp5061_vmax))
regval = ARRAY_SIZE(adp5061_vmax) - 1;
val->intval = adp5061_vmax[regval] * 1000;
return ret;
}
static int adp5061_set_max_voltage(struct adp5061_state *st, int val)
{
int vmax_index;
/* Convert from uV to mV */
val /= 1000;
if (val > 4500)
val = 4500;
vmax_index = adp5061_get_array_index(adp5061_vmax,
ARRAY_SIZE(adp5061_vmax), val);
if (vmax_index < 0)
return vmax_index;
vmax_index += 0x0F;
return regmap_update_bits(st->regmap, ADP5061_TERM_SET,
ADP5061_TERM_SET_VTRM_MSK,
ADP5061_TERM_SET_VTRM_MODE(vmax_index));
}
static int adp5061_set_const_chg_vmax(struct adp5061_state *st, int val)
{
int index;
/* Convert from uV to mV */
val /= 1000;
index = adp5061_get_array_index(adp5061_const_chg_vmax,
ARRAY_SIZE(adp5061_const_chg_vmax),
val);
if (index < 0)
return index;
return regmap_update_bits(st->regmap, ADP5061_TERM_SET,
ADP5061_TERM_SET_CHG_VLIM_MSK,
ADP5061_TERM_SET_CHG_VLIM_MODE(index));
}
static int adp5061_set_const_chg_current(struct adp5061_state *st, int val)
{
int index;
/* Convert from uA to mA */
val /= 1000;
if (val > ADP5061_ICHG_MAX)
val = ADP5061_ICHG_MAX;
index = adp5061_get_array_index(adp5061_const_ichg,
ARRAY_SIZE(adp5061_const_ichg),
val);
if (index < 0)
return index;
return regmap_update_bits(st->regmap, ADP5061_CHG_CURR,
ADP5061_CHG_CURR_ICHG_MSK,
ADP5061_CHG_CURR_ICHG_MODE(index));
}
static int adp5061_get_const_chg_current(struct adp5061_state *st,
union power_supply_propval *val)
{
unsigned int regval;
int ret;
ret = regmap_read(st->regmap, ADP5061_CHG_CURR, &regval);
if (ret < 0)
return ret;
regval = ((regval & ADP5061_CHG_CURR_ICHG_MSK) >> 2);
if (regval >= ARRAY_SIZE(adp5061_const_ichg))
regval = ARRAY_SIZE(adp5061_const_ichg) - 1;
val->intval = adp5061_const_ichg[regval] * 1000;
return ret;
}
static int adp5061_get_prechg_current(struct adp5061_state *st,
union power_supply_propval *val)
{
unsigned int regval;
int ret;
ret = regmap_read(st->regmap, ADP5061_CHG_CURR, &regval);
if (ret < 0)
return ret;
regval &= ADP5061_CHG_CURR_ITRK_DEAD_MSK;
val->intval = adp5061_prechg_current[regval] * 1000;
return ret;
}
static int adp5061_set_prechg_current(struct adp5061_state *st, int val)
{
int index;
/* Convert from uA to mA */
val /= 1000;
index = adp5061_get_array_index(adp5061_prechg_current,
ARRAY_SIZE(adp5061_prechg_current),
val);
if (index < 0)
return index;
return regmap_update_bits(st->regmap, ADP5061_CHG_CURR,
ADP5061_CHG_CURR_ITRK_DEAD_MSK,
ADP5061_CHG_CURR_ITRK_DEAD_MODE(index));
}
static int adp5061_get_vweak_th(struct adp5061_state *st,
union power_supply_propval *val)
{
unsigned int regval;
int ret;
ret = regmap_read(st->regmap, ADP5061_VOLTAGE_TH, &regval);
if (ret < 0)
return ret;
regval &= ADP5061_VOLTAGE_TH_VWEAK_MSK;
val->intval = adp5061_vweak_th[regval] * 1000;
return ret;
}
static int adp5061_set_vweak_th(struct adp5061_state *st, int val)
{
int index;
/* Convert from uV to mV */
val /= 1000;
index = adp5061_get_array_index(adp5061_vweak_th,
ARRAY_SIZE(adp5061_vweak_th),
val);
if (index < 0)
return index;
return regmap_update_bits(st->regmap, ADP5061_VOLTAGE_TH,
ADP5061_VOLTAGE_TH_VWEAK_MSK,
ADP5061_VOLTAGE_TH_VWEAK_MODE(index));
}
static int adp5061_get_chg_type(struct adp5061_state *st,
union power_supply_propval *val)
{
u8 status1, status2;
int chg_type, ret;
ret = adp5061_get_status(st, &status1, &status2);
if (ret < 0)
return ret;
chg_type = adp5061_chg_type[ADP5061_CHG_STATUS_1_CHG_STATUS(status1)];
if (chg_type > ADP5061_CHG_FAST_CV)
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
else
val->intval = chg_type;
return ret;
}
static int adp5061_get_charger_status(struct adp5061_state *st,
union power_supply_propval *val)
{
u8 status1, status2;
int ret;
ret = adp5061_get_status(st, &status1, &status2);
if (ret < 0)
return ret;
switch (ADP5061_CHG_STATUS_1_CHG_STATUS(status1)) {
case ADP5061_CHG_OFF:
val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
break;
case ADP5061_CHG_TRICKLE:
case ADP5061_CHG_FAST_CC:
case ADP5061_CHG_FAST_CV:
val->intval = POWER_SUPPLY_STATUS_CHARGING;
break;
case ADP5061_CHG_COMPLETE:
val->intval = POWER_SUPPLY_STATUS_FULL;
break;
case ADP5061_CHG_TIMER_EXP:
/* The battery must be discharging if there is a charge fault */
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
break;
default:
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
}
return ret;
}
static int adp5061_get_battery_status(struct adp5061_state *st,
union power_supply_propval *val)
{
u8 status1, status2;
int ret;
ret = adp5061_get_status(st, &status1, &status2);
if (ret < 0)
return ret;
switch (ADP5061_CHG_STATUS_2_BAT_STATUS(status2)) {
case 0x0: /* Battery monitor off */
case 0x1: /* No battery */
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
break;
case 0x2: /* VBAT < VTRK */
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
break;
case 0x3: /* VTRK < VBAT_SNS < VWEAK */
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
break;
case 0x4: /* VBAT_SNS > VWEAK */
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
break;
}
return ret;
}
static int adp5061_get_termination_current(struct adp5061_state *st,
union power_supply_propval *val)
{
unsigned int regval;
int ret;
ret = regmap_read(st->regmap, ADP5061_IEND, &regval);
if (ret < 0)
return ret;
regval = (regval & ADP5061_IEND_IEND_MSK) >> 5;
val->intval = adp5061_iend[regval];
return ret;
}
static int adp5061_set_termination_current(struct adp5061_state *st, int val)
{
int index;
index = adp5061_get_array_index(adp5061_iend,
ARRAY_SIZE(adp5061_iend),
val);
if (index < 0)
return index;
return regmap_update_bits(st->regmap, ADP5061_IEND,
ADP5061_IEND_IEND_MSK,
ADP5061_IEND_IEND_MODE(index));
}
static int adp5061_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct adp5061_state *st = power_supply_get_drvdata(psy);
u8 status1, status2;
int mode, ret;
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:
ret = adp5061_get_status(st, &status1, &status2);
if (ret < 0)
return ret;
mode = ADP5061_CHG_STATUS_2_BAT_STATUS(status2);
if (mode == ADP5061_NO_BATTERY)
val->intval = 0;
else
val->intval = 1;
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
return adp5061_get_chg_type(st, val);
case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT:
/* This property is used to indicate the input current
* limit into VINx (ILIM)
*/
return adp5061_get_input_current_limit(st, val);
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
/* This property is used to indicate the termination
* voltage (VTRM)
*/
return adp5061_get_max_voltage(st, val);
case POWER_SUPPLY_PROP_VOLTAGE_MIN:
/*
* This property is used to indicate the trickle to fast
* charge threshold (VTRK_DEAD)
*/
return adp5061_get_min_voltage(st, val);
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
/* This property is used to indicate the charging
* voltage limit (CHG_VLIM)
*/
return adp5061_get_chg_volt_lim(st, val);
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
/*
* This property is used to indicate the value of the constant
* current charge (ICHG)
*/
return adp5061_get_const_chg_current(st, val);
case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
/*
* This property is used to indicate the value of the trickle
* and weak charge currents (ITRK_DEAD)
*/
return adp5061_get_prechg_current(st, val);
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
/*
* This property is used to set the VWEAK threshold
* bellow this value, weak charge mode is entered
* above this value, fast chargerge mode is entered
*/
return adp5061_get_vweak_th(st, val);
case POWER_SUPPLY_PROP_STATUS:
/*
* Indicate the charger status in relation to power
* supply status property
*/
return adp5061_get_charger_status(st, val);
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
/*
* Indicate the battery status in relation to power
* supply capacity level property
*/
return adp5061_get_battery_status(st, val);
case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
/* Indicate the values of the termination current */
return adp5061_get_termination_current(st, val);
default:
return -EINVAL;
}
return 0;
}
static int adp5061_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct adp5061_state *st = power_supply_get_drvdata(psy);
switch (psp) {
case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT:
return adp5061_set_input_current_limit(st, val->intval);
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
return adp5061_set_max_voltage(st, val->intval);
case POWER_SUPPLY_PROP_VOLTAGE_MIN:
return adp5061_set_min_voltage(st, val->intval);
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
return adp5061_set_const_chg_vmax(st, val->intval);
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
return adp5061_set_const_chg_current(st, val->intval);
case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
return adp5061_set_prechg_current(st, val->intval);
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
return adp5061_set_vweak_th(st, val->intval);
case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
return adp5061_set_termination_current(st, val->intval);
default:
return -EINVAL;
}
return 0;
}
static int adp5061_prop_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT:
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
case POWER_SUPPLY_PROP_VOLTAGE_MIN:
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
return 1;
default:
return 0;
}
}
static enum power_supply_property adp5061_props[] = {
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_CHARGE_TYPE,
POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
POWER_SUPPLY_PROP_VOLTAGE_MAX,
POWER_SUPPLY_PROP_VOLTAGE_MIN,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
POWER_SUPPLY_PROP_VOLTAGE_AVG,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
};
static const struct regmap_config adp5061_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
};
static const struct power_supply_desc adp5061_desc = {
.name = "adp5061",
.type = POWER_SUPPLY_TYPE_USB,
.get_property = adp5061_get_property,
.set_property = adp5061_set_property,
.property_is_writeable = adp5061_prop_writeable,
.properties = adp5061_props,
.num_properties = ARRAY_SIZE(adp5061_props),
};
static int adp5061_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct power_supply_config psy_cfg = {};
struct adp5061_state *st;
st = devm_kzalloc(&client->dev, sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
st->client = client;
st->regmap = devm_regmap_init_i2c(client,
&adp5061_regmap_config);
if (IS_ERR(st->regmap)) {
dev_err(&client->dev, "Failed to initialize register map\n");
return -EINVAL;
}
i2c_set_clientdata(client, st);
psy_cfg.drv_data = st;
st->psy = devm_power_supply_register(&client->dev,
&adp5061_desc,
&psy_cfg);
if (IS_ERR(st->psy)) {
dev_err(&client->dev, "Failed to register power supply\n");
return PTR_ERR(st->psy);
}
return 0;
}
static const struct i2c_device_id adp5061_id[] = {
{ "adp5061", 0},
{ }
};
MODULE_DEVICE_TABLE(i2c, adp5061_id);
static struct i2c_driver adp5061_driver = {
.driver = {
.name = KBUILD_MODNAME,
},
.probe = adp5061_probe,
.id_table = adp5061_id,
};
module_i2c_driver(adp5061_driver);
MODULE_DESCRIPTION("Analog Devices adp5061 battery charger driver");
MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_LICENSE("GPL v2");