linux/drivers/net/ucc_geth_phy.c

801 lines
20 KiB
C

/*
* Copyright (C) Freescale Semicondutor, Inc. 2006. All rights reserved.
*
* Author: Shlomi Gridish <gridish@freescale.com>
*
* Description:
* UCC GETH Driver -- PHY handling
*
* Changelog:
* Jun 28, 2006 Li Yang <LeoLi@freescale.com>
* - Rearrange code and style fixes
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "ucc_geth.h"
#include "ucc_geth_phy.h"
#include <platforms/83xx/mpc8360e_pb.h>
#define ugphy_printk(level, format, arg...) \
printk(level format "\n", ## arg)
#define ugphy_dbg(format, arg...) \
ugphy_printk(KERN_DEBUG, format , ## arg)
#define ugphy_err(format, arg...) \
ugphy_printk(KERN_ERR, format , ## arg)
#define ugphy_info(format, arg...) \
ugphy_printk(KERN_INFO, format , ## arg)
#define ugphy_warn(format, arg...) \
ugphy_printk(KERN_WARNING, format , ## arg)
#ifdef UGETH_VERBOSE_DEBUG
#define ugphy_vdbg ugphy_dbg
#else
#define ugphy_vdbg(fmt, args...) do { } while (0)
#endif /* UGETH_VERBOSE_DEBUG */
static void config_genmii_advert(struct ugeth_mii_info *mii_info);
static void genmii_setup_forced(struct ugeth_mii_info *mii_info);
static void genmii_restart_aneg(struct ugeth_mii_info *mii_info);
static int gbit_config_aneg(struct ugeth_mii_info *mii_info);
static int genmii_config_aneg(struct ugeth_mii_info *mii_info);
static int genmii_update_link(struct ugeth_mii_info *mii_info);
static int genmii_read_status(struct ugeth_mii_info *mii_info);
u16 phy_read(struct ugeth_mii_info *mii_info, u16 regnum);
void phy_write(struct ugeth_mii_info *mii_info, u16 regnum, u16 val);
static u8 *bcsr_regs = NULL;
/* Write value to the PHY for this device to the register at regnum, */
/* waiting until the write is done before it returns. All PHY */
/* configuration has to be done through the TSEC1 MIIM regs */
void write_phy_reg(struct net_device *dev, int mii_id, int regnum, int value)
{
ucc_geth_private_t *ugeth = netdev_priv(dev);
ucc_mii_mng_t *mii_regs;
enet_tbi_mii_reg_e mii_reg = (enet_tbi_mii_reg_e) regnum;
u32 tmp_reg;
ugphy_vdbg("%s: IN", __FUNCTION__);
spin_lock_irq(&ugeth->lock);
mii_regs = ugeth->mii_info->mii_regs;
/* Set this UCC to be the master of the MII managment */
ucc_set_qe_mux_mii_mng(ugeth->ug_info->uf_info.ucc_num);
/* Stop the MII management read cycle */
out_be32(&mii_regs->miimcom, 0);
/* Setting up the MII Mangement Address Register */
tmp_reg = ((u32) mii_id << MIIMADD_PHY_ADDRESS_SHIFT) | mii_reg;
out_be32(&mii_regs->miimadd, tmp_reg);
/* Setting up the MII Mangement Control Register with the value */
out_be32(&mii_regs->miimcon, (u32) value);
/* Wait till MII management write is complete */
while ((in_be32(&mii_regs->miimind)) & MIIMIND_BUSY)
cpu_relax();
spin_unlock_irq(&ugeth->lock);
udelay(10000);
}
/* Reads from register regnum in the PHY for device dev, */
/* returning the value. Clears miimcom first. All PHY */
/* configuration has to be done through the TSEC1 MIIM regs */
int read_phy_reg(struct net_device *dev, int mii_id, int regnum)
{
ucc_geth_private_t *ugeth = netdev_priv(dev);
ucc_mii_mng_t *mii_regs;
enet_tbi_mii_reg_e mii_reg = (enet_tbi_mii_reg_e) regnum;
u32 tmp_reg;
u16 value;
ugphy_vdbg("%s: IN", __FUNCTION__);
spin_lock_irq(&ugeth->lock);
mii_regs = ugeth->mii_info->mii_regs;
/* Setting up the MII Mangement Address Register */
tmp_reg = ((u32) mii_id << MIIMADD_PHY_ADDRESS_SHIFT) | mii_reg;
out_be32(&mii_regs->miimadd, tmp_reg);
/* Perform an MII management read cycle */
out_be32(&mii_regs->miimcom, MIIMCOM_READ_CYCLE);
/* Wait till MII management write is complete */
while ((in_be32(&mii_regs->miimind)) & MIIMIND_BUSY)
cpu_relax();
udelay(10000);
/* Read MII management status */
value = (u16) in_be32(&mii_regs->miimstat);
out_be32(&mii_regs->miimcom, 0);
if (value == 0xffff)
ugphy_warn("read wrong value : mii_id %d,mii_reg %d, base %08x",
mii_id, mii_reg, (u32) & (mii_regs->miimcfg));
spin_unlock_irq(&ugeth->lock);
return (value);
}
void mii_clear_phy_interrupt(struct ugeth_mii_info *mii_info)
{
ugphy_vdbg("%s: IN", __FUNCTION__);
if (mii_info->phyinfo->ack_interrupt)
mii_info->phyinfo->ack_interrupt(mii_info);
}
void mii_configure_phy_interrupt(struct ugeth_mii_info *mii_info,
u32 interrupts)
{
ugphy_vdbg("%s: IN", __FUNCTION__);
mii_info->interrupts = interrupts;
if (mii_info->phyinfo->config_intr)
mii_info->phyinfo->config_intr(mii_info);
}
/* Writes MII_ADVERTISE with the appropriate values, after
* sanitizing advertise to make sure only supported features
* are advertised
*/
static void config_genmii_advert(struct ugeth_mii_info *mii_info)
{
u32 advertise;
u16 adv;
ugphy_vdbg("%s: IN", __FUNCTION__);
/* Only allow advertising what this PHY supports */
mii_info->advertising &= mii_info->phyinfo->features;
advertise = mii_info->advertising;
/* Setup standard advertisement */
adv = phy_read(mii_info, MII_ADVERTISE);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
if (advertise & ADVERTISED_10baseT_Half)
adv |= ADVERTISE_10HALF;
if (advertise & ADVERTISED_10baseT_Full)
adv |= ADVERTISE_10FULL;
if (advertise & ADVERTISED_100baseT_Half)
adv |= ADVERTISE_100HALF;
if (advertise & ADVERTISED_100baseT_Full)
adv |= ADVERTISE_100FULL;
phy_write(mii_info, MII_ADVERTISE, adv);
}
static void genmii_setup_forced(struct ugeth_mii_info *mii_info)
{
u16 ctrl;
u32 features = mii_info->phyinfo->features;
ugphy_vdbg("%s: IN", __FUNCTION__);
ctrl = phy_read(mii_info, MII_BMCR);
ctrl &=
~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
ctrl |= BMCR_RESET;
switch (mii_info->speed) {
case SPEED_1000:
if (features & (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full)) {
ctrl |= BMCR_SPEED1000;
break;
}
mii_info->speed = SPEED_100;
case SPEED_100:
if (features & (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full)) {
ctrl |= BMCR_SPEED100;
break;
}
mii_info->speed = SPEED_10;
case SPEED_10:
if (features & (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full))
break;
default: /* Unsupported speed! */
ugphy_err("%s: Bad speed!", mii_info->dev->name);
break;
}
phy_write(mii_info, MII_BMCR, ctrl);
}
/* Enable and Restart Autonegotiation */
static void genmii_restart_aneg(struct ugeth_mii_info *mii_info)
{
u16 ctl;
ugphy_vdbg("%s: IN", __FUNCTION__);
ctl = phy_read(mii_info, MII_BMCR);
ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
phy_write(mii_info, MII_BMCR, ctl);
}
static int gbit_config_aneg(struct ugeth_mii_info *mii_info)
{
u16 adv;
u32 advertise;
ugphy_vdbg("%s: IN", __FUNCTION__);
if (mii_info->autoneg) {
/* Configure the ADVERTISE register */
config_genmii_advert(mii_info);
advertise = mii_info->advertising;
adv = phy_read(mii_info, MII_1000BASETCONTROL);
adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
MII_1000BASETCONTROL_HALFDUPLEXCAP);
if (advertise & SUPPORTED_1000baseT_Half)
adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
if (advertise & SUPPORTED_1000baseT_Full)
adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
phy_write(mii_info, MII_1000BASETCONTROL, adv);
/* Start/Restart aneg */
genmii_restart_aneg(mii_info);
} else
genmii_setup_forced(mii_info);
return 0;
}
static int genmii_config_aneg(struct ugeth_mii_info *mii_info)
{
ugphy_vdbg("%s: IN", __FUNCTION__);
if (mii_info->autoneg) {
config_genmii_advert(mii_info);
genmii_restart_aneg(mii_info);
} else
genmii_setup_forced(mii_info);
return 0;
}
static int genmii_update_link(struct ugeth_mii_info *mii_info)
{
u16 status;
ugphy_vdbg("%s: IN", __FUNCTION__);
/* Do a fake read */
phy_read(mii_info, MII_BMSR);
/* Read link and autonegotiation status */
status = phy_read(mii_info, MII_BMSR);
if ((status & BMSR_LSTATUS) == 0)
mii_info->link = 0;
else
mii_info->link = 1;
/* If we are autonegotiating, and not done,
* return an error */
if (mii_info->autoneg && !(status & BMSR_ANEGCOMPLETE))
return -EAGAIN;
return 0;
}
static int genmii_read_status(struct ugeth_mii_info *mii_info)
{
u16 status;
int err;
ugphy_vdbg("%s: IN", __FUNCTION__);
/* Update the link, but return if there
* was an error */
err = genmii_update_link(mii_info);
if (err)
return err;
if (mii_info->autoneg) {
status = phy_read(mii_info, MII_LPA);
if (status & (LPA_10FULL | LPA_100FULL))
mii_info->duplex = DUPLEX_FULL;
else
mii_info->duplex = DUPLEX_HALF;
if (status & (LPA_100FULL | LPA_100HALF))
mii_info->speed = SPEED_100;
else
mii_info->speed = SPEED_10;
mii_info->pause = 0;
}
/* On non-aneg, we assume what we put in BMCR is the speed,
* though magic-aneg shouldn't prevent this case from occurring
*/
return 0;
}
static int marvell_init(struct ugeth_mii_info *mii_info)
{
ugphy_vdbg("%s: IN", __FUNCTION__);
phy_write(mii_info, 0x14, 0x0cd2);
phy_write(mii_info, MII_BMCR,
phy_read(mii_info, MII_BMCR) | BMCR_RESET);
msleep(4000);
return 0;
}
static int marvell_config_aneg(struct ugeth_mii_info *mii_info)
{
ugphy_vdbg("%s: IN", __FUNCTION__);
/* The Marvell PHY has an errata which requires
* that certain registers get written in order
* to restart autonegotiation */
phy_write(mii_info, MII_BMCR, BMCR_RESET);
phy_write(mii_info, 0x1d, 0x1f);
phy_write(mii_info, 0x1e, 0x200c);
phy_write(mii_info, 0x1d, 0x5);
phy_write(mii_info, 0x1e, 0);
phy_write(mii_info, 0x1e, 0x100);
gbit_config_aneg(mii_info);
return 0;
}
static int marvell_read_status(struct ugeth_mii_info *mii_info)
{
u16 status;
int err;
ugphy_vdbg("%s: IN", __FUNCTION__);
/* Update the link, but return if there
* was an error */
err = genmii_update_link(mii_info);
if (err)
return err;
/* If the link is up, read the speed and duplex */
/* If we aren't autonegotiating, assume speeds
* are as set */
if (mii_info->autoneg && mii_info->link) {
int speed;
status = phy_read(mii_info, MII_M1011_PHY_SPEC_STATUS);
/* Get the duplexity */
if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
mii_info->duplex = DUPLEX_FULL;
else
mii_info->duplex = DUPLEX_HALF;
/* Get the speed */
speed = status & MII_M1011_PHY_SPEC_STATUS_SPD_MASK;
switch (speed) {
case MII_M1011_PHY_SPEC_STATUS_1000:
mii_info->speed = SPEED_1000;
break;
case MII_M1011_PHY_SPEC_STATUS_100:
mii_info->speed = SPEED_100;
break;
default:
mii_info->speed = SPEED_10;
break;
}
mii_info->pause = 0;
}
return 0;
}
static int marvell_ack_interrupt(struct ugeth_mii_info *mii_info)
{
ugphy_vdbg("%s: IN", __FUNCTION__);
/* Clear the interrupts by reading the reg */
phy_read(mii_info, MII_M1011_IEVENT);
return 0;
}
static int marvell_config_intr(struct ugeth_mii_info *mii_info)
{
ugphy_vdbg("%s: IN", __FUNCTION__);
if (mii_info->interrupts == MII_INTERRUPT_ENABLED)
phy_write(mii_info, MII_M1011_IMASK, MII_M1011_IMASK_INIT);
else
phy_write(mii_info, MII_M1011_IMASK, MII_M1011_IMASK_CLEAR);
return 0;
}
static int cis820x_init(struct ugeth_mii_info *mii_info)
{
ugphy_vdbg("%s: IN", __FUNCTION__);
phy_write(mii_info, MII_CIS8201_AUX_CONSTAT,
MII_CIS8201_AUXCONSTAT_INIT);
phy_write(mii_info, MII_CIS8201_EXT_CON1, MII_CIS8201_EXTCON1_INIT);
return 0;
}
static int cis820x_read_status(struct ugeth_mii_info *mii_info)
{
u16 status;
int err;
ugphy_vdbg("%s: IN", __FUNCTION__);
/* Update the link, but return if there
* was an error */
err = genmii_update_link(mii_info);
if (err)
return err;
/* If the link is up, read the speed and duplex */
/* If we aren't autonegotiating, assume speeds
* are as set */
if (mii_info->autoneg && mii_info->link) {
int speed;
status = phy_read(mii_info, MII_CIS8201_AUX_CONSTAT);
if (status & MII_CIS8201_AUXCONSTAT_DUPLEX)
mii_info->duplex = DUPLEX_FULL;
else
mii_info->duplex = DUPLEX_HALF;
speed = status & MII_CIS8201_AUXCONSTAT_SPEED;
switch (speed) {
case MII_CIS8201_AUXCONSTAT_GBIT:
mii_info->speed = SPEED_1000;
break;
case MII_CIS8201_AUXCONSTAT_100:
mii_info->speed = SPEED_100;
break;
default:
mii_info->speed = SPEED_10;
break;
}
}
return 0;
}
static int cis820x_ack_interrupt(struct ugeth_mii_info *mii_info)
{
ugphy_vdbg("%s: IN", __FUNCTION__);
phy_read(mii_info, MII_CIS8201_ISTAT);
return 0;
}
static int cis820x_config_intr(struct ugeth_mii_info *mii_info)
{
ugphy_vdbg("%s: IN", __FUNCTION__);
if (mii_info->interrupts == MII_INTERRUPT_ENABLED)
phy_write(mii_info, MII_CIS8201_IMASK, MII_CIS8201_IMASK_MASK);
else
phy_write(mii_info, MII_CIS8201_IMASK, 0);
return 0;
}
#define DM9161_DELAY 10
static int dm9161_read_status(struct ugeth_mii_info *mii_info)
{
u16 status;
int err;
ugphy_vdbg("%s: IN", __FUNCTION__);
/* Update the link, but return if there
* was an error */
err = genmii_update_link(mii_info);
if (err)
return err;
/* If the link is up, read the speed and duplex */
/* If we aren't autonegotiating, assume speeds
* are as set */
if (mii_info->autoneg && mii_info->link) {
status = phy_read(mii_info, MII_DM9161_SCSR);
if (status & (MII_DM9161_SCSR_100F | MII_DM9161_SCSR_100H))
mii_info->speed = SPEED_100;
else
mii_info->speed = SPEED_10;
if (status & (MII_DM9161_SCSR_100F | MII_DM9161_SCSR_10F))
mii_info->duplex = DUPLEX_FULL;
else
mii_info->duplex = DUPLEX_HALF;
}
return 0;
}
static int dm9161_config_aneg(struct ugeth_mii_info *mii_info)
{
struct dm9161_private *priv = mii_info->priv;
ugphy_vdbg("%s: IN", __FUNCTION__);
if (0 == priv->resetdone)
return -EAGAIN;
return 0;
}
static void dm9161_timer(unsigned long data)
{
struct ugeth_mii_info *mii_info = (struct ugeth_mii_info *)data;
struct dm9161_private *priv = mii_info->priv;
u16 status = phy_read(mii_info, MII_BMSR);
ugphy_vdbg("%s: IN", __FUNCTION__);
if (status & BMSR_ANEGCOMPLETE) {
priv->resetdone = 1;
} else
mod_timer(&priv->timer, jiffies + DM9161_DELAY * HZ);
}
static int dm9161_init(struct ugeth_mii_info *mii_info)
{
struct dm9161_private *priv;
ugphy_vdbg("%s: IN", __FUNCTION__);
/* Allocate the private data structure */
priv = kmalloc(sizeof(struct dm9161_private), GFP_KERNEL);
if (NULL == priv)
return -ENOMEM;
mii_info->priv = priv;
/* Reset is not done yet */
priv->resetdone = 0;
phy_write(mii_info, MII_BMCR,
phy_read(mii_info, MII_BMCR) | BMCR_RESET);
phy_write(mii_info, MII_BMCR,
phy_read(mii_info, MII_BMCR) & ~BMCR_ISOLATE);
config_genmii_advert(mii_info);
/* Start/Restart aneg */
genmii_config_aneg(mii_info);
/* Start a timer for DM9161_DELAY seconds to wait
* for the PHY to be ready */
init_timer(&priv->timer);
priv->timer.function = &dm9161_timer;
priv->timer.data = (unsigned long)mii_info;
mod_timer(&priv->timer, jiffies + DM9161_DELAY * HZ);
return 0;
}
static void dm9161_close(struct ugeth_mii_info *mii_info)
{
struct dm9161_private *priv = mii_info->priv;
ugphy_vdbg("%s: IN", __FUNCTION__);
del_timer_sync(&priv->timer);
kfree(priv);
}
static int dm9161_ack_interrupt(struct ugeth_mii_info *mii_info)
{
/* FIXME: This lines are for BUG fixing in the mpc8325.
Remove this from here when it's fixed */
if (bcsr_regs == NULL)
bcsr_regs = (u8 *) ioremap(BCSR_PHYS_ADDR, BCSR_SIZE);
bcsr_regs[14] |= 0x40;
ugphy_vdbg("%s: IN", __FUNCTION__);
/* Clear the interrupts by reading the reg */
phy_read(mii_info, MII_DM9161_INTR);
return 0;
}
static int dm9161_config_intr(struct ugeth_mii_info *mii_info)
{
/* FIXME: This lines are for BUG fixing in the mpc8325.
Remove this from here when it's fixed */
if (bcsr_regs == NULL) {
bcsr_regs = (u8 *) ioremap(BCSR_PHYS_ADDR, BCSR_SIZE);
bcsr_regs[14] &= ~0x40;
}
ugphy_vdbg("%s: IN", __FUNCTION__);
if (mii_info->interrupts == MII_INTERRUPT_ENABLED)
phy_write(mii_info, MII_DM9161_INTR, MII_DM9161_INTR_INIT);
else
phy_write(mii_info, MII_DM9161_INTR, MII_DM9161_INTR_STOP);
return 0;
}
/* Cicada 820x */
static struct phy_info phy_info_cis820x = {
.phy_id = 0x000fc440,
.name = "Cicada Cis8204",
.phy_id_mask = 0x000fffc0,
.features = MII_GBIT_FEATURES,
.init = &cis820x_init,
.config_aneg = &gbit_config_aneg,
.read_status = &cis820x_read_status,
.ack_interrupt = &cis820x_ack_interrupt,
.config_intr = &cis820x_config_intr,
};
static struct phy_info phy_info_dm9161 = {
.phy_id = 0x0181b880,
.phy_id_mask = 0x0ffffff0,
.name = "Davicom DM9161E",
.init = dm9161_init,
.config_aneg = dm9161_config_aneg,
.read_status = dm9161_read_status,
.close = dm9161_close,
};
static struct phy_info phy_info_dm9161a = {
.phy_id = 0x0181b8a0,
.phy_id_mask = 0x0ffffff0,
.name = "Davicom DM9161A",
.features = MII_BASIC_FEATURES,
.init = dm9161_init,
.config_aneg = dm9161_config_aneg,
.read_status = dm9161_read_status,
.ack_interrupt = dm9161_ack_interrupt,
.config_intr = dm9161_config_intr,
.close = dm9161_close,
};
static struct phy_info phy_info_marvell = {
.phy_id = 0x01410c00,
.phy_id_mask = 0xffffff00,
.name = "Marvell 88E11x1",
.features = MII_GBIT_FEATURES,
.init = &marvell_init,
.config_aneg = &marvell_config_aneg,
.read_status = &marvell_read_status,
.ack_interrupt = &marvell_ack_interrupt,
.config_intr = &marvell_config_intr,
};
static struct phy_info phy_info_genmii = {
.phy_id = 0x00000000,
.phy_id_mask = 0x00000000,
.name = "Generic MII",
.features = MII_BASIC_FEATURES,
.config_aneg = genmii_config_aneg,
.read_status = genmii_read_status,
};
static struct phy_info *phy_info[] = {
&phy_info_cis820x,
&phy_info_marvell,
&phy_info_dm9161,
&phy_info_dm9161a,
&phy_info_genmii,
NULL
};
u16 phy_read(struct ugeth_mii_info *mii_info, u16 regnum)
{
u16 retval;
unsigned long flags;
ugphy_vdbg("%s: IN", __FUNCTION__);
spin_lock_irqsave(&mii_info->mdio_lock, flags);
retval = mii_info->mdio_read(mii_info->dev, mii_info->mii_id, regnum);
spin_unlock_irqrestore(&mii_info->mdio_lock, flags);
return retval;
}
void phy_write(struct ugeth_mii_info *mii_info, u16 regnum, u16 val)
{
unsigned long flags;
ugphy_vdbg("%s: IN", __FUNCTION__);
spin_lock_irqsave(&mii_info->mdio_lock, flags);
mii_info->mdio_write(mii_info->dev, mii_info->mii_id, regnum, val);
spin_unlock_irqrestore(&mii_info->mdio_lock, flags);
}
/* Use the PHY ID registers to determine what type of PHY is attached
* to device dev. return a struct phy_info structure describing that PHY
*/
struct phy_info *get_phy_info(struct ugeth_mii_info *mii_info)
{
u16 phy_reg;
u32 phy_ID;
int i;
struct phy_info *theInfo = NULL;
struct net_device *dev = mii_info->dev;
ugphy_vdbg("%s: IN", __FUNCTION__);
/* Grab the bits from PHYIR1, and put them in the upper half */
phy_reg = phy_read(mii_info, MII_PHYSID1);
phy_ID = (phy_reg & 0xffff) << 16;
/* Grab the bits from PHYIR2, and put them in the lower half */
phy_reg = phy_read(mii_info, MII_PHYSID2);
phy_ID |= (phy_reg & 0xffff);
/* loop through all the known PHY types, and find one that */
/* matches the ID we read from the PHY. */
for (i = 0; phy_info[i]; i++)
if (phy_info[i]->phy_id == (phy_ID & phy_info[i]->phy_id_mask)){
theInfo = phy_info[i];
break;
}
/* This shouldn't happen, as we have generic PHY support */
if (theInfo == NULL) {
ugphy_info("%s: PHY id %x is not supported!", dev->name,
phy_ID);
return NULL;
} else {
ugphy_info("%s: PHY is %s (%x)", dev->name, theInfo->name,
phy_ID);
}
return theInfo;
}