linux/drivers/net/phy/sfp-bus.c

815 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/export.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/phylink.h>
#include <linux/property.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include "sfp.h"
struct sfp_quirk {
const char *vendor;
const char *part;
void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes);
};
/**
* struct sfp_bus - internal representation of a sfp bus
*/
struct sfp_bus {
/* private: */
struct kref kref;
struct list_head node;
struct fwnode_handle *fwnode;
const struct sfp_socket_ops *socket_ops;
struct device *sfp_dev;
struct sfp *sfp;
const struct sfp_quirk *sfp_quirk;
const struct sfp_upstream_ops *upstream_ops;
void *upstream;
struct phy_device *phydev;
bool registered;
bool started;
};
static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
unsigned long *modes)
{
phylink_set(modes, 2500baseX_Full);
}
static const struct sfp_quirk sfp_quirks[] = {
{
// Alcatel Lucent G-010S-P can operate at 2500base-X, but
// incorrectly report 2500MBd NRZ in their EEPROM
.vendor = "ALCATELLUCENT",
.part = "G010SP",
.modes = sfp_quirk_2500basex,
}, {
// Alcatel Lucent G-010S-A can operate at 2500base-X, but
// report 3.2GBd NRZ in their EEPROM
.vendor = "ALCATELLUCENT",
.part = "3FE46541AA",
.modes = sfp_quirk_2500basex,
}, {
// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
// NRZ in their EEPROM
.vendor = "HUAWEI",
.part = "MA5671A",
.modes = sfp_quirk_2500basex,
},
};
static size_t sfp_strlen(const char *str, size_t maxlen)
{
size_t size, i;
/* Trailing characters should be filled with space chars */
for (i = 0, size = 0; i < maxlen; i++)
if (str[i] != ' ')
size = i + 1;
return size;
}
static bool sfp_match(const char *qs, const char *str, size_t len)
{
if (!qs)
return true;
if (strlen(qs) != len)
return false;
return !strncmp(qs, str, len);
}
static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
{
const struct sfp_quirk *q;
unsigned int i;
size_t vs, ps;
vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
sfp_match(q->part, id->base.vendor_pn, ps))
return q;
return NULL;
}
/**
* sfp_parse_port() - Parse the EEPROM base ID, setting the port type
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @id: a pointer to the module's &struct sfp_eeprom_id
* @support: optional pointer to an array of unsigned long for the
* ethtool support mask
*
* Parse the EEPROM identification given in @id, and return one of
* %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
* also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
* the connector type.
*
* If the port type is not known, returns %PORT_OTHER.
*/
int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
unsigned long *support)
{
int port;
/* port is the physical connector, set this from the connector field. */
switch (id->base.connector) {
case SFF8024_CONNECTOR_SC:
case SFF8024_CONNECTOR_FIBERJACK:
case SFF8024_CONNECTOR_LC:
case SFF8024_CONNECTOR_MT_RJ:
case SFF8024_CONNECTOR_MU:
case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
case SFF8024_CONNECTOR_MPO_1X12:
case SFF8024_CONNECTOR_MPO_2X16:
port = PORT_FIBRE;
break;
case SFF8024_CONNECTOR_RJ45:
port = PORT_TP;
break;
case SFF8024_CONNECTOR_COPPER_PIGTAIL:
port = PORT_DA;
break;
case SFF8024_CONNECTOR_UNSPEC:
if (id->base.e1000_base_t) {
port = PORT_TP;
break;
}
fallthrough;
case SFF8024_CONNECTOR_SG: /* guess */
case SFF8024_CONNECTOR_HSSDC_II:
case SFF8024_CONNECTOR_NOSEPARATE:
case SFF8024_CONNECTOR_MXC_2X16:
port = PORT_OTHER;
break;
default:
dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
id->base.connector);
port = PORT_OTHER;
break;
}
if (support) {
switch (port) {
case PORT_FIBRE:
phylink_set(support, FIBRE);
break;
case PORT_TP:
phylink_set(support, TP);
break;
}
}
return port;
}
EXPORT_SYMBOL_GPL(sfp_parse_port);
/**
* sfp_may_have_phy() - indicate whether the module may have a PHY
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @id: a pointer to the module's &struct sfp_eeprom_id
*
* Parse the EEPROM identification given in @id, and return whether
* this module may have a PHY.
*/
bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
{
if (id->base.e1000_base_t)
return true;
if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
switch (id->base.extended_cc) {
case SFF8024_ECC_10GBASE_T_SFI:
case SFF8024_ECC_10GBASE_T_SR:
case SFF8024_ECC_5GBASE_T:
case SFF8024_ECC_2_5GBASE_T:
return true;
}
}
return false;
}
EXPORT_SYMBOL_GPL(sfp_may_have_phy);
/**
* sfp_parse_support() - Parse the eeprom id for supported link modes
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @id: a pointer to the module's &struct sfp_eeprom_id
* @support: pointer to an array of unsigned long for the ethtool support mask
*
* Parse the EEPROM identification information and derive the supported
* ethtool link modes for the module.
*/
void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
unsigned long *support)
{
unsigned int br_min, br_nom, br_max;
__ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
/* Decode the bitrate information to MBd */
br_min = br_nom = br_max = 0;
if (id->base.br_nominal) {
if (id->base.br_nominal != 255) {
br_nom = id->base.br_nominal * 100;
br_min = br_nom - id->base.br_nominal * id->ext.br_min;
br_max = br_nom + id->base.br_nominal * id->ext.br_max;
} else if (id->ext.br_max) {
br_nom = 250 * id->ext.br_max;
br_max = br_nom + br_nom * id->ext.br_min / 100;
br_min = br_nom - br_nom * id->ext.br_min / 100;
}
/* When using passive cables, in case neither BR,min nor BR,max
* are specified, set br_min to 0 as the nominal value is then
* used as the maximum.
*/
if (br_min == br_max && id->base.sfp_ct_passive)
br_min = 0;
}
/* Set ethtool support from the compliance fields. */
if (id->base.e10g_base_sr)
phylink_set(modes, 10000baseSR_Full);
if (id->base.e10g_base_lr)
phylink_set(modes, 10000baseLR_Full);
if (id->base.e10g_base_lrm)
phylink_set(modes, 10000baseLRM_Full);
if (id->base.e10g_base_er)
phylink_set(modes, 10000baseER_Full);
if (id->base.e1000_base_sx ||
id->base.e1000_base_lx ||
id->base.e1000_base_cx)
phylink_set(modes, 1000baseX_Full);
if (id->base.e1000_base_t) {
phylink_set(modes, 1000baseT_Half);
phylink_set(modes, 1000baseT_Full);
}
/* 1000Base-PX or 1000Base-BX10 */
if ((id->base.e_base_px || id->base.e_base_bx10) &&
br_min <= 1300 && br_max >= 1200)
phylink_set(modes, 1000baseX_Full);
/* For active or passive cables, select the link modes
* based on the bit rates and the cable compliance bytes.
*/
if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
/* This may look odd, but some manufacturers use 12000MBd */
if (br_min <= 12000 && br_max >= 10300)
phylink_set(modes, 10000baseCR_Full);
if (br_min <= 3200 && br_max >= 3100)
phylink_set(modes, 2500baseX_Full);
if (br_min <= 1300 && br_max >= 1200)
phylink_set(modes, 1000baseX_Full);
}
if (id->base.sfp_ct_passive) {
if (id->base.passive.sff8431_app_e)
phylink_set(modes, 10000baseCR_Full);
}
if (id->base.sfp_ct_active) {
if (id->base.active.sff8431_app_e ||
id->base.active.sff8431_lim) {
phylink_set(modes, 10000baseCR_Full);
}
}
switch (id->base.extended_cc) {
case SFF8024_ECC_UNSPEC:
break;
case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
phylink_set(modes, 100000baseSR4_Full);
phylink_set(modes, 25000baseSR_Full);
break;
case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
phylink_set(modes, 100000baseLR4_ER4_Full);
break;
case SFF8024_ECC_100GBASE_CR4:
phylink_set(modes, 100000baseCR4_Full);
fallthrough;
case SFF8024_ECC_25GBASE_CR_S:
case SFF8024_ECC_25GBASE_CR_N:
phylink_set(modes, 25000baseCR_Full);
break;
case SFF8024_ECC_10GBASE_T_SFI:
case SFF8024_ECC_10GBASE_T_SR:
phylink_set(modes, 10000baseT_Full);
break;
case SFF8024_ECC_5GBASE_T:
phylink_set(modes, 5000baseT_Full);
break;
case SFF8024_ECC_2_5GBASE_T:
phylink_set(modes, 2500baseT_Full);
break;
default:
dev_warn(bus->sfp_dev,
"Unknown/unsupported extended compliance code: 0x%02x\n",
id->base.extended_cc);
break;
}
/* For fibre channel SFP, derive possible BaseX modes */
if (id->base.fc_speed_100 ||
id->base.fc_speed_200 ||
id->base.fc_speed_400) {
if (id->base.br_nominal >= 31)
phylink_set(modes, 2500baseX_Full);
if (id->base.br_nominal >= 12)
phylink_set(modes, 1000baseX_Full);
}
/* If we haven't discovered any modes that this module supports, try
* the encoding and bitrate to determine supported modes. Some BiDi
* modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to
* the differing wavelengths, so do not set any transceiver bits.
*/
if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
/* If the encoding and bit rate allows 1000baseX */
if (id->base.encoding == SFF8024_ENCODING_8B10B && br_nom &&
br_min <= 1300 && br_max >= 1200)
phylink_set(modes, 1000baseX_Full);
}
if (bus->sfp_quirk)
bus->sfp_quirk->modes(id, modes);
bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
phylink_set(support, Autoneg);
phylink_set(support, Pause);
phylink_set(support, Asym_Pause);
}
EXPORT_SYMBOL_GPL(sfp_parse_support);
/**
* sfp_select_interface() - Select appropriate phy_interface_t mode
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @link_modes: ethtool link modes mask
*
* Derive the phy_interface_t mode for the SFP module from the link
* modes mask.
*/
phy_interface_t sfp_select_interface(struct sfp_bus *bus,
unsigned long *link_modes)
{
if (phylink_test(link_modes, 10000baseCR_Full) ||
phylink_test(link_modes, 10000baseSR_Full) ||
phylink_test(link_modes, 10000baseLR_Full) ||
phylink_test(link_modes, 10000baseLRM_Full) ||
phylink_test(link_modes, 10000baseER_Full) ||
phylink_test(link_modes, 10000baseT_Full))
return PHY_INTERFACE_MODE_10GBASER;
if (phylink_test(link_modes, 2500baseX_Full))
return PHY_INTERFACE_MODE_2500BASEX;
if (phylink_test(link_modes, 1000baseT_Half) ||
phylink_test(link_modes, 1000baseT_Full))
return PHY_INTERFACE_MODE_SGMII;
if (phylink_test(link_modes, 1000baseX_Full))
return PHY_INTERFACE_MODE_1000BASEX;
dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
return PHY_INTERFACE_MODE_NA;
}
EXPORT_SYMBOL_GPL(sfp_select_interface);
static LIST_HEAD(sfp_buses);
static DEFINE_MUTEX(sfp_mutex);
static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
{
return bus->registered ? bus->upstream_ops : NULL;
}
static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
{
struct sfp_bus *sfp, *new, *found = NULL;
new = kzalloc(sizeof(*new), GFP_KERNEL);
mutex_lock(&sfp_mutex);
list_for_each_entry(sfp, &sfp_buses, node) {
if (sfp->fwnode == fwnode) {
kref_get(&sfp->kref);
found = sfp;
break;
}
}
if (!found && new) {
kref_init(&new->kref);
new->fwnode = fwnode;
list_add(&new->node, &sfp_buses);
found = new;
new = NULL;
}
mutex_unlock(&sfp_mutex);
kfree(new);
return found;
}
static void sfp_bus_release(struct kref *kref)
{
struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
list_del(&bus->node);
mutex_unlock(&sfp_mutex);
kfree(bus);
}
/**
* sfp_bus_put() - put a reference on the &struct sfp_bus
* @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
*
* Put a reference on the &struct sfp_bus and free the underlying structure
* if this was the last reference.
*/
void sfp_bus_put(struct sfp_bus *bus)
{
if (bus)
kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
}
EXPORT_SYMBOL_GPL(sfp_bus_put);
static int sfp_register_bus(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = bus->upstream_ops;
int ret;
if (ops) {
if (ops->link_down)
ops->link_down(bus->upstream);
if (ops->connect_phy && bus->phydev) {
ret = ops->connect_phy(bus->upstream, bus->phydev);
if (ret)
return ret;
}
}
bus->registered = true;
bus->socket_ops->attach(bus->sfp);
if (bus->started)
bus->socket_ops->start(bus->sfp);
bus->upstream_ops->attach(bus->upstream, bus);
return 0;
}
static void sfp_unregister_bus(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = bus->upstream_ops;
if (bus->registered) {
bus->upstream_ops->detach(bus->upstream, bus);
if (bus->started)
bus->socket_ops->stop(bus->sfp);
bus->socket_ops->detach(bus->sfp);
if (bus->phydev && ops && ops->disconnect_phy)
ops->disconnect_phy(bus->upstream);
}
bus->registered = false;
}
/**
* sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @modinfo: a &struct ethtool_modinfo
*
* Fill in the type and eeprom_len parameters in @modinfo for a module on
* the sfp bus specified by @bus.
*
* Returns 0 on success or a negative errno number.
*/
int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
{
return bus->socket_ops->module_info(bus->sfp, modinfo);
}
EXPORT_SYMBOL_GPL(sfp_get_module_info);
/**
* sfp_get_module_eeprom() - Read the SFP module EEPROM
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
* @ee: a &struct ethtool_eeprom
* @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
*
* Read the EEPROM as specified by the supplied @ee. See the documentation
* for &struct ethtool_eeprom for the region to be read.
*
* Returns 0 on success or a negative errno number.
*/
int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
u8 *data)
{
return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
}
EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
/**
* sfp_upstream_start() - Inform the SFP that the network device is up
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
*
* Inform the SFP socket that the network device is now up, so that the
* module can be enabled by allowing TX_DISABLE to be deasserted. This
* should be called from the network device driver's &struct net_device_ops
* ndo_open() method.
*/
void sfp_upstream_start(struct sfp_bus *bus)
{
if (bus->registered)
bus->socket_ops->start(bus->sfp);
bus->started = true;
}
EXPORT_SYMBOL_GPL(sfp_upstream_start);
/**
* sfp_upstream_stop() - Inform the SFP that the network device is down
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
*
* Inform the SFP socket that the network device is now up, so that the
* module can be disabled by asserting TX_DISABLE, disabling the laser
* in optical modules. This should be called from the network device
* driver's &struct net_device_ops ndo_stop() method.
*/
void sfp_upstream_stop(struct sfp_bus *bus)
{
if (bus->registered)
bus->socket_ops->stop(bus->sfp);
bus->started = false;
}
EXPORT_SYMBOL_GPL(sfp_upstream_stop);
static void sfp_upstream_clear(struct sfp_bus *bus)
{
bus->upstream_ops = NULL;
bus->upstream = NULL;
}
/**
* sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
* @fwnode: firmware node for the parent device (MAC or PHY)
*
* Parse the parent device's firmware node for a SFP bus, and locate
* the sfp_bus structure, incrementing its reference count. This must
* be put via sfp_bus_put() when done.
*
* Returns:
* - on success, a pointer to the sfp_bus structure,
* - %NULL if no SFP is specified,
* - on failure, an error pointer value:
*
* - corresponding to the errors detailed for
* fwnode_property_get_reference_args().
* - %-ENOMEM if we failed to allocate the bus.
* - an error from the upstream's connect_phy() method.
*/
struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
{
struct fwnode_reference_args ref;
struct sfp_bus *bus;
int ret;
ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
0, 0, &ref);
if (ret == -ENOENT)
return NULL;
else if (ret < 0)
return ERR_PTR(ret);
bus = sfp_bus_get(ref.fwnode);
fwnode_handle_put(ref.fwnode);
if (!bus)
return ERR_PTR(-ENOMEM);
return bus;
}
EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
/**
* sfp_bus_add_upstream() - parse and register the neighbouring device
* @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
* @upstream: the upstream private data
* @ops: the upstream's &struct sfp_upstream_ops
*
* Add upstream driver for the SFP bus, and if the bus is complete, register
* the SFP bus using sfp_register_upstream(). This takes a reference on the
* bus, so it is safe to put the bus after this call.
*
* Returns:
* - on success, a pointer to the sfp_bus structure,
* - %NULL if no SFP is specified,
* - on failure, an error pointer value:
*
* - corresponding to the errors detailed for
* fwnode_property_get_reference_args().
* - %-ENOMEM if we failed to allocate the bus.
* - an error from the upstream's connect_phy() method.
*/
int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
const struct sfp_upstream_ops *ops)
{
int ret;
/* If no bus, return success */
if (!bus)
return 0;
rtnl_lock();
kref_get(&bus->kref);
bus->upstream_ops = ops;
bus->upstream = upstream;
if (bus->sfp) {
ret = sfp_register_bus(bus);
if (ret)
sfp_upstream_clear(bus);
} else {
ret = 0;
}
rtnl_unlock();
if (ret)
sfp_bus_put(bus);
return ret;
}
EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
/**
* sfp_bus_del_upstream() - Delete a sfp bus
* @bus: a pointer to the &struct sfp_bus structure for the sfp module
*
* Delete a previously registered upstream connection for the SFP
* module. @bus should have been added by sfp_bus_add_upstream().
*/
void sfp_bus_del_upstream(struct sfp_bus *bus)
{
if (bus) {
rtnl_lock();
if (bus->sfp)
sfp_unregister_bus(bus);
sfp_upstream_clear(bus);
rtnl_unlock();
sfp_bus_put(bus);
}
}
EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
/* Socket driver entry points */
int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
int ret = 0;
if (ops && ops->connect_phy)
ret = ops->connect_phy(bus->upstream, phydev);
if (ret == 0)
bus->phydev = phydev;
return ret;
}
EXPORT_SYMBOL_GPL(sfp_add_phy);
void sfp_remove_phy(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
if (ops && ops->disconnect_phy)
ops->disconnect_phy(bus->upstream);
bus->phydev = NULL;
}
EXPORT_SYMBOL_GPL(sfp_remove_phy);
void sfp_link_up(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
if (ops && ops->link_up)
ops->link_up(bus->upstream);
}
EXPORT_SYMBOL_GPL(sfp_link_up);
void sfp_link_down(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
if (ops && ops->link_down)
ops->link_down(bus->upstream);
}
EXPORT_SYMBOL_GPL(sfp_link_down);
int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
int ret = 0;
bus->sfp_quirk = sfp_lookup_quirk(id);
if (ops && ops->module_insert)
ret = ops->module_insert(bus->upstream, id);
return ret;
}
EXPORT_SYMBOL_GPL(sfp_module_insert);
void sfp_module_remove(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
if (ops && ops->module_remove)
ops->module_remove(bus->upstream);
bus->sfp_quirk = NULL;
}
EXPORT_SYMBOL_GPL(sfp_module_remove);
int sfp_module_start(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
int ret = 0;
if (ops && ops->module_start)
ret = ops->module_start(bus->upstream);
return ret;
}
EXPORT_SYMBOL_GPL(sfp_module_start);
void sfp_module_stop(struct sfp_bus *bus)
{
const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
if (ops && ops->module_stop)
ops->module_stop(bus->upstream);
}
EXPORT_SYMBOL_GPL(sfp_module_stop);
static void sfp_socket_clear(struct sfp_bus *bus)
{
bus->sfp_dev = NULL;
bus->sfp = NULL;
bus->socket_ops = NULL;
}
struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
const struct sfp_socket_ops *ops)
{
struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
int ret = 0;
if (bus) {
rtnl_lock();
bus->sfp_dev = dev;
bus->sfp = sfp;
bus->socket_ops = ops;
if (bus->upstream_ops) {
ret = sfp_register_bus(bus);
if (ret)
sfp_socket_clear(bus);
}
rtnl_unlock();
}
if (ret) {
sfp_bus_put(bus);
bus = NULL;
}
return bus;
}
EXPORT_SYMBOL_GPL(sfp_register_socket);
void sfp_unregister_socket(struct sfp_bus *bus)
{
rtnl_lock();
if (bus->upstream_ops)
sfp_unregister_bus(bus);
sfp_socket_clear(bus);
rtnl_unlock();
sfp_bus_put(bus);
}
EXPORT_SYMBOL_GPL(sfp_unregister_socket);