linux/drivers/spi/spi-ppc4xx.c

500 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* SPI_PPC4XX SPI controller driver.
*
* Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
* Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
* Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
*
* Based in part on drivers/spi/spi_s3c24xx.c
*
* Copyright (c) 2006 Ben Dooks
* Copyright (c) 2006 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
*/
/*
* The PPC4xx SPI controller has no FIFO so each sent/received byte will
* generate an interrupt to the CPU. This can cause high CPU utilization.
* This driver allows platforms to reduce the interrupt load on the CPU
* during SPI transfers by setting max_speed_hz via the device tree.
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/wait.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <asm/io.h>
#include <asm/dcr.h>
#include <asm/dcr-regs.h>
/* bits in mode register - bit 0 is MSb */
/*
* SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
* SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
* Note: This is the inverse of CPHA.
*/
#define SPI_PPC4XX_MODE_SCP (0x80 >> 3)
/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
#define SPI_PPC4XX_MODE_SPE (0x80 >> 4)
/*
* SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
* SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
* Note: This is identical to SPI_LSB_FIRST.
*/
#define SPI_PPC4XX_MODE_RD (0x80 >> 5)
/*
* SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
* SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
* Note: This is identical to CPOL.
*/
#define SPI_PPC4XX_MODE_CI (0x80 >> 6)
/*
* SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
* SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
*/
#define SPI_PPC4XX_MODE_IL (0x80 >> 7)
/* bits in control register */
/* starts a transfer when set */
#define SPI_PPC4XX_CR_STR (0x80 >> 7)
/* bits in status register */
/* port is busy with a transfer */
#define SPI_PPC4XX_SR_BSY (0x80 >> 6)
/* RxD ready */
#define SPI_PPC4XX_SR_RBR (0x80 >> 7)
/* clock settings (SCP and CI) for various SPI modes */
#define SPI_CLK_MODE0 (SPI_PPC4XX_MODE_SCP | 0)
#define SPI_CLK_MODE1 (0 | 0)
#define SPI_CLK_MODE2 (SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
#define SPI_CLK_MODE3 (0 | SPI_PPC4XX_MODE_CI)
#define DRIVER_NAME "spi_ppc4xx_of"
struct spi_ppc4xx_regs {
u8 mode;
u8 rxd;
u8 txd;
u8 cr;
u8 sr;
u8 dummy;
/*
* Clock divisor modulus register
* This uses the following formula:
* SCPClkOut = OPBCLK/(4(CDM + 1))
* or
* CDM = (OPBCLK/4*SCPClkOut) - 1
* bit 0 is the MSb!
*/
u8 cdm;
};
/* SPI Controller driver's private data. */
struct ppc4xx_spi {
/* bitbang has to be first */
struct spi_bitbang bitbang;
struct completion done;
u64 mapbase;
u64 mapsize;
int irqnum;
/* need this to set the SPI clock */
unsigned int opb_freq;
/* for transfers */
int len;
int count;
/* data buffers */
const unsigned char *tx;
unsigned char *rx;
struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
struct spi_master *master;
struct device *dev;
};
/* need this so we can set the clock in the chipselect routine */
struct spi_ppc4xx_cs {
u8 mode;
};
static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
{
struct ppc4xx_spi *hw;
u8 data;
dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
t->tx_buf, t->rx_buf, t->len);
hw = spi_master_get_devdata(spi->master);
hw->tx = t->tx_buf;
hw->rx = t->rx_buf;
hw->len = t->len;
hw->count = 0;
/* send the first byte */
data = hw->tx ? hw->tx[0] : 0;
out_8(&hw->regs->txd, data);
out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
wait_for_completion(&hw->done);
return hw->count;
}
static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
{
struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
struct spi_ppc4xx_cs *cs = spi->controller_state;
int scr;
u8 cdm = 0;
u32 speed;
u8 bits_per_word;
/* Start with the generic configuration for this device. */
bits_per_word = spi->bits_per_word;
speed = spi->max_speed_hz;
/*
* Modify the configuration if the transfer overrides it. Do not allow
* the transfer to overwrite the generic configuration with zeros.
*/
if (t) {
if (t->bits_per_word)
bits_per_word = t->bits_per_word;
if (t->speed_hz)
speed = min(t->speed_hz, spi->max_speed_hz);
}
if (!speed || (speed > spi->max_speed_hz)) {
dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
return -EINVAL;
}
/* Write new configuration */
out_8(&hw->regs->mode, cs->mode);
/* Set the clock */
/* opb_freq was already divided by 4 */
scr = (hw->opb_freq / speed) - 1;
if (scr > 0)
cdm = min(scr, 0xff);
dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
if (in_8(&hw->regs->cdm) != cdm)
out_8(&hw->regs->cdm, cdm);
mutex_lock(&hw->bitbang.lock);
if (!hw->bitbang.busy) {
hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
/* Need to ndelay here? */
}
mutex_unlock(&hw->bitbang.lock);
return 0;
}
static int spi_ppc4xx_setup(struct spi_device *spi)
{
struct spi_ppc4xx_cs *cs = spi->controller_state;
if (!spi->max_speed_hz) {
dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
return -EINVAL;
}
if (cs == NULL) {
cs = kzalloc(sizeof *cs, GFP_KERNEL);
if (!cs)
return -ENOMEM;
spi->controller_state = cs;
}
/*
* We set all bits of the SPI0_MODE register, so,
* no need to read-modify-write
*/
cs->mode = SPI_PPC4XX_MODE_SPE;
switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
case SPI_MODE_0:
cs->mode |= SPI_CLK_MODE0;
break;
case SPI_MODE_1:
cs->mode |= SPI_CLK_MODE1;
break;
case SPI_MODE_2:
cs->mode |= SPI_CLK_MODE2;
break;
case SPI_MODE_3:
cs->mode |= SPI_CLK_MODE3;
break;
}
if (spi->mode & SPI_LSB_FIRST)
cs->mode |= SPI_PPC4XX_MODE_RD;
return 0;
}
static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
{
struct ppc4xx_spi *hw;
u8 status;
u8 data;
unsigned int count;
hw = (struct ppc4xx_spi *)dev_id;
status = in_8(&hw->regs->sr);
if (!status)
return IRQ_NONE;
/*
* BSY de-asserts one cycle after the transfer is complete. The
* interrupt is asserted after the transfer is complete. The exact
* relationship is not documented, hence this code.
*/
if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
u8 lstatus;
int cnt = 0;
dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
do {
ndelay(10);
lstatus = in_8(&hw->regs->sr);
} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
if (cnt >= 100) {
dev_err(hw->dev, "busywait: too many loops!\n");
complete(&hw->done);
return IRQ_HANDLED;
} else {
/* status is always 1 (RBR) here */
status = in_8(&hw->regs->sr);
dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
}
}
count = hw->count;
hw->count++;
/* RBR triggered this interrupt. Therefore, data must be ready. */
data = in_8(&hw->regs->rxd);
if (hw->rx)
hw->rx[count] = data;
count++;
if (count < hw->len) {
data = hw->tx ? hw->tx[count] : 0;
out_8(&hw->regs->txd, data);
out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
} else {
complete(&hw->done);
}
return IRQ_HANDLED;
}
static void spi_ppc4xx_cleanup(struct spi_device *spi)
{
kfree(spi->controller_state);
}
static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
{
/*
* On all 4xx PPC's the SPI bus is shared/multiplexed with
* the 2nd I2C bus. We need to enable the the SPI bus before
* using it.
*/
/* need to clear bit 14 to enable SPC */
dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
}
/*
* platform_device layer stuff...
*/
static int spi_ppc4xx_of_probe(struct platform_device *op)
{
struct ppc4xx_spi *hw;
struct spi_master *master;
struct spi_bitbang *bbp;
struct resource resource;
struct device_node *np = op->dev.of_node;
struct device *dev = &op->dev;
struct device_node *opbnp;
int ret;
const unsigned int *clk;
master = spi_alloc_master(dev, sizeof *hw);
if (master == NULL)
return -ENOMEM;
master->dev.of_node = np;
platform_set_drvdata(op, master);
hw = spi_master_get_devdata(master);
hw->master = master;
hw->dev = dev;
init_completion(&hw->done);
/* Setup the state for the bitbang driver */
bbp = &hw->bitbang;
bbp->master = hw->master;
bbp->setup_transfer = spi_ppc4xx_setupxfer;
bbp->txrx_bufs = spi_ppc4xx_txrx;
bbp->use_dma = 0;
bbp->master->setup = spi_ppc4xx_setup;
bbp->master->cleanup = spi_ppc4xx_cleanup;
bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
bbp->master->use_gpio_descriptors = true;
/*
* The SPI core will count the number of GPIO descriptors to figure
* out the number of chip selects available on the platform.
*/
bbp->master->num_chipselect = 0;
/* the spi->mode bits understood by this driver: */
bbp->master->mode_bits =
SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
/* Get the clock for the OPB */
opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
if (opbnp == NULL) {
dev_err(dev, "OPB: cannot find node\n");
ret = -ENODEV;
goto free_master;
}
/* Get the clock (Hz) for the OPB */
clk = of_get_property(opbnp, "clock-frequency", NULL);
if (clk == NULL) {
dev_err(dev, "OPB: no clock-frequency property set\n");
of_node_put(opbnp);
ret = -ENODEV;
goto free_master;
}
hw->opb_freq = *clk;
hw->opb_freq >>= 2;
of_node_put(opbnp);
ret = of_address_to_resource(np, 0, &resource);
if (ret) {
dev_err(dev, "error while parsing device node resource\n");
goto free_master;
}
hw->mapbase = resource.start;
hw->mapsize = resource_size(&resource);
/* Sanity check */
if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
dev_err(dev, "too small to map registers\n");
ret = -EINVAL;
goto free_master;
}
/* Request IRQ */
hw->irqnum = irq_of_parse_and_map(np, 0);
ret = request_irq(hw->irqnum, spi_ppc4xx_int,
0, "spi_ppc4xx_of", (void *)hw);
if (ret) {
dev_err(dev, "unable to allocate interrupt\n");
goto free_master;
}
if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
dev_err(dev, "resource unavailable\n");
ret = -EBUSY;
goto request_mem_error;
}
hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
if (!hw->regs) {
dev_err(dev, "unable to memory map registers\n");
ret = -ENXIO;
goto map_io_error;
}
spi_ppc4xx_enable(hw);
/* Finally register our spi controller */
dev->dma_mask = 0;
ret = spi_bitbang_start(bbp);
if (ret) {
dev_err(dev, "failed to register SPI master\n");
goto unmap_regs;
}
dev_info(dev, "driver initialized\n");
return 0;
unmap_regs:
iounmap(hw->regs);
map_io_error:
release_mem_region(hw->mapbase, hw->mapsize);
request_mem_error:
free_irq(hw->irqnum, hw);
free_master:
spi_master_put(master);
dev_err(dev, "initialization failed\n");
return ret;
}
static int spi_ppc4xx_of_remove(struct platform_device *op)
{
struct spi_master *master = platform_get_drvdata(op);
struct ppc4xx_spi *hw = spi_master_get_devdata(master);
spi_bitbang_stop(&hw->bitbang);
release_mem_region(hw->mapbase, hw->mapsize);
free_irq(hw->irqnum, hw);
iounmap(hw->regs);
spi_master_put(master);
return 0;
}
static const struct of_device_id spi_ppc4xx_of_match[] = {
{ .compatible = "ibm,ppc4xx-spi", },
{},
};
MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
static struct platform_driver spi_ppc4xx_of_driver = {
.probe = spi_ppc4xx_of_probe,
.remove = spi_ppc4xx_of_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = spi_ppc4xx_of_match,
},
};
module_platform_driver(spi_ppc4xx_of_driver);
MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
MODULE_LICENSE("GPL");