mirror of https://gitee.com/openkylin/linux.git
530 lines
17 KiB
C
530 lines
17 KiB
C
/*
|
|
* Intel Wireless Multicomm 3200 WiFi driver
|
|
*
|
|
* Copyright (C) 2009 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*
|
|
* Intel Corporation <ilw@linux.intel.com>
|
|
* Samuel Ortiz <samuel.ortiz@intel.com>
|
|
* Zhu Yi <yi.zhu@intel.com>
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* iwm Tx theory of operation:
|
|
*
|
|
* 1) We receive a 802.3 frame from the stack
|
|
* 2) We convert it to a 802.11 frame [iwm_xmit_frame]
|
|
* 3) We queue it to its corresponding tx queue [iwm_xmit_frame]
|
|
* 4) We schedule the tx worker. There is one worker per tx
|
|
* queue. [iwm_xmit_frame]
|
|
* 5) The tx worker is scheduled
|
|
* 6) We go through every queued skb on the tx queue, and for each
|
|
* and every one of them: [iwm_tx_worker]
|
|
* a) We check if we have enough Tx credits (see below for a Tx
|
|
* credits description) for the frame length. [iwm_tx_worker]
|
|
* b) If we do, we aggregate the Tx frame into a UDMA one, by
|
|
* concatenating one REPLY_TX command per Tx frame. [iwm_tx_worker]
|
|
* c) When we run out of credits, or when we reach the maximum
|
|
* concatenation size, we actually send the concatenated UDMA
|
|
* frame. [iwm_tx_worker]
|
|
*
|
|
* When we run out of Tx credits, the skbs are filling the tx queue,
|
|
* and eventually we will stop the netdev queue. [iwm_tx_worker]
|
|
* The tx queue is emptied as we're getting new tx credits, by
|
|
* scheduling the tx_worker. [iwm_tx_credit_inc]
|
|
* The netdev queue is started again when we have enough tx credits,
|
|
* and when our tx queue has some reasonable amout of space available
|
|
* (i.e. half of the max size). [iwm_tx_worker]
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/ieee80211.h>
|
|
|
|
#include "iwm.h"
|
|
#include "debug.h"
|
|
#include "commands.h"
|
|
#include "hal.h"
|
|
#include "umac.h"
|
|
#include "bus.h"
|
|
|
|
#define IWM_UMAC_PAGE_ALLOC_WRAP 0xffff
|
|
|
|
#define BYTES_TO_PAGES(n) (1 + ((n) >> ilog2(IWM_UMAC_PAGE_SIZE)) - \
|
|
(((n) & (IWM_UMAC_PAGE_SIZE - 1)) == 0))
|
|
|
|
#define pool_id_to_queue(id) ((id < IWM_TX_CMD_QUEUE) ? id : id - 1)
|
|
#define queue_to_pool_id(q) ((q < IWM_TX_CMD_QUEUE) ? q : q + 1)
|
|
|
|
/* require to hold tx_credit lock */
|
|
static int iwm_tx_credit_get(struct iwm_tx_credit *tx_credit, int id)
|
|
{
|
|
struct pool_entry *pool = &tx_credit->pools[id];
|
|
struct spool_entry *spool = &tx_credit->spools[pool->sid];
|
|
int spool_pages;
|
|
|
|
/* number of pages can be taken from spool by this pool */
|
|
spool_pages = spool->max_pages - spool->alloc_pages +
|
|
max(pool->min_pages - pool->alloc_pages, 0);
|
|
|
|
return min(pool->max_pages - pool->alloc_pages, spool_pages);
|
|
}
|
|
|
|
static bool iwm_tx_credit_ok(struct iwm_priv *iwm, int id, int nb)
|
|
{
|
|
u32 npages = BYTES_TO_PAGES(nb);
|
|
|
|
if (npages <= iwm_tx_credit_get(&iwm->tx_credit, id))
|
|
return 1;
|
|
|
|
set_bit(id, &iwm->tx_credit.full_pools_map);
|
|
|
|
IWM_DBG_TX(iwm, DBG, "LINK: stop txq[%d], available credit: %d\n",
|
|
pool_id_to_queue(id),
|
|
iwm_tx_credit_get(&iwm->tx_credit, id));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void iwm_tx_credit_inc(struct iwm_priv *iwm, int id, int total_freed_pages)
|
|
{
|
|
struct pool_entry *pool;
|
|
struct spool_entry *spool;
|
|
int freed_pages;
|
|
int queue;
|
|
|
|
BUG_ON(id >= IWM_MACS_OUT_GROUPS);
|
|
|
|
pool = &iwm->tx_credit.pools[id];
|
|
spool = &iwm->tx_credit.spools[pool->sid];
|
|
|
|
freed_pages = total_freed_pages - pool->total_freed_pages;
|
|
IWM_DBG_TX(iwm, DBG, "Free %d pages for pool[%d]\n", freed_pages, id);
|
|
|
|
if (!freed_pages) {
|
|
IWM_DBG_TX(iwm, DBG, "No pages are freed by UMAC\n");
|
|
return;
|
|
} else if (freed_pages < 0)
|
|
freed_pages += IWM_UMAC_PAGE_ALLOC_WRAP + 1;
|
|
|
|
if (pool->alloc_pages > pool->min_pages) {
|
|
int spool_pages = pool->alloc_pages - pool->min_pages;
|
|
spool_pages = min(spool_pages, freed_pages);
|
|
spool->alloc_pages -= spool_pages;
|
|
}
|
|
|
|
pool->alloc_pages -= freed_pages;
|
|
pool->total_freed_pages = total_freed_pages;
|
|
|
|
IWM_DBG_TX(iwm, DBG, "Pool[%d] pages alloc: %d, total_freed: %d, "
|
|
"Spool[%d] pages alloc: %d\n", id, pool->alloc_pages,
|
|
pool->total_freed_pages, pool->sid, spool->alloc_pages);
|
|
|
|
if (test_bit(id, &iwm->tx_credit.full_pools_map) &&
|
|
(pool->alloc_pages < pool->max_pages / 2)) {
|
|
clear_bit(id, &iwm->tx_credit.full_pools_map);
|
|
|
|
queue = pool_id_to_queue(id);
|
|
|
|
IWM_DBG_TX(iwm, DBG, "LINK: start txq[%d], available "
|
|
"credit: %d\n", queue,
|
|
iwm_tx_credit_get(&iwm->tx_credit, id));
|
|
queue_work(iwm->txq[queue].wq, &iwm->txq[queue].worker);
|
|
}
|
|
}
|
|
|
|
static void iwm_tx_credit_dec(struct iwm_priv *iwm, int id, int alloc_pages)
|
|
{
|
|
struct pool_entry *pool;
|
|
struct spool_entry *spool;
|
|
int spool_pages;
|
|
|
|
IWM_DBG_TX(iwm, DBG, "Allocate %d pages for pool[%d]\n",
|
|
alloc_pages, id);
|
|
|
|
BUG_ON(id >= IWM_MACS_OUT_GROUPS);
|
|
|
|
pool = &iwm->tx_credit.pools[id];
|
|
spool = &iwm->tx_credit.spools[pool->sid];
|
|
|
|
spool_pages = pool->alloc_pages + alloc_pages - pool->min_pages;
|
|
|
|
if (pool->alloc_pages >= pool->min_pages)
|
|
spool->alloc_pages += alloc_pages;
|
|
else if (spool_pages > 0)
|
|
spool->alloc_pages += spool_pages;
|
|
|
|
pool->alloc_pages += alloc_pages;
|
|
|
|
IWM_DBG_TX(iwm, DBG, "Pool[%d] pages alloc: %d, total_freed: %d, "
|
|
"Spool[%d] pages alloc: %d\n", id, pool->alloc_pages,
|
|
pool->total_freed_pages, pool->sid, spool->alloc_pages);
|
|
}
|
|
|
|
int iwm_tx_credit_alloc(struct iwm_priv *iwm, int id, int nb)
|
|
{
|
|
u32 npages = BYTES_TO_PAGES(nb);
|
|
int ret = 0;
|
|
|
|
spin_lock(&iwm->tx_credit.lock);
|
|
|
|
if (!iwm_tx_credit_ok(iwm, id, nb)) {
|
|
IWM_DBG_TX(iwm, DBG, "No credit avaliable for pool[%d]\n", id);
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
iwm_tx_credit_dec(iwm, id, npages);
|
|
|
|
out:
|
|
spin_unlock(&iwm->tx_credit.lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Since we're on an SDIO or USB bus, we are not sharing memory
|
|
* for storing to be transmitted frames. The host needs to push
|
|
* them upstream. As a consequence there needs to be a way for
|
|
* the target to let us know if it can actually take more TX frames
|
|
* or not. This is what Tx credits are for.
|
|
*
|
|
* For each Tx HW queue, we have a Tx pool, and then we have one
|
|
* unique super pool (spool), which is actually a global pool of
|
|
* all the UMAC pages.
|
|
* For each Tx pool we have a min_pages, a max_pages fields, and a
|
|
* alloc_pages fields. The alloc_pages tracks the number of pages
|
|
* currently allocated from the tx pool.
|
|
* Here are the rules to check if given a tx frame we have enough
|
|
* tx credits for it:
|
|
* 1) We translate the frame length into a number of UMAC pages.
|
|
* Let's call them n_pages.
|
|
* 2) For the corresponding tx pool, we check if n_pages +
|
|
* pool->alloc_pages is higher than pool->min_pages. min_pages
|
|
* represent a set of pre-allocated pages on the tx pool. If
|
|
* that's the case, then we need to allocate those pages from
|
|
* the spool. We can do so until we reach spool->max_pages.
|
|
* 3) Each tx pool is not allowed to allocate more than pool->max_pages
|
|
* from the spool, so once we're over min_pages, we can allocate
|
|
* pages from the spool, but not more than max_pages.
|
|
*
|
|
* When the tx code path needs to send a tx frame, it checks first
|
|
* if it has enough tx credits, following those rules. [iwm_tx_credit_get]
|
|
* If it does, it then updates the pool and spool counters and
|
|
* then send the frame. [iwm_tx_credit_alloc and iwm_tx_credit_dec]
|
|
* On the other side, when the UMAC is done transmitting frames, it
|
|
* will send a credit update notification to the host. This is when
|
|
* the pool and spool counters gets to be decreased. [iwm_tx_credit_inc,
|
|
* called from rx.c:iwm_ntf_tx_credit_update]
|
|
*
|
|
*/
|
|
void iwm_tx_credit_init_pools(struct iwm_priv *iwm,
|
|
struct iwm_umac_notif_alive *alive)
|
|
{
|
|
int i, sid, pool_pages;
|
|
|
|
spin_lock(&iwm->tx_credit.lock);
|
|
|
|
iwm->tx_credit.pool_nr = le16_to_cpu(alive->page_grp_count);
|
|
iwm->tx_credit.full_pools_map = 0;
|
|
memset(&iwm->tx_credit.spools[0], 0, sizeof(struct spool_entry));
|
|
|
|
IWM_DBG_TX(iwm, DBG, "Pools number is %d\n", iwm->tx_credit.pool_nr);
|
|
|
|
for (i = 0; i < iwm->tx_credit.pool_nr; i++) {
|
|
__le32 page_grp_state = alive->page_grp_state[i];
|
|
|
|
iwm->tx_credit.pools[i].id = GET_VAL32(page_grp_state,
|
|
UMAC_ALIVE_PAGE_STS_GRP_NUM);
|
|
iwm->tx_credit.pools[i].sid = GET_VAL32(page_grp_state,
|
|
UMAC_ALIVE_PAGE_STS_SGRP_NUM);
|
|
iwm->tx_credit.pools[i].min_pages = GET_VAL32(page_grp_state,
|
|
UMAC_ALIVE_PAGE_STS_GRP_MIN_SIZE);
|
|
iwm->tx_credit.pools[i].max_pages = GET_VAL32(page_grp_state,
|
|
UMAC_ALIVE_PAGE_STS_GRP_MAX_SIZE);
|
|
iwm->tx_credit.pools[i].alloc_pages = 0;
|
|
iwm->tx_credit.pools[i].total_freed_pages = 0;
|
|
|
|
sid = iwm->tx_credit.pools[i].sid;
|
|
pool_pages = iwm->tx_credit.pools[i].min_pages;
|
|
|
|
if (iwm->tx_credit.spools[sid].max_pages == 0) {
|
|
iwm->tx_credit.spools[sid].id = sid;
|
|
iwm->tx_credit.spools[sid].max_pages =
|
|
GET_VAL32(page_grp_state,
|
|
UMAC_ALIVE_PAGE_STS_SGRP_MAX_SIZE);
|
|
iwm->tx_credit.spools[sid].alloc_pages = 0;
|
|
}
|
|
|
|
iwm->tx_credit.spools[sid].alloc_pages += pool_pages;
|
|
|
|
IWM_DBG_TX(iwm, DBG, "Pool idx: %d, id: %d, sid: %d, capacity "
|
|
"min: %d, max: %d, pool alloc: %d, total_free: %d, "
|
|
"super poll alloc: %d\n",
|
|
i, iwm->tx_credit.pools[i].id,
|
|
iwm->tx_credit.pools[i].sid,
|
|
iwm->tx_credit.pools[i].min_pages,
|
|
iwm->tx_credit.pools[i].max_pages,
|
|
iwm->tx_credit.pools[i].alloc_pages,
|
|
iwm->tx_credit.pools[i].total_freed_pages,
|
|
iwm->tx_credit.spools[sid].alloc_pages);
|
|
}
|
|
|
|
spin_unlock(&iwm->tx_credit.lock);
|
|
}
|
|
|
|
#define IWM_UDMA_HDR_LEN sizeof(struct iwm_umac_wifi_out_hdr)
|
|
|
|
static __le16 iwm_tx_build_packet(struct iwm_priv *iwm, struct sk_buff *skb,
|
|
int pool_id, u8 *buf)
|
|
{
|
|
struct iwm_umac_wifi_out_hdr *hdr = (struct iwm_umac_wifi_out_hdr *)buf;
|
|
struct iwm_udma_wifi_cmd udma_cmd;
|
|
struct iwm_umac_cmd umac_cmd;
|
|
struct iwm_tx_info *tx_info = skb_to_tx_info(skb);
|
|
|
|
udma_cmd.count = cpu_to_le16(skb->len +
|
|
sizeof(struct iwm_umac_fw_cmd_hdr));
|
|
/* set EOP to 0 here. iwm_udma_wifi_hdr_set_eop() will be
|
|
* called later to set EOP for the last packet. */
|
|
udma_cmd.eop = 0;
|
|
udma_cmd.credit_group = pool_id;
|
|
udma_cmd.ra_tid = tx_info->sta << 4 | tx_info->tid;
|
|
udma_cmd.lmac_offset = 0;
|
|
|
|
umac_cmd.id = REPLY_TX;
|
|
umac_cmd.count = cpu_to_le16(skb->len);
|
|
umac_cmd.color = tx_info->color;
|
|
umac_cmd.resp = 0;
|
|
umac_cmd.seq_num = cpu_to_le16(iwm_alloc_wifi_cmd_seq(iwm));
|
|
|
|
iwm_build_udma_wifi_hdr(iwm, &hdr->hw_hdr, &udma_cmd);
|
|
iwm_build_umac_hdr(iwm, &hdr->sw_hdr, &umac_cmd);
|
|
|
|
memcpy(buf + sizeof(*hdr), skb->data, skb->len);
|
|
|
|
return umac_cmd.seq_num;
|
|
}
|
|
|
|
static int iwm_tx_send_concat_packets(struct iwm_priv *iwm,
|
|
struct iwm_tx_queue *txq)
|
|
{
|
|
int ret;
|
|
|
|
if (!txq->concat_count)
|
|
return 0;
|
|
|
|
IWM_DBG_TX(iwm, DBG, "Send concatenated Tx: queue %d, %d bytes\n",
|
|
txq->id, txq->concat_count);
|
|
|
|
/* mark EOP for the last packet */
|
|
iwm_udma_wifi_hdr_set_eop(iwm, txq->concat_ptr, 1);
|
|
|
|
trace_iwm_tx_packets(iwm, txq->concat_buf, txq->concat_count);
|
|
ret = iwm_bus_send_chunk(iwm, txq->concat_buf, txq->concat_count);
|
|
|
|
txq->concat_count = 0;
|
|
txq->concat_ptr = txq->concat_buf;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void iwm_tx_worker(struct work_struct *work)
|
|
{
|
|
struct iwm_priv *iwm;
|
|
struct iwm_tx_info *tx_info = NULL;
|
|
struct sk_buff *skb;
|
|
struct iwm_tx_queue *txq;
|
|
struct iwm_sta_info *sta_info;
|
|
struct iwm_tid_info *tid_info;
|
|
int cmdlen, ret, pool_id;
|
|
|
|
txq = container_of(work, struct iwm_tx_queue, worker);
|
|
iwm = container_of(txq, struct iwm_priv, txq[txq->id]);
|
|
|
|
pool_id = queue_to_pool_id(txq->id);
|
|
|
|
while (!test_bit(pool_id, &iwm->tx_credit.full_pools_map) &&
|
|
!skb_queue_empty(&txq->queue)) {
|
|
|
|
spin_lock_bh(&txq->lock);
|
|
skb = skb_dequeue(&txq->queue);
|
|
spin_unlock_bh(&txq->lock);
|
|
|
|
tx_info = skb_to_tx_info(skb);
|
|
sta_info = &iwm->sta_table[tx_info->sta];
|
|
if (!sta_info->valid) {
|
|
IWM_ERR(iwm, "Trying to send a frame to unknown STA\n");
|
|
kfree_skb(skb);
|
|
continue;
|
|
}
|
|
|
|
tid_info = &sta_info->tid_info[tx_info->tid];
|
|
|
|
mutex_lock(&tid_info->mutex);
|
|
|
|
/*
|
|
* If the RAxTID is stopped, we queue the skb to the stopped
|
|
* queue.
|
|
* Whenever we'll get a UMAC notification to resume the tx flow
|
|
* for this RAxTID, we'll merge back the stopped queue into the
|
|
* regular queue. See iwm_ntf_stop_resume_tx() from rx.c.
|
|
*/
|
|
if (tid_info->stopped) {
|
|
IWM_DBG_TX(iwm, DBG, "%dx%d stopped\n",
|
|
tx_info->sta, tx_info->tid);
|
|
spin_lock_bh(&txq->lock);
|
|
skb_queue_tail(&txq->stopped_queue, skb);
|
|
spin_unlock_bh(&txq->lock);
|
|
|
|
mutex_unlock(&tid_info->mutex);
|
|
continue;
|
|
}
|
|
|
|
cmdlen = IWM_UDMA_HDR_LEN + skb->len;
|
|
|
|
IWM_DBG_TX(iwm, DBG, "Tx frame on queue %d: skb: 0x%p, sta: "
|
|
"%d, color: %d\n", txq->id, skb, tx_info->sta,
|
|
tx_info->color);
|
|
|
|
if (txq->concat_count + cmdlen > IWM_HAL_CONCATENATE_BUF_SIZE)
|
|
iwm_tx_send_concat_packets(iwm, txq);
|
|
|
|
ret = iwm_tx_credit_alloc(iwm, pool_id, cmdlen);
|
|
if (ret) {
|
|
IWM_DBG_TX(iwm, DBG, "not enough tx_credit for queue "
|
|
"%d, Tx worker stopped\n", txq->id);
|
|
spin_lock_bh(&txq->lock);
|
|
skb_queue_head(&txq->queue, skb);
|
|
spin_unlock_bh(&txq->lock);
|
|
|
|
mutex_unlock(&tid_info->mutex);
|
|
break;
|
|
}
|
|
|
|
txq->concat_ptr = txq->concat_buf + txq->concat_count;
|
|
tid_info->last_seq_num =
|
|
iwm_tx_build_packet(iwm, skb, pool_id, txq->concat_ptr);
|
|
txq->concat_count += ALIGN(cmdlen, 16);
|
|
|
|
mutex_unlock(&tid_info->mutex);
|
|
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
iwm_tx_send_concat_packets(iwm, txq);
|
|
|
|
if (__netif_subqueue_stopped(iwm_to_ndev(iwm), txq->id) &&
|
|
!test_bit(pool_id, &iwm->tx_credit.full_pools_map) &&
|
|
(skb_queue_len(&txq->queue) < IWM_TX_LIST_SIZE / 2)) {
|
|
IWM_DBG_TX(iwm, DBG, "LINK: start netif_subqueue[%d]", txq->id);
|
|
netif_wake_subqueue(iwm_to_ndev(iwm), txq->id);
|
|
}
|
|
}
|
|
|
|
int iwm_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
|
{
|
|
struct iwm_priv *iwm = ndev_to_iwm(netdev);
|
|
struct wireless_dev *wdev = iwm_to_wdev(iwm);
|
|
struct iwm_tx_info *tx_info;
|
|
struct iwm_tx_queue *txq;
|
|
struct iwm_sta_info *sta_info;
|
|
u8 *dst_addr, sta_id;
|
|
u16 queue;
|
|
int ret;
|
|
|
|
|
|
if (!test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)) {
|
|
IWM_DBG_TX(iwm, DBG, "LINK: stop netif_all_queues: "
|
|
"not associated\n");
|
|
netif_tx_stop_all_queues(netdev);
|
|
goto drop;
|
|
}
|
|
|
|
queue = skb_get_queue_mapping(skb);
|
|
BUG_ON(queue >= IWM_TX_DATA_QUEUES); /* no iPAN yet */
|
|
|
|
txq = &iwm->txq[queue];
|
|
|
|
/* No free space for Tx, tx_worker is too slow */
|
|
if ((skb_queue_len(&txq->queue) > IWM_TX_LIST_SIZE) ||
|
|
(skb_queue_len(&txq->stopped_queue) > IWM_TX_LIST_SIZE)) {
|
|
IWM_DBG_TX(iwm, DBG, "LINK: stop netif_subqueue[%d]\n", queue);
|
|
netif_stop_subqueue(netdev, queue);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
ret = ieee80211_data_from_8023(skb, netdev->dev_addr, wdev->iftype,
|
|
iwm->bssid, 0);
|
|
if (ret) {
|
|
IWM_ERR(iwm, "build wifi header failed\n");
|
|
goto drop;
|
|
}
|
|
|
|
dst_addr = ((struct ieee80211_hdr *)(skb->data))->addr1;
|
|
|
|
for (sta_id = 0; sta_id < IWM_STA_TABLE_NUM; sta_id++) {
|
|
sta_info = &iwm->sta_table[sta_id];
|
|
if (sta_info->valid &&
|
|
!memcmp(dst_addr, sta_info->addr, ETH_ALEN))
|
|
break;
|
|
}
|
|
|
|
if (sta_id == IWM_STA_TABLE_NUM) {
|
|
IWM_ERR(iwm, "STA %pM not found in sta_table, Tx ignored\n",
|
|
dst_addr);
|
|
goto drop;
|
|
}
|
|
|
|
tx_info = skb_to_tx_info(skb);
|
|
tx_info->sta = sta_id;
|
|
tx_info->color = sta_info->color;
|
|
/* UMAC uses TID 8 (vs. 0) for non QoS packets */
|
|
if (sta_info->qos)
|
|
tx_info->tid = skb->priority;
|
|
else
|
|
tx_info->tid = IWM_UMAC_MGMT_TID;
|
|
|
|
spin_lock_bh(&iwm->txq[queue].lock);
|
|
skb_queue_tail(&iwm->txq[queue].queue, skb);
|
|
spin_unlock_bh(&iwm->txq[queue].lock);
|
|
|
|
queue_work(iwm->txq[queue].wq, &iwm->txq[queue].worker);
|
|
|
|
netdev->stats.tx_packets++;
|
|
netdev->stats.tx_bytes += skb->len;
|
|
return NETDEV_TX_OK;
|
|
|
|
drop:
|
|
netdev->stats.tx_dropped++;
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|