linux/drivers/net/wireless/rsi/rsi_91x_mgmt.c

1823 lines
51 KiB
C

/**
* Copyright (c) 2014 Redpine Signals Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/etherdevice.h>
#include "rsi_mgmt.h"
#include "rsi_common.h"
#include "rsi_ps.h"
#include "rsi_hal.h"
static struct bootup_params boot_params_20 = {
.magic_number = cpu_to_le16(0x5aa5),
.crystal_good_time = 0x0,
.valid = cpu_to_le32(VALID_20),
.reserved_for_valids = 0x0,
.bootup_mode_info = 0x0,
.digital_loop_back_params = 0x0,
.rtls_timestamp_en = 0x0,
.host_spi_intr_cfg = 0x0,
.device_clk_info = {{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
(TA_PLL_M_VAL_20)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
(PLL960_N_VAL_20)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = cpu_to_le16(0xb),
.bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
.umac_clock_reg_config = cpu_to_le16(0x48),
.qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
}
},
{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
(TA_PLL_M_VAL_20)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
(PLL960_N_VAL_20)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = 0x0,
.bbp_lmac_clk_reg_val = 0x0,
.umac_clock_reg_config = 0x0,
.qspi_uart_clock_reg_config = 0x0
}
},
{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
(TA_PLL_M_VAL_20)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
(PLL960_N_VAL_20)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = 0x0,
.bbp_lmac_clk_reg_val = 0x0,
.umac_clock_reg_config = 0x0,
.qspi_uart_clock_reg_config = 0x0
}
} },
.buckboost_wakeup_cnt = 0x0,
.pmu_wakeup_wait = 0x0,
.shutdown_wait_time = 0x0,
.pmu_slp_clkout_sel = 0x0,
.wdt_prog_value = 0x0,
.wdt_soc_rst_delay = 0x0,
.dcdc_operation_mode = 0x0,
.soc_reset_wait_cnt = 0x0,
.waiting_time_at_fresh_sleep = 0x0,
.max_threshold_to_avoid_sleep = 0x0,
.beacon_resedue_alg_en = 0,
};
static struct bootup_params boot_params_40 = {
.magic_number = cpu_to_le16(0x5aa5),
.crystal_good_time = 0x0,
.valid = cpu_to_le32(VALID_40),
.reserved_for_valids = 0x0,
.bootup_mode_info = 0x0,
.digital_loop_back_params = 0x0,
.rtls_timestamp_en = 0x0,
.host_spi_intr_cfg = 0x0,
.device_clk_info = {{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
(TA_PLL_M_VAL_40)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
(PLL960_N_VAL_40)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = cpu_to_le16(0x09),
.bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
.umac_clock_reg_config = cpu_to_le16(0x48),
.qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
}
},
{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
(TA_PLL_M_VAL_40)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
(PLL960_N_VAL_40)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = 0x0,
.bbp_lmac_clk_reg_val = 0x0,
.umac_clock_reg_config = 0x0,
.qspi_uart_clock_reg_config = 0x0
}
},
{
.pll_config_g = {
.tapll_info_g = {
.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
(TA_PLL_M_VAL_40)),
.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
},
.pll960_info_g = {
.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
(PLL960_N_VAL_40)),
.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
.pll_reg_3 = 0x0,
},
.afepll_info_g = {
.pll_reg = cpu_to_le16(0x9f0),
}
},
.switch_clk_g = {
.switch_clk_info = 0x0,
.bbp_lmac_clk_reg_val = 0x0,
.umac_clock_reg_config = 0x0,
.qspi_uart_clock_reg_config = 0x0
}
} },
.buckboost_wakeup_cnt = 0x0,
.pmu_wakeup_wait = 0x0,
.shutdown_wait_time = 0x0,
.pmu_slp_clkout_sel = 0x0,
.wdt_prog_value = 0x0,
.wdt_soc_rst_delay = 0x0,
.dcdc_operation_mode = 0x0,
.soc_reset_wait_cnt = 0x0,
.waiting_time_at_fresh_sleep = 0x0,
.max_threshold_to_avoid_sleep = 0x0,
.beacon_resedue_alg_en = 0,
};
static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
/**
* rsi_set_default_parameters() - This function sets default parameters.
* @common: Pointer to the driver private structure.
*
* Return: none
*/
static void rsi_set_default_parameters(struct rsi_common *common)
{
common->band = NL80211_BAND_2GHZ;
common->channel_width = BW_20MHZ;
common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
common->channel = 1;
common->min_rate = 0xffff;
common->fsm_state = FSM_CARD_NOT_READY;
common->iface_down = true;
common->endpoint = EP_2GHZ_20MHZ;
common->driver_mode = 1; /* End to end mode */
common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
common->rf_power_val = 0; /* Default 1.9V */
common->wlan_rf_power_mode = 0;
common->obm_ant_sel_val = 2;
common->beacon_interval = RSI_BEACON_INTERVAL;
common->dtim_cnt = RSI_DTIM_COUNT;
}
/**
* rsi_set_contention_vals() - This function sets the contention values for the
* backoff procedure.
* @common: Pointer to the driver private structure.
*
* Return: None.
*/
static void rsi_set_contention_vals(struct rsi_common *common)
{
u8 ii = 0;
for (; ii < NUM_EDCA_QUEUES; ii++) {
common->tx_qinfo[ii].wme_params =
(((common->edca_params[ii].cw_min / 2) +
(common->edca_params[ii].aifs)) *
WMM_SHORT_SLOT_TIME + SIFS_DURATION);
common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
common->tx_qinfo[ii].pkt_contended = 0;
}
}
/**
* rsi_send_internal_mgmt_frame() - This function sends management frames to
* firmware.Also schedules packet to queue
* for transmission.
* @common: Pointer to the driver private structure.
* @skb: Pointer to the socket buffer structure.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
struct sk_buff *skb)
{
struct skb_info *tx_params;
struct rsi_cmd_desc *desc;
if (skb == NULL) {
rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
return -ENOMEM;
}
desc = (struct rsi_cmd_desc *)skb->data;
desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
skb->priority = MGMT_SOFT_Q;
tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
tx_params->flags |= INTERNAL_MGMT_PKT;
skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
rsi_set_event(&common->tx_thread.event);
return 0;
}
/**
* rsi_load_radio_caps() - This function is used to send radio capabilities
* values to firmware.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding negative error code on failure.
*/
static int rsi_load_radio_caps(struct rsi_common *common)
{
struct rsi_radio_caps *radio_caps;
struct rsi_hw *adapter = common->priv;
u16 inx = 0;
u8 ii;
u8 radio_id = 0;
u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
0xf0, 0xf0, 0xf0, 0xf0,
0xf0, 0xf0, 0xf0, 0xf0,
0xf0, 0xf0, 0xf0, 0xf0,
0xf0, 0xf0, 0xf0, 0xf0};
struct sk_buff *skb;
u16 frame_len = sizeof(struct rsi_radio_caps);
rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
skb = dev_alloc_skb(frame_len);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, frame_len);
radio_caps = (struct rsi_radio_caps *)skb->data;
radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
radio_caps->channel_num = common->channel;
radio_caps->rf_model = RSI_RF_TYPE;
if (common->channel_width == BW_40MHZ) {
radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
if (common->fsm_state == FSM_MAC_INIT_DONE) {
struct ieee80211_hw *hw = adapter->hw;
struct ieee80211_conf *conf = &hw->conf;
if (conf_is_ht40_plus(conf)) {
radio_caps->radio_cfg_info =
RSI_CMDDESC_LOWER_20_ENABLE;
radio_caps->radio_info =
RSI_CMDDESC_LOWER_20_ENABLE;
} else if (conf_is_ht40_minus(conf)) {
radio_caps->radio_cfg_info =
RSI_CMDDESC_UPPER_20_ENABLE;
radio_caps->radio_info =
RSI_CMDDESC_UPPER_20_ENABLE;
} else {
radio_caps->radio_cfg_info =
RSI_CMDDESC_40MHZ;
radio_caps->radio_info =
RSI_CMDDESC_FULL_40_ENABLE;
}
}
}
radio_caps->radio_info |= radio_id;
radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
radio_caps->qos_params[ii].txop_q = 0;
}
for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
radio_caps->qos_params[ii].cont_win_min_q =
cpu_to_le16(common->edca_params[ii].cw_min);
radio_caps->qos_params[ii].cont_win_max_q =
cpu_to_le16(common->edca_params[ii].cw_max);
radio_caps->qos_params[ii].aifsn_val_q =
cpu_to_le16((common->edca_params[ii].aifs) << 8);
radio_caps->qos_params[ii].txop_q =
cpu_to_le16(common->edca_params[ii].txop);
}
radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
memcpy(&common->rate_pwr[0], &gc[0], 40);
for (ii = 0; ii < 20; ii++)
radio_caps->gcpd_per_rate[inx++] =
cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
skb_put(skb, frame_len);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
* @common: Pointer to the driver private structure.
* @msg: Pointer to received packet.
* @msg_len: Length of the recieved packet.
* @type: Type of recieved packet.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
u8 *msg,
s32 msg_len)
{
struct rsi_hw *adapter = common->priv;
struct ieee80211_tx_info *info;
struct skb_info *rx_params;
u8 pad_bytes = msg[4];
struct sk_buff *skb;
if (!adapter->sc_nvifs)
return -ENOLINK;
msg_len -= pad_bytes;
if (msg_len <= 0) {
rsi_dbg(MGMT_RX_ZONE,
"%s: Invalid rx msg of len = %d\n",
__func__, msg_len);
return -EINVAL;
}
skb = dev_alloc_skb(msg_len);
if (!skb)
return -ENOMEM;
skb_put_data(skb,
(u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
msg_len);
info = IEEE80211_SKB_CB(skb);
rx_params = (struct skb_info *)info->driver_data;
rx_params->rssi = rsi_get_rssi(msg);
rx_params->channel = rsi_get_channel(msg);
rsi_indicate_pkt_to_os(common, skb);
return 0;
}
/**
* rsi_hal_send_sta_notify_frame() - This function sends the station notify
* frame to firmware.
* @common: Pointer to the driver private structure.
* @opmode: Operating mode of device.
* @notify_event: Notification about station connection.
* @bssid: bssid.
* @qos_enable: Qos is enabled.
* @aid: Aid (unique for all STA).
*
* Return: status: 0 on success, corresponding negative error code on failure.
*/
static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
enum opmode opmode,
u8 notify_event,
const unsigned char *bssid,
u8 qos_enable,
u16 aid,
u16 sta_id)
{
struct ieee80211_vif *vif = common->priv->vifs[0];
struct sk_buff *skb = NULL;
struct rsi_peer_notify *peer_notify;
u16 vap_id = 0;
int status;
u16 frame_len = sizeof(struct rsi_peer_notify);
rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
skb = dev_alloc_skb(frame_len);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, frame_len);
peer_notify = (struct rsi_peer_notify *)skb->data;
if (opmode == STA_OPMODE)
peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
else if (opmode == AP_OPMODE)
peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
switch (notify_event) {
case STA_CONNECTED:
peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
break;
case STA_DISCONNECTED:
peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
break;
default:
break;
}
peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
ether_addr_copy(peer_notify->mac_addr, bssid);
peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
(frame_len - FRAME_DESC_SZ),
RSI_WIFI_MGMT_Q);
peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
peer_notify->desc.desc_dword3.qid_tid = sta_id;
peer_notify->desc.desc_dword3.sta_id = vap_id;
skb_put(skb, frame_len);
status = rsi_send_internal_mgmt_frame(common, skb);
if ((vif->type == NL80211_IFTYPE_STATION) &&
(!status && qos_enable)) {
rsi_set_contention_vals(common);
status = rsi_load_radio_caps(common);
}
return status;
}
/**
* rsi_send_aggregation_params_frame() - This function sends the ampdu
* indication frame to firmware.
* @common: Pointer to the driver private structure.
* @tid: traffic identifier.
* @ssn: ssn.
* @buf_size: buffer size.
* @event: notification about station connection.
*
* Return: 0 on success, corresponding negative error code on failure.
*/
int rsi_send_aggregation_params_frame(struct rsi_common *common,
u16 tid,
u16 ssn,
u8 buf_size,
u8 event,
u8 sta_id)
{
struct sk_buff *skb = NULL;
struct rsi_aggr_params *aggr_params;
u16 frame_len = sizeof(struct rsi_aggr_params);
skb = dev_alloc_skb(frame_len);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, frame_len);
aggr_params = (struct rsi_aggr_params *)skb->data;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
aggr_params->desc_dword0.frame_type = AMPDU_IND;
aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
aggr_params->peer_id = sta_id;
if (event == STA_TX_ADDBA_DONE) {
aggr_params->seq_start = cpu_to_le16(ssn);
aggr_params->baw_size = cpu_to_le16(buf_size);
aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
} else if (event == STA_RX_ADDBA_DONE) {
aggr_params->seq_start = cpu_to_le16(ssn);
aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
RSI_AGGR_PARAMS_RX_AGGR);
} else if (event == STA_RX_DELBA) {
aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
}
skb_put(skb, frame_len);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_program_bb_rf() - This function starts base band and RF programming.
* This is called after initial configurations are done.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding negative error code on failure.
*/
static int rsi_program_bb_rf(struct rsi_common *common)
{
struct sk_buff *skb;
struct rsi_bb_rf_prog *bb_rf_prog;
u16 frame_len = sizeof(struct rsi_bb_rf_prog);
rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
skb = dev_alloc_skb(frame_len);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, frame_len);
bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
bb_rf_prog->endpoint = common->endpoint;
bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
if (common->rf_reset) {
bb_rf_prog->flags = cpu_to_le16(RF_RESET_ENABLE);
rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
__func__);
common->rf_reset = 0;
}
common->bb_rf_prog_count = 1;
bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
(RSI_RF_TYPE << 4));
skb_put(skb, frame_len);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_set_vap_capabilities() - This function send vap capability to firmware.
* @common: Pointer to the driver private structure.
* @opmode: Operating mode of device.
*
* Return: 0 on success, corresponding negative error code on failure.
*/
int rsi_set_vap_capabilities(struct rsi_common *common,
enum opmode mode,
u8 *mac_addr,
u8 vap_id,
u8 vap_status)
{
struct sk_buff *skb = NULL;
struct rsi_vap_caps *vap_caps;
struct rsi_hw *adapter = common->priv;
struct ieee80211_hw *hw = adapter->hw;
struct ieee80211_conf *conf = &hw->conf;
u16 frame_len = sizeof(struct rsi_vap_caps);
rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
skb = dev_alloc_skb(frame_len);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, frame_len);
vap_caps = (struct rsi_vap_caps *)skb->data;
rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
vap_caps->status = vap_status;
vap_caps->vif_type = mode;
vap_caps->channel_bw = common->channel_width;
vap_caps->vap_id = vap_id;
vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
(common->radio_id & 0xf);
memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
vap_caps->keep_alive_period = cpu_to_le16(90);
vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
if (common->band == NL80211_BAND_5GHZ) {
vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
} else {
vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
}
if (conf_is_ht40(conf)) {
if (conf_is_ht40_minus(conf))
vap_caps->ctrl_rate_flags =
cpu_to_le16(UPPER_20_ENABLE);
else if (conf_is_ht40_plus(conf))
vap_caps->ctrl_rate_flags =
cpu_to_le16(LOWER_20_ENABLE);
else
vap_caps->ctrl_rate_flags =
cpu_to_le16(FULL40M_ENABLE);
}
vap_caps->default_data_rate = 0;
vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
skb_put(skb, frame_len);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_hal_load_key() - This function is used to load keys within the firmware.
* @common: Pointer to the driver private structure.
* @data: Pointer to the key data.
* @key_len: Key length to be loaded.
* @key_type: Type of key: GROUP/PAIRWISE.
* @key_id: Key index.
* @cipher: Type of cipher used.
*
* Return: 0 on success, -1 on failure.
*/
int rsi_hal_load_key(struct rsi_common *common,
u8 *data,
u16 key_len,
u8 key_type,
u8 key_id,
u32 cipher,
s16 sta_id)
{
struct ieee80211_vif *vif = common->priv->vifs[0];
struct sk_buff *skb = NULL;
struct rsi_set_key *set_key;
u16 key_descriptor = 0;
u16 frame_len = sizeof(struct rsi_set_key);
rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
skb = dev_alloc_skb(frame_len);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, frame_len);
set_key = (struct rsi_set_key *)skb->data;
if (key_type == RSI_GROUP_KEY) {
key_descriptor = RSI_KEY_TYPE_BROADCAST;
if (vif->type == NL80211_IFTYPE_AP)
key_descriptor |= RSI_KEY_MODE_AP;
}
if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
(cipher == WLAN_CIPHER_SUITE_WEP104)) {
key_id = 0;
key_descriptor |= RSI_WEP_KEY;
if (key_len >= 13)
key_descriptor |= RSI_WEP_KEY_104;
} else if (cipher != KEY_TYPE_CLEAR) {
key_descriptor |= RSI_CIPHER_WPA;
if (cipher == WLAN_CIPHER_SUITE_TKIP)
key_descriptor |= RSI_CIPHER_TKIP;
}
key_descriptor |= RSI_PROTECT_DATA_FRAMES;
key_descriptor |= ((key_id << RSI_KEY_ID_OFFSET) & RSI_KEY_ID_MASK);
rsi_set_len_qno(&set_key->desc_dword0.len_qno,
(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
set_key->desc_dword0.frame_type = SET_KEY_REQ;
set_key->key_desc = cpu_to_le16(key_descriptor);
set_key->sta_id = sta_id;
if (data) {
if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
(cipher == WLAN_CIPHER_SUITE_WEP104)) {
memcpy(&set_key->key[key_id][1], data, key_len * 2);
} else {
memcpy(&set_key->key[0][0], data, key_len);
}
memcpy(set_key->tx_mic_key, &data[16], 8);
memcpy(set_key->rx_mic_key, &data[24], 8);
} else {
memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
}
skb_put(skb, frame_len);
return rsi_send_internal_mgmt_frame(common, skb);
}
/*
* This function sends the common device configuration parameters to device.
* This frame includes the useful information to make device works on
* specific operating mode.
*/
static int rsi_send_common_dev_params(struct rsi_common *common)
{
struct sk_buff *skb;
u16 frame_len;
struct rsi_config_vals *dev_cfgs;
frame_len = sizeof(struct rsi_config_vals);
rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
skb = dev_alloc_skb(frame_len);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
return -ENOMEM;
}
memset(skb->data, 0, frame_len);
dev_cfgs = (struct rsi_config_vals *)skb->data;
memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
RSI_COEX_Q);
dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
dev_cfgs->unused_soc_gpio_bitmap =
cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
dev_cfgs->opermode = common->oper_mode;
dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
dev_cfgs->driver_mode = common->driver_mode;
dev_cfgs->region_code = NL80211_DFS_FCC;
dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
skb_put(skb, frame_len);
return rsi_send_internal_mgmt_frame(common, skb);
}
/*
* rsi_load_bootup_params() - This function send bootup params to the firmware.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding error code on failure.
*/
static int rsi_load_bootup_params(struct rsi_common *common)
{
struct sk_buff *skb;
struct rsi_boot_params *boot_params;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, sizeof(struct rsi_boot_params));
boot_params = (struct rsi_boot_params *)skb->data;
rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
if (common->channel_width == BW_40MHZ) {
memcpy(&boot_params->bootup_params,
&boot_params_40,
sizeof(struct bootup_params));
rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
UMAC_CLK_40BW);
boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
} else {
memcpy(&boot_params->bootup_params,
&boot_params_20,
sizeof(struct bootup_params));
if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
rsi_dbg(MGMT_TX_ZONE,
"%s: Packet 20MHZ <=== %d\n", __func__,
UMAC_CLK_20BW);
} else {
boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
rsi_dbg(MGMT_TX_ZONE,
"%s: Packet 20MHZ <=== %d\n", __func__,
UMAC_CLK_40MHZ);
}
}
/**
* Bit{0:11} indicates length of the Packet
* Bit{12:15} indicates host queue number
*/
boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
(RSI_WIFI_MGMT_Q << 12));
boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
skb_put(skb, sizeof(struct rsi_boot_params));
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_send_reset_mac() - This function prepares reset MAC request and sends an
* internal management frame to indicate it to firmware.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding error code on failure.
*/
static int rsi_send_reset_mac(struct rsi_common *common)
{
struct sk_buff *skb;
struct rsi_mac_frame *mgmt_frame;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
mgmt_frame = (struct rsi_mac_frame *)skb->data;
mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_band_check() - This function programs the band
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding error code on failure.
*/
int rsi_band_check(struct rsi_common *common)
{
struct rsi_hw *adapter = common->priv;
struct ieee80211_hw *hw = adapter->hw;
u8 prev_bw = common->channel_width;
u8 prev_ep = common->endpoint;
struct ieee80211_channel *curchan = hw->conf.chandef.chan;
int status = 0;
if (common->band != curchan->band) {
common->rf_reset = 1;
common->band = curchan->band;
}
if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
(hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
common->channel_width = BW_20MHZ;
else
common->channel_width = BW_40MHZ;
if (common->band == NL80211_BAND_2GHZ) {
if (common->channel_width)
common->endpoint = EP_2GHZ_40MHZ;
else
common->endpoint = EP_2GHZ_20MHZ;
} else {
if (common->channel_width)
common->endpoint = EP_5GHZ_40MHZ;
else
common->endpoint = EP_5GHZ_20MHZ;
}
if (common->endpoint != prev_ep) {
status = rsi_program_bb_rf(common);
if (status)
return status;
}
if (common->channel_width != prev_bw) {
status = rsi_load_bootup_params(common);
if (status)
return status;
status = rsi_load_radio_caps(common);
if (status)
return status;
}
return status;
}
/**
* rsi_set_channel() - This function programs the channel.
* @common: Pointer to the driver private structure.
* @channel: Channel value to be set.
*
* Return: 0 on success, corresponding error code on failure.
*/
int rsi_set_channel(struct rsi_common *common,
struct ieee80211_channel *channel)
{
struct sk_buff *skb = NULL;
struct rsi_chan_config *chan_cfg;
u16 frame_len = sizeof(struct rsi_chan_config);
rsi_dbg(MGMT_TX_ZONE,
"%s: Sending scan req frame\n", __func__);
skb = dev_alloc_skb(frame_len);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
if (!channel) {
dev_kfree_skb(skb);
return 0;
}
memset(skb->data, 0, frame_len);
chan_cfg = (struct rsi_chan_config *)skb->data;
rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
chan_cfg->channel_number = channel->hw_value;
chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
(channel->flags & IEEE80211_CHAN_RADAR)) {
chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
} else {
if (common->tx_power < channel->max_power)
chan_cfg->tx_power = cpu_to_le16(common->tx_power);
else
chan_cfg->tx_power = cpu_to_le16(channel->max_power);
}
chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
if (common->channel_width == BW_40MHZ)
chan_cfg->channel_width = 0x1;
common->channel = channel->hw_value;
skb_put(skb, frame_len);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_send_radio_params_update() - This function sends the radio
* parameters update to device
* @common: Pointer to the driver private structure.
* @channel: Channel value to be set.
*
* Return: 0 on success, corresponding error code on failure.
*/
int rsi_send_radio_params_update(struct rsi_common *common)
{
struct rsi_mac_frame *cmd_frame;
struct sk_buff *skb = NULL;
rsi_dbg(MGMT_TX_ZONE,
"%s: Sending Radio Params update frame\n", __func__);
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
cmd_frame = (struct rsi_mac_frame *)skb->data;
cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
/* This function programs the threshold. */
int rsi_send_vap_dynamic_update(struct rsi_common *common)
{
struct sk_buff *skb;
struct rsi_dynamic_s *dynamic_frame;
rsi_dbg(MGMT_TX_ZONE,
"%s: Sending vap update indication frame\n", __func__);
skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
if (!skb)
return -ENOMEM;
memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
dynamic_frame = (struct rsi_dynamic_s *)skb->data;
rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
dynamic_frame->desc_dword2.pkt_info =
cpu_to_le32(common->rts_threshold);
/* Beacon miss threshold */
dynamic_frame->frame_body.keep_alive_period =
cpu_to_le16(RSI_DEF_KEEPALIVE);
dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
skb_put(skb, sizeof(struct rsi_dynamic_s));
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_compare() - This function is used to compare two integers
* @a: pointer to the first integer
* @b: pointer to the second integer
*
* Return: 0 if both are equal, -1 if the first is smaller, else 1
*/
static int rsi_compare(const void *a, const void *b)
{
u16 _a = *(const u16 *)(a);
u16 _b = *(const u16 *)(b);
if (_a > _b)
return -1;
if (_a < _b)
return 1;
return 0;
}
/**
* rsi_map_rates() - This function is used to map selected rates to hw rates.
* @rate: The standard rate to be mapped.
* @offset: Offset that will be returned.
*
* Return: 0 if it is a mcs rate, else 1
*/
static bool rsi_map_rates(u16 rate, int *offset)
{
int kk;
for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
if (rate == mcs[kk]) {
*offset = kk;
return false;
}
}
for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
if (rate == rsi_rates[kk].bitrate / 5) {
*offset = kk;
break;
}
}
return true;
}
/**
* rsi_send_auto_rate_request() - This function is to set rates for connection
* and send autorate request to firmware.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, corresponding error code on failure.
*/
static int rsi_send_auto_rate_request(struct rsi_common *common,
struct ieee80211_sta *sta,
u16 sta_id)
{
struct ieee80211_vif *vif = common->priv->vifs[0];
struct sk_buff *skb;
struct rsi_auto_rate *auto_rate;
int ii = 0, jj = 0, kk = 0;
struct ieee80211_hw *hw = common->priv->hw;
u8 band = hw->conf.chandef.chan->band;
u8 num_supported_rates = 0;
u8 rate_table_offset, rate_offset = 0;
u32 rate_bitmap;
u16 *selected_rates, min_rate;
bool is_ht = false, is_sgi = false;
u16 frame_len = sizeof(struct rsi_auto_rate);
rsi_dbg(MGMT_TX_ZONE,
"%s: Sending auto rate request frame\n", __func__);
skb = dev_alloc_skb(frame_len);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
if (!selected_rates) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
__func__);
dev_kfree_skb(skb);
return -ENOMEM;
}
auto_rate = (struct rsi_auto_rate *)skb->data;
auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
auto_rate->collision_tolerance = cpu_to_le16(3);
auto_rate->failure_limit = cpu_to_le16(3);
auto_rate->initial_boundary = cpu_to_le16(3);
auto_rate->max_threshold_limt = cpu_to_le16(27);
auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
if (common->channel_width == BW_40MHZ)
auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
auto_rate->desc.desc_dword3.sta_id = sta_id;
if (vif->type == NL80211_IFTYPE_STATION) {
rate_bitmap = common->bitrate_mask[band];
is_ht = common->vif_info[0].is_ht;
is_sgi = common->vif_info[0].sgi;
} else {
rate_bitmap = sta->supp_rates[band];
is_ht = sta->ht_cap.ht_supported;
if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
is_sgi = true;
}
if (band == NL80211_BAND_2GHZ) {
if ((rate_bitmap == 0) && (is_ht))
min_rate = RSI_RATE_MCS0;
else
min_rate = RSI_RATE_1;
rate_table_offset = 0;
} else {
if ((rate_bitmap == 0) && (is_ht))
min_rate = RSI_RATE_MCS0;
else
min_rate = RSI_RATE_6;
rate_table_offset = 4;
}
for (ii = 0, jj = 0;
ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
if (rate_bitmap & BIT(ii)) {
selected_rates[jj++] =
(rsi_rates[ii + rate_table_offset].bitrate / 5);
rate_offset++;
}
}
num_supported_rates = jj;
if (is_ht) {
for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
selected_rates[jj++] = mcs[ii];
num_supported_rates += ARRAY_SIZE(mcs);
rate_offset += ARRAY_SIZE(mcs);
}
sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
/* mapping the rates to RSI rates */
for (ii = 0; ii < jj; ii++) {
if (rsi_map_rates(selected_rates[ii], &kk)) {
auto_rate->supported_rates[ii] =
cpu_to_le16(rsi_rates[kk].hw_value);
} else {
auto_rate->supported_rates[ii] =
cpu_to_le16(rsi_mcsrates[kk]);
}
}
/* loading HT rates in the bottom half of the auto rate table */
if (is_ht) {
for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
auto_rate->supported_rates[ii++] =
cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
else
auto_rate->supported_rates[ii++] =
cpu_to_le16(rsi_mcsrates[kk]);
auto_rate->supported_rates[ii] =
cpu_to_le16(rsi_mcsrates[kk--]);
}
for (; ii < (RSI_TBL_SZ - 1); ii++) {
auto_rate->supported_rates[ii] =
cpu_to_le16(rsi_mcsrates[0]);
}
}
for (; ii < RSI_TBL_SZ; ii++)
auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
num_supported_rates *= 2;
rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
skb_put(skb, frame_len);
kfree(selected_rates);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_inform_bss_status() - This function informs about bss status with the
* help of sta notify params by sending an internal
* management frame to firmware.
* @common: Pointer to the driver private structure.
* @status: Bss status type.
* @bssid: Bssid.
* @qos_enable: Qos is enabled.
* @aid: Aid (unique for all STAs).
*
* Return: None.
*/
void rsi_inform_bss_status(struct rsi_common *common,
enum opmode opmode,
u8 status,
const u8 *addr,
u8 qos_enable,
u16 aid,
struct ieee80211_sta *sta,
u16 sta_id)
{
if (status) {
if (opmode == STA_OPMODE)
common->hw_data_qs_blocked = true;
rsi_hal_send_sta_notify_frame(common,
opmode,
STA_CONNECTED,
addr,
qos_enable,
aid, sta_id);
if (common->min_rate == 0xffff)
rsi_send_auto_rate_request(common, sta, sta_id);
if (opmode == STA_OPMODE) {
if (!rsi_send_block_unblock_frame(common, false))
common->hw_data_qs_blocked = false;
}
} else {
if (opmode == STA_OPMODE)
common->hw_data_qs_blocked = true;
rsi_hal_send_sta_notify_frame(common,
opmode,
STA_DISCONNECTED,
addr,
qos_enable,
aid, sta_id);
if (opmode == STA_OPMODE)
rsi_send_block_unblock_frame(common, true);
}
}
/**
* rsi_eeprom_read() - This function sends a frame to read the mac address
* from the eeprom.
* @common: Pointer to the driver private structure.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_eeprom_read(struct rsi_common *common)
{
struct rsi_eeprom_read_frame *mgmt_frame;
struct rsi_hw *adapter = common->priv;
struct sk_buff *skb;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
/* FrameType */
rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
mgmt_frame->pkt_type = EEPROM_READ;
/* Number of bytes to read */
mgmt_frame->pkt_info =
cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
RSI_EEPROM_LEN_MASK);
mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
RSI_EEPROM_HDR_SIZE_MASK);
/* Address to read */
mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* This function sends a frame to block/unblock
* data queues in the firmware
*
* @param common Pointer to the driver private structure.
* @param block event - block if true, unblock if false
* @return 0 on success, -1 on failure.
*/
int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
{
struct rsi_block_unblock_data *mgmt_frame;
struct sk_buff *skb;
rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
if (block_event) {
rsi_dbg(INFO_ZONE, "blocking the data qs\n");
mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
} else {
rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
}
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
*
* @common: Pointer to the driver private structure.
* @rx_filter_word: Flags of filter packets
*
* @Return: 0 on success, -1 on failure.
*/
int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
{
struct rsi_mac_frame *cmd_frame;
struct sk_buff *skb;
rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
cmd_frame = (struct rsi_mac_frame *)skb->data;
cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
int rsi_send_ps_request(struct rsi_hw *adapter, bool enable)
{
struct rsi_common *common = adapter->priv;
struct ieee80211_bss_conf *bss = &adapter->vifs[0]->bss_conf;
struct rsi_request_ps *ps;
struct rsi_ps_info *ps_info;
struct sk_buff *skb;
int frame_len = sizeof(*ps);
skb = dev_alloc_skb(frame_len);
if (!skb)
return -ENOMEM;
memset(skb->data, 0, frame_len);
ps = (struct rsi_request_ps *)skb->data;
ps_info = &adapter->ps_info;
rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
(frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
if (enable) {
ps->ps_sleep.enable = RSI_PS_ENABLE;
ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
} else {
ps->ps_sleep.enable = RSI_PS_DISABLE;
ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
}
ps->ps_uapsd_acs = common->uapsd_bitmap;
ps->ps_sleep.sleep_type = ps_info->sleep_type;
ps->ps_sleep.num_bcns_per_lis_int =
cpu_to_le16(ps_info->num_bcns_per_lis_int);
ps->ps_sleep.sleep_duration =
cpu_to_le32(ps_info->deep_sleep_wakeup_period);
if (bss->assoc)
ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
else
ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
ps->ps_dtim_interval_duration =
cpu_to_le32(ps_info->dtim_interval_duration);
if (ps_info->listen_interval > ps_info->dtim_interval_duration)
ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
skb_put(skb, frame_len);
return rsi_send_internal_mgmt_frame(common, skb);
}
/**
* rsi_set_antenna() - This fuction send antenna configuration request
* to device
*
* @common: Pointer to the driver private structure.
* @antenna: bitmap for tx antenna selection
*
* Return: 0 on Success, negative error code on failure
*/
int rsi_set_antenna(struct rsi_common *common, u8 antenna)
{
struct rsi_ant_sel_frame *ant_sel_frame;
struct sk_buff *skb;
skb = dev_alloc_skb(FRAME_DESC_SZ);
if (!skb) {
rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
__func__);
return -ENOMEM;
}
memset(skb->data, 0, FRAME_DESC_SZ);
ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
0, RSI_WIFI_MGMT_Q);
skb_put(skb, FRAME_DESC_SZ);
return rsi_send_internal_mgmt_frame(common, skb);
}
static int rsi_send_beacon(struct rsi_common *common)
{
struct sk_buff *skb = NULL;
u8 dword_align_bytes = 0;
skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
if (!skb)
return -ENOMEM;
memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
dword_align_bytes = ((unsigned long)skb->data & 0x3f);
if (dword_align_bytes)
skb_pull(skb, (64 - dword_align_bytes));
if (rsi_prepare_beacon(common, skb)) {
rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
return -EINVAL;
}
skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
rsi_set_event(&common->tx_thread.event);
rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
return 0;
}
/**
* rsi_handle_ta_confirm_type() - This function handles the confirm frames.
* @common: Pointer to the driver private structure.
* @msg: Pointer to received packet.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_handle_ta_confirm_type(struct rsi_common *common,
u8 *msg)
{
struct rsi_hw *adapter = common->priv;
u8 sub_type = (msg[15] & 0xff);
u16 msg_len = ((u16 *)msg)[0] & 0xfff;
u8 offset;
switch (sub_type) {
case BOOTUP_PARAMS_REQUEST:
rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
__func__);
if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
adapter->eeprom.length = (IEEE80211_ADDR_LEN +
WLAN_MAC_MAGIC_WORD_LEN +
WLAN_HOST_MODE_LEN);
adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
if (rsi_eeprom_read(common)) {
common->fsm_state = FSM_CARD_NOT_READY;
goto out;
}
common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
} else {
rsi_dbg(INFO_ZONE,
"%s: Received bootup params cfm in %d state\n",
__func__, common->fsm_state);
return 0;
}
break;
case EEPROM_READ:
rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
if (msg_len <= 0) {
rsi_dbg(FSM_ZONE,
"%s: [EEPROM_READ] Invalid len %d\n",
__func__, msg_len);
goto out;
}
if (msg[16] != MAGIC_WORD) {
rsi_dbg(FSM_ZONE,
"%s: [EEPROM_READ] Invalid token\n", __func__);
common->fsm_state = FSM_CARD_NOT_READY;
goto out;
}
if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
WLAN_MAC_MAGIC_WORD_LEN);
memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
adapter->eeprom.length =
((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
if (rsi_eeprom_read(common)) {
rsi_dbg(ERR_ZONE,
"%s: Failed reading RF band\n",
__func__);
common->fsm_state = FSM_CARD_NOT_READY;
goto out;
}
common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
} else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
if ((msg[17] & 0x3) == 0x3) {
rsi_dbg(INIT_ZONE, "Dual band supported\n");
common->band = NL80211_BAND_5GHZ;
common->num_supp_bands = 2;
} else if ((msg[17] & 0x3) == 0x1) {
rsi_dbg(INIT_ZONE,
"Only 2.4Ghz band supported\n");
common->band = NL80211_BAND_2GHZ;
common->num_supp_bands = 1;
}
if (rsi_send_reset_mac(common))
goto out;
common->fsm_state = FSM_RESET_MAC_SENT;
} else {
rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
__func__);
return 0;
}
break;
case RESET_MAC_REQ:
if (common->fsm_state == FSM_RESET_MAC_SENT) {
rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
__func__);
if (rsi_load_radio_caps(common))
goto out;
else
common->fsm_state = FSM_RADIO_CAPS_SENT;
} else {
rsi_dbg(ERR_ZONE,
"%s: Received reset mac cfm in %d state\n",
__func__, common->fsm_state);
return 0;
}
break;
case RADIO_CAPABILITIES:
if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
common->rf_reset = 1;
if (rsi_program_bb_rf(common)) {
goto out;
} else {
common->fsm_state = FSM_BB_RF_PROG_SENT;
rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
__func__);
}
} else {
rsi_dbg(INFO_ZONE,
"%s: Received radio caps cfm in %d state\n",
__func__, common->fsm_state);
return 0;
}
break;
case BB_PROG_VALUES_REQUEST:
case RF_PROG_VALUES_REQUEST:
case BBP_PROG_IN_TA:
rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
common->bb_rf_prog_count--;
if (!common->bb_rf_prog_count) {
common->fsm_state = FSM_MAC_INIT_DONE;
return rsi_mac80211_attach(common);
}
} else {
rsi_dbg(INFO_ZONE,
"%s: Received bbb_rf cfm in %d state\n",
__func__, common->fsm_state);
return 0;
}
break;
case WAKEUP_SLEEP_REQUEST:
rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
return rsi_handle_ps_confirm(adapter, msg);
default:
rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
__func__);
break;
}
return 0;
out:
rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
__func__);
return -EINVAL;
}
static int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
{
switch (common->fsm_state) {
case FSM_CARD_NOT_READY:
rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
rsi_set_default_parameters(common);
if (rsi_send_common_dev_params(common) < 0)
return -EINVAL;
common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
break;
case FSM_COMMON_DEV_PARAMS_SENT:
rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
/* Get usb buffer status register address */
common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
common->priv->usb_buffer_status_reg);
if (rsi_load_bootup_params(common)) {
common->fsm_state = FSM_CARD_NOT_READY;
return -EINVAL;
}
common->fsm_state = FSM_BOOT_PARAMS_SENT;
break;
default:
rsi_dbg(ERR_ZONE,
"%s: card ready indication in invalid state %d.\n",
__func__, common->fsm_state);
return -EINVAL;
}
return 0;
}
/**
* rsi_mgmt_pkt_recv() - This function processes the management packets
* recieved from the hardware.
* @common: Pointer to the driver private structure.
* @msg: Pointer to the received packet.
*
* Return: 0 on success, -1 on failure.
*/
int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
{
s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
u16 msg_type = (msg[2]);
rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
__func__, msg_len, msg_type);
switch (msg_type) {
case TA_CONFIRM_TYPE:
return rsi_handle_ta_confirm_type(common, msg);
case CARD_READY_IND:
rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
__func__);
return rsi_handle_card_ready(common, msg);
case TX_STATUS_IND:
if (msg[15] == PROBEREQ_CONFIRM) {
common->mgmt_q_block = false;
rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
__func__);
}
break;
case BEACON_EVENT_IND:
rsi_dbg(INFO_ZONE, "Beacon event\n");
if (common->fsm_state != FSM_MAC_INIT_DONE)
return -1;
if (common->iface_down)
return -1;
if (!common->beacon_enabled)
return -1;
rsi_send_beacon(common);
break;
case RX_DOT11_MGMT:
return rsi_mgmt_pkt_to_core(common, msg, msg_len);
default:
rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
}
return 0;
}