linux/arch/x86/mm/mem_encrypt_identity.c

568 lines
16 KiB
C

/*
* AMD Memory Encryption Support
*
* Copyright (C) 2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define DISABLE_BRANCH_PROFILING
/*
* Since we're dealing with identity mappings, physical and virtual
* addresses are the same, so override these defines which are ultimately
* used by the headers in misc.h.
*/
#define __pa(x) ((unsigned long)(x))
#define __va(x) ((void *)((unsigned long)(x)))
/*
* Special hack: we have to be careful, because no indirections are
* allowed here, and paravirt_ops is a kind of one. As it will only run in
* baremetal anyway, we just keep it from happening. (This list needs to
* be extended when new paravirt and debugging variants are added.)
*/
#undef CONFIG_PARAVIRT
#undef CONFIG_PARAVIRT_SPINLOCKS
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mem_encrypt.h>
#include <asm/setup.h>
#include <asm/sections.h>
#include <asm/cmdline.h>
#include "mm_internal.h"
#define PGD_FLAGS _KERNPG_TABLE_NOENC
#define P4D_FLAGS _KERNPG_TABLE_NOENC
#define PUD_FLAGS _KERNPG_TABLE_NOENC
#define PMD_FLAGS _KERNPG_TABLE_NOENC
#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
(_PAGE_PAT | _PAGE_PWT))
#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
#define PTE_FLAGS_DEC PTE_FLAGS
#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
(_PAGE_PAT | _PAGE_PWT))
#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
struct sme_populate_pgd_data {
void *pgtable_area;
pgd_t *pgd;
pmdval_t pmd_flags;
pteval_t pte_flags;
unsigned long paddr;
unsigned long vaddr;
unsigned long vaddr_end;
};
static char sme_cmdline_arg[] __initdata = "mem_encrypt";
static char sme_cmdline_on[] __initdata = "on";
static char sme_cmdline_off[] __initdata = "off";
static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
{
unsigned long pgd_start, pgd_end, pgd_size;
pgd_t *pgd_p;
pgd_start = ppd->vaddr & PGDIR_MASK;
pgd_end = ppd->vaddr_end & PGDIR_MASK;
pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
memset(pgd_p, 0, pgd_size);
}
static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pgd = ppd->pgd + pgd_index(ppd->vaddr);
if (pgd_none(*pgd)) {
p4d = ppd->pgtable_area;
memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
}
p4d = p4d_offset(pgd, ppd->vaddr);
if (p4d_none(*p4d)) {
pud = ppd->pgtable_area;
memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
}
pud = pud_offset(p4d, ppd->vaddr);
if (pud_none(*pud)) {
pmd = ppd->pgtable_area;
memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
}
if (pud_large(*pud))
return NULL;
return pud;
}
static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
{
pud_t *pud;
pmd_t *pmd;
pud = sme_prepare_pgd(ppd);
if (!pud)
return;
pmd = pmd_offset(pud, ppd->vaddr);
if (pmd_large(*pmd))
return;
set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
}
static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
{
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pud = sme_prepare_pgd(ppd);
if (!pud)
return;
pmd = pmd_offset(pud, ppd->vaddr);
if (pmd_none(*pmd)) {
pte = ppd->pgtable_area;
memset(pte, 0, sizeof(pte) * PTRS_PER_PTE);
ppd->pgtable_area += sizeof(pte) * PTRS_PER_PTE;
set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
}
if (pmd_large(*pmd))
return;
pte = pte_offset_map(pmd, ppd->vaddr);
if (pte_none(*pte))
set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
}
static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
{
while (ppd->vaddr < ppd->vaddr_end) {
sme_populate_pgd_large(ppd);
ppd->vaddr += PMD_PAGE_SIZE;
ppd->paddr += PMD_PAGE_SIZE;
}
}
static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
{
while (ppd->vaddr < ppd->vaddr_end) {
sme_populate_pgd(ppd);
ppd->vaddr += PAGE_SIZE;
ppd->paddr += PAGE_SIZE;
}
}
static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
pmdval_t pmd_flags, pteval_t pte_flags)
{
unsigned long vaddr_end;
ppd->pmd_flags = pmd_flags;
ppd->pte_flags = pte_flags;
/* Save original end value since we modify the struct value */
vaddr_end = ppd->vaddr_end;
/* If start is not 2MB aligned, create PTE entries */
ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
__sme_map_range_pte(ppd);
/* Create PMD entries */
ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
__sme_map_range_pmd(ppd);
/* If end is not 2MB aligned, create PTE entries */
ppd->vaddr_end = vaddr_end;
__sme_map_range_pte(ppd);
}
static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
{
__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
}
static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
{
__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
}
static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
{
__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
}
static unsigned long __init sme_pgtable_calc(unsigned long len)
{
unsigned long entries = 0, tables = 0;
/*
* Perform a relatively simplistic calculation of the pagetable
* entries that are needed. Those mappings will be covered mostly
* by 2MB PMD entries so we can conservatively calculate the required
* number of P4D, PUD and PMD structures needed to perform the
* mappings. For mappings that are not 2MB aligned, PTE mappings
* would be needed for the start and end portion of the address range
* that fall outside of the 2MB alignment. This results in, at most,
* two extra pages to hold PTE entries for each range that is mapped.
* Incrementing the count for each covers the case where the addresses
* cross entries.
*/
/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
if (PTRS_PER_P4D > 1)
entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
/*
* Now calculate the added pagetable structures needed to populate
* the new pagetables.
*/
if (PTRS_PER_P4D > 1)
tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
return entries + tables;
}
void __init sme_encrypt_kernel(struct boot_params *bp)
{
unsigned long workarea_start, workarea_end, workarea_len;
unsigned long execute_start, execute_end, execute_len;
unsigned long kernel_start, kernel_end, kernel_len;
unsigned long initrd_start, initrd_end, initrd_len;
struct sme_populate_pgd_data ppd;
unsigned long pgtable_area_len;
unsigned long decrypted_base;
if (!sme_active())
return;
/*
* Prepare for encrypting the kernel and initrd by building new
* pagetables with the necessary attributes needed to encrypt the
* kernel in place.
*
* One range of virtual addresses will map the memory occupied
* by the kernel and initrd as encrypted.
*
* Another range of virtual addresses will map the memory occupied
* by the kernel and initrd as decrypted and write-protected.
*
* The use of write-protect attribute will prevent any of the
* memory from being cached.
*/
/* Physical addresses gives us the identity mapped virtual addresses */
kernel_start = __pa_symbol(_text);
kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
kernel_len = kernel_end - kernel_start;
initrd_start = 0;
initrd_end = 0;
initrd_len = 0;
#ifdef CONFIG_BLK_DEV_INITRD
initrd_len = (unsigned long)bp->hdr.ramdisk_size |
((unsigned long)bp->ext_ramdisk_size << 32);
if (initrd_len) {
initrd_start = (unsigned long)bp->hdr.ramdisk_image |
((unsigned long)bp->ext_ramdisk_image << 32);
initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
initrd_len = initrd_end - initrd_start;
}
#endif
/* Set the encryption workarea to be immediately after the kernel */
workarea_start = kernel_end;
/*
* Calculate required number of workarea bytes needed:
* executable encryption area size:
* stack page (PAGE_SIZE)
* encryption routine page (PAGE_SIZE)
* intermediate copy buffer (PMD_PAGE_SIZE)
* pagetable structures for the encryption of the kernel
* pagetable structures for workarea (in case not currently mapped)
*/
execute_start = workarea_start;
execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
execute_len = execute_end - execute_start;
/*
* One PGD for both encrypted and decrypted mappings and a set of
* PUDs and PMDs for each of the encrypted and decrypted mappings.
*/
pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
if (initrd_len)
pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
/* PUDs and PMDs needed in the current pagetables for the workarea */
pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
/*
* The total workarea includes the executable encryption area and
* the pagetable area. The start of the workarea is already 2MB
* aligned, align the end of the workarea on a 2MB boundary so that
* we don't try to create/allocate PTE entries from the workarea
* before it is mapped.
*/
workarea_len = execute_len + pgtable_area_len;
workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
/*
* Set the address to the start of where newly created pagetable
* structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
* structures are created when the workarea is added to the current
* pagetables and when the new encrypted and decrypted kernel
* mappings are populated.
*/
ppd.pgtable_area = (void *)execute_end;
/*
* Make sure the current pagetable structure has entries for
* addressing the workarea.
*/
ppd.pgd = (pgd_t *)native_read_cr3_pa();
ppd.paddr = workarea_start;
ppd.vaddr = workarea_start;
ppd.vaddr_end = workarea_end;
sme_map_range_decrypted(&ppd);
/* Flush the TLB - no globals so cr3 is enough */
native_write_cr3(__native_read_cr3());
/*
* A new pagetable structure is being built to allow for the kernel
* and initrd to be encrypted. It starts with an empty PGD that will
* then be populated with new PUDs and PMDs as the encrypted and
* decrypted kernel mappings are created.
*/
ppd.pgd = ppd.pgtable_area;
memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
/*
* A different PGD index/entry must be used to get different
* pagetable entries for the decrypted mapping. Choose the next
* PGD index and convert it to a virtual address to be used as
* the base of the mapping.
*/
decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
if (initrd_len) {
unsigned long check_base;
check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
decrypted_base = max(decrypted_base, check_base);
}
decrypted_base <<= PGDIR_SHIFT;
/* Add encrypted kernel (identity) mappings */
ppd.paddr = kernel_start;
ppd.vaddr = kernel_start;
ppd.vaddr_end = kernel_end;
sme_map_range_encrypted(&ppd);
/* Add decrypted, write-protected kernel (non-identity) mappings */
ppd.paddr = kernel_start;
ppd.vaddr = kernel_start + decrypted_base;
ppd.vaddr_end = kernel_end + decrypted_base;
sme_map_range_decrypted_wp(&ppd);
if (initrd_len) {
/* Add encrypted initrd (identity) mappings */
ppd.paddr = initrd_start;
ppd.vaddr = initrd_start;
ppd.vaddr_end = initrd_end;
sme_map_range_encrypted(&ppd);
/*
* Add decrypted, write-protected initrd (non-identity) mappings
*/
ppd.paddr = initrd_start;
ppd.vaddr = initrd_start + decrypted_base;
ppd.vaddr_end = initrd_end + decrypted_base;
sme_map_range_decrypted_wp(&ppd);
}
/* Add decrypted workarea mappings to both kernel mappings */
ppd.paddr = workarea_start;
ppd.vaddr = workarea_start;
ppd.vaddr_end = workarea_end;
sme_map_range_decrypted(&ppd);
ppd.paddr = workarea_start;
ppd.vaddr = workarea_start + decrypted_base;
ppd.vaddr_end = workarea_end + decrypted_base;
sme_map_range_decrypted(&ppd);
/* Perform the encryption */
sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
kernel_len, workarea_start, (unsigned long)ppd.pgd);
if (initrd_len)
sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
initrd_len, workarea_start,
(unsigned long)ppd.pgd);
/*
* At this point we are running encrypted. Remove the mappings for
* the decrypted areas - all that is needed for this is to remove
* the PGD entry/entries.
*/
ppd.vaddr = kernel_start + decrypted_base;
ppd.vaddr_end = kernel_end + decrypted_base;
sme_clear_pgd(&ppd);
if (initrd_len) {
ppd.vaddr = initrd_start + decrypted_base;
ppd.vaddr_end = initrd_end + decrypted_base;
sme_clear_pgd(&ppd);
}
ppd.vaddr = workarea_start + decrypted_base;
ppd.vaddr_end = workarea_end + decrypted_base;
sme_clear_pgd(&ppd);
/* Flush the TLB - no globals so cr3 is enough */
native_write_cr3(__native_read_cr3());
}
void __init sme_enable(struct boot_params *bp)
{
const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
unsigned int eax, ebx, ecx, edx;
unsigned long feature_mask;
bool active_by_default;
unsigned long me_mask;
char buffer[16];
u64 msr;
/* Check for the SME/SEV support leaf */
eax = 0x80000000;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
if (eax < 0x8000001f)
return;
#define AMD_SME_BIT BIT(0)
#define AMD_SEV_BIT BIT(1)
/*
* Set the feature mask (SME or SEV) based on whether we are
* running under a hypervisor.
*/
eax = 1;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
/*
* Check for the SME/SEV feature:
* CPUID Fn8000_001F[EAX]
* - Bit 0 - Secure Memory Encryption support
* - Bit 1 - Secure Encrypted Virtualization support
* CPUID Fn8000_001F[EBX]
* - Bits 5:0 - Pagetable bit position used to indicate encryption
*/
eax = 0x8000001f;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
if (!(eax & feature_mask))
return;
me_mask = 1UL << (ebx & 0x3f);
/* Check if memory encryption is enabled */
if (feature_mask == AMD_SME_BIT) {
/* For SME, check the SYSCFG MSR */
msr = __rdmsr(MSR_K8_SYSCFG);
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
return;
} else {
/* For SEV, check the SEV MSR */
msr = __rdmsr(MSR_AMD64_SEV);
if (!(msr & MSR_AMD64_SEV_ENABLED))
return;
/* SEV state cannot be controlled by a command line option */
sme_me_mask = me_mask;
sev_enabled = true;
physical_mask &= ~sme_me_mask;
return;
}
/*
* Fixups have not been applied to phys_base yet and we're running
* identity mapped, so we must obtain the address to the SME command
* line argument data using rip-relative addressing.
*/
asm ("lea sme_cmdline_arg(%%rip), %0"
: "=r" (cmdline_arg)
: "p" (sme_cmdline_arg));
asm ("lea sme_cmdline_on(%%rip), %0"
: "=r" (cmdline_on)
: "p" (sme_cmdline_on));
asm ("lea sme_cmdline_off(%%rip), %0"
: "=r" (cmdline_off)
: "p" (sme_cmdline_off));
if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
active_by_default = true;
else
active_by_default = false;
cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
((u64)bp->ext_cmd_line_ptr << 32));
cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
sme_me_mask = me_mask;
else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
sme_me_mask = 0;
else
sme_me_mask = active_by_default ? me_mask : 0;
physical_mask &= ~sme_me_mask;
}