linux/drivers/s390/crypto/pkey_api.c

1725 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* pkey device driver
*
* Copyright IBM Corp. 2017
* Author(s): Harald Freudenberger
*/
#define KMSG_COMPONENT "pkey"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kallsyms.h>
#include <linux/debugfs.h>
#include <linux/random.h>
#include <linux/cpufeature.h>
#include <asm/zcrypt.h>
#include <asm/cpacf.h>
#include <asm/pkey.h>
#include <crypto/aes.h>
#include "zcrypt_api.h"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("s390 protected key interface");
/* Size of parameter block used for all cca requests/replies */
#define PARMBSIZE 512
/* Size of vardata block used for some of the cca requests/replies */
#define VARDATASIZE 4096
/* mask of available pckmo subfunctions, fetched once at module init */
static cpacf_mask_t pckmo_functions;
/*
* debug feature data and functions
*/
static debug_info_t *debug_info;
#define DEBUG_DBG(...) debug_sprintf_event(debug_info, 6, ##__VA_ARGS__)
#define DEBUG_INFO(...) debug_sprintf_event(debug_info, 5, ##__VA_ARGS__)
#define DEBUG_WARN(...) debug_sprintf_event(debug_info, 4, ##__VA_ARGS__)
#define DEBUG_ERR(...) debug_sprintf_event(debug_info, 3, ##__VA_ARGS__)
static void __init pkey_debug_init(void)
{
/* 5 arguments per dbf entry (including the format string ptr) */
debug_info = debug_register("pkey", 1, 1, 5 * sizeof(long));
debug_register_view(debug_info, &debug_sprintf_view);
debug_set_level(debug_info, 3);
}
static void __exit pkey_debug_exit(void)
{
debug_unregister(debug_info);
}
/* Key token types */
#define TOKTYPE_NON_CCA 0x00 /* Non-CCA key token */
#define TOKTYPE_CCA_INTERNAL 0x01 /* CCA internal key token */
/* For TOKTYPE_NON_CCA: */
#define TOKVER_PROTECTED_KEY 0x01 /* Protected key token */
/* For TOKTYPE_CCA_INTERNAL: */
#define TOKVER_CCA_AES 0x04 /* CCA AES key token */
/* header part of a key token */
struct keytoken_header {
u8 type; /* one of the TOKTYPE values */
u8 res0[3];
u8 version; /* one of the TOKVER values */
u8 res1[3];
} __packed;
/* inside view of a secure key token (only type 0x01 version 0x04) */
struct secaeskeytoken {
u8 type; /* 0x01 for internal key token */
u8 res0[3];
u8 version; /* should be 0x04 */
u8 res1[1];
u8 flag; /* key flags */
u8 res2[1];
u64 mkvp; /* master key verification pattern */
u8 key[32]; /* key value (encrypted) */
u8 cv[8]; /* control vector */
u16 bitsize; /* key bit size */
u16 keysize; /* key byte size */
u8 tvv[4]; /* token validation value */
} __packed;
/* inside view of a protected key token (only type 0x00 version 0x01) */
struct protaeskeytoken {
u8 type; /* 0x00 for PAES specific key tokens */
u8 res0[3];
u8 version; /* should be 0x01 for protected AES key token */
u8 res1[3];
u32 keytype; /* key type, one of the PKEY_KEYTYPE values */
u32 len; /* bytes actually stored in protkey[] */
u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */
} __packed;
/*
* Simple check if the token is a valid CCA secure AES key
* token. If keybitsize is given, the bitsize of the key is
* also checked. Returns 0 on success or errno value on failure.
*/
static int check_secaeskeytoken(const u8 *token, int keybitsize)
{
struct secaeskeytoken *t = (struct secaeskeytoken *) token;
if (t->type != TOKTYPE_CCA_INTERNAL) {
DEBUG_ERR(
"%s secure token check failed, type mismatch 0x%02x != 0x%02x\n",
__func__, (int) t->type, TOKTYPE_CCA_INTERNAL);
return -EINVAL;
}
if (t->version != TOKVER_CCA_AES) {
DEBUG_ERR(
"%s secure token check failed, version mismatch 0x%02x != 0x%02x\n",
__func__, (int) t->version, TOKVER_CCA_AES);
return -EINVAL;
}
if (keybitsize > 0 && t->bitsize != keybitsize) {
DEBUG_ERR(
"%s secure token check failed, bitsize mismatch %d != %d\n",
__func__, (int) t->bitsize, keybitsize);
return -EINVAL;
}
return 0;
}
/*
* Allocate consecutive memory for request CPRB, request param
* block, reply CPRB and reply param block and fill in values
* for the common fields. Returns 0 on success or errno value
* on failure.
*/
static int alloc_and_prep_cprbmem(size_t paramblen,
u8 **pcprbmem,
struct CPRBX **preqCPRB,
struct CPRBX **prepCPRB)
{
u8 *cprbmem;
size_t cprbplusparamblen = sizeof(struct CPRBX) + paramblen;
struct CPRBX *preqcblk, *prepcblk;
/*
* allocate consecutive memory for request CPRB, request param
* block, reply CPRB and reply param block
*/
cprbmem = kcalloc(2, cprbplusparamblen, GFP_KERNEL);
if (!cprbmem)
return -ENOMEM;
preqcblk = (struct CPRBX *) cprbmem;
prepcblk = (struct CPRBX *) (cprbmem + cprbplusparamblen);
/* fill request cprb struct */
preqcblk->cprb_len = sizeof(struct CPRBX);
preqcblk->cprb_ver_id = 0x02;
memcpy(preqcblk->func_id, "T2", 2);
preqcblk->rpl_msgbl = cprbplusparamblen;
if (paramblen) {
preqcblk->req_parmb =
((u8 *) preqcblk) + sizeof(struct CPRBX);
preqcblk->rpl_parmb =
((u8 *) prepcblk) + sizeof(struct CPRBX);
}
*pcprbmem = cprbmem;
*preqCPRB = preqcblk;
*prepCPRB = prepcblk;
return 0;
}
/*
* Free the cprb memory allocated with the function above.
* If the scrub value is not zero, the memory is filled
* with zeros before freeing (useful if there was some
* clear key material in there).
*/
static void free_cprbmem(void *mem, size_t paramblen, int scrub)
{
if (scrub)
memzero_explicit(mem, 2 * (sizeof(struct CPRBX) + paramblen));
kfree(mem);
}
/*
* Helper function to prepare the xcrb struct
*/
static inline void prep_xcrb(struct ica_xcRB *pxcrb,
u16 cardnr,
struct CPRBX *preqcblk,
struct CPRBX *prepcblk)
{
memset(pxcrb, 0, sizeof(*pxcrb));
pxcrb->agent_ID = 0x4341; /* 'CA' */
pxcrb->user_defined = (cardnr == 0xFFFF ? AUTOSELECT : cardnr);
pxcrb->request_control_blk_length =
preqcblk->cprb_len + preqcblk->req_parml;
pxcrb->request_control_blk_addr = (void __user *) preqcblk;
pxcrb->reply_control_blk_length = preqcblk->rpl_msgbl;
pxcrb->reply_control_blk_addr = (void __user *) prepcblk;
}
/*
* Helper function which calls zcrypt_send_cprb with
* memory management segment adjusted to kernel space
* so that the copy_from_user called within this
* function do in fact copy from kernel space.
*/
static inline int _zcrypt_send_cprb(struct ica_xcRB *xcrb)
{
int rc;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
rc = zcrypt_send_cprb(xcrb);
set_fs(old_fs);
return rc;
}
/*
* Generate (random) AES secure key.
*/
int pkey_genseckey(u16 cardnr, u16 domain,
u32 keytype, struct pkey_seckey *seckey)
{
int i, rc, keysize;
int seckeysize;
u8 *mem;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct kgreqparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct lv1 {
u16 len;
char key_form[8];
char key_length[8];
char key_type1[8];
char key_type2[8];
} lv1;
struct lv2 {
u16 len;
struct keyid {
u16 len;
u16 attr;
u8 data[SECKEYBLOBSIZE];
} keyid[6];
} lv2;
} *preqparm;
struct kgrepparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct lv3 {
u16 len;
u16 keyblocklen;
struct {
u16 toklen;
u16 tokattr;
u8 tok[0];
/* ... some more data ... */
} keyblock;
} lv3;
} *prepparm;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
/* fill request cprb param block with KG request */
preqparm = (struct kgreqparm *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "KG", 2);
preqparm->rule_array_len = sizeof(preqparm->rule_array_len);
preqparm->lv1.len = sizeof(struct lv1);
memcpy(preqparm->lv1.key_form, "OP ", 8);
switch (keytype) {
case PKEY_KEYTYPE_AES_128:
keysize = 16;
memcpy(preqparm->lv1.key_length, "KEYLN16 ", 8);
break;
case PKEY_KEYTYPE_AES_192:
keysize = 24;
memcpy(preqparm->lv1.key_length, "KEYLN24 ", 8);
break;
case PKEY_KEYTYPE_AES_256:
keysize = 32;
memcpy(preqparm->lv1.key_length, "KEYLN32 ", 8);
break;
default:
DEBUG_ERR(
"%s unknown/unsupported keytype %d\n",
__func__, keytype);
rc = -EINVAL;
goto out;
}
memcpy(preqparm->lv1.key_type1, "AESDATA ", 8);
preqparm->lv2.len = sizeof(struct lv2);
for (i = 0; i < 6; i++) {
preqparm->lv2.keyid[i].len = sizeof(struct keyid);
preqparm->lv2.keyid[i].attr = (i == 2 ? 0x30 : 0x10);
}
preqcblk->req_parml = sizeof(struct kgreqparm);
/* fill xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = _zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR(
"%s secure key generate failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
rc = -EIO;
goto out;
}
/* process response cprb param block */
prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepparm = (struct kgrepparm *) prepcblk->rpl_parmb;
/* check length of the returned secure key token */
seckeysize = prepparm->lv3.keyblock.toklen
- sizeof(prepparm->lv3.keyblock.toklen)
- sizeof(prepparm->lv3.keyblock.tokattr);
if (seckeysize != SECKEYBLOBSIZE) {
DEBUG_ERR(
"%s secure token size mismatch %d != %d bytes\n",
__func__, seckeysize, SECKEYBLOBSIZE);
rc = -EIO;
goto out;
}
/* check secure key token */
rc = check_secaeskeytoken(prepparm->lv3.keyblock.tok, 8*keysize);
if (rc) {
rc = -EIO;
goto out;
}
/* copy the generated secure key token */
memcpy(seckey->seckey, prepparm->lv3.keyblock.tok, SECKEYBLOBSIZE);
out:
free_cprbmem(mem, PARMBSIZE, 0);
return rc;
}
EXPORT_SYMBOL(pkey_genseckey);
/*
* Generate an AES secure key with given key value.
*/
int pkey_clr2seckey(u16 cardnr, u16 domain, u32 keytype,
const struct pkey_clrkey *clrkey,
struct pkey_seckey *seckey)
{
int rc, keysize, seckeysize;
u8 *mem;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct cmreqparm {
u8 subfunc_code[2];
u16 rule_array_len;
char rule_array[8];
struct lv1 {
u16 len;
u8 clrkey[0];
} lv1;
struct lv2 {
u16 len;
struct keyid {
u16 len;
u16 attr;
u8 data[SECKEYBLOBSIZE];
} keyid;
} lv2;
} *preqparm;
struct lv2 *plv2;
struct cmrepparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct lv3 {
u16 len;
u16 keyblocklen;
struct {
u16 toklen;
u16 tokattr;
u8 tok[0];
/* ... some more data ... */
} keyblock;
} lv3;
} *prepparm;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
/* fill request cprb param block with CM request */
preqparm = (struct cmreqparm *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "CM", 2);
memcpy(preqparm->rule_array, "AES ", 8);
preqparm->rule_array_len =
sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array);
switch (keytype) {
case PKEY_KEYTYPE_AES_128:
keysize = 16;
break;
case PKEY_KEYTYPE_AES_192:
keysize = 24;
break;
case PKEY_KEYTYPE_AES_256:
keysize = 32;
break;
default:
DEBUG_ERR(
"%s unknown/unsupported keytype %d\n",
__func__, keytype);
rc = -EINVAL;
goto out;
}
preqparm->lv1.len = sizeof(struct lv1) + keysize;
memcpy(preqparm->lv1.clrkey, clrkey->clrkey, keysize);
plv2 = (struct lv2 *) (((u8 *) &preqparm->lv2) + keysize);
plv2->len = sizeof(struct lv2);
plv2->keyid.len = sizeof(struct keyid);
plv2->keyid.attr = 0x30;
preqcblk->req_parml = sizeof(struct cmreqparm) + keysize;
/* fill xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = _zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR(
"%s clear key import failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
rc = -EIO;
goto out;
}
/* process response cprb param block */
prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepparm = (struct cmrepparm *) prepcblk->rpl_parmb;
/* check length of the returned secure key token */
seckeysize = prepparm->lv3.keyblock.toklen
- sizeof(prepparm->lv3.keyblock.toklen)
- sizeof(prepparm->lv3.keyblock.tokattr);
if (seckeysize != SECKEYBLOBSIZE) {
DEBUG_ERR(
"%s secure token size mismatch %d != %d bytes\n",
__func__, seckeysize, SECKEYBLOBSIZE);
rc = -EIO;
goto out;
}
/* check secure key token */
rc = check_secaeskeytoken(prepparm->lv3.keyblock.tok, 8*keysize);
if (rc) {
rc = -EIO;
goto out;
}
/* copy the generated secure key token */
memcpy(seckey->seckey, prepparm->lv3.keyblock.tok, SECKEYBLOBSIZE);
out:
free_cprbmem(mem, PARMBSIZE, 1);
return rc;
}
EXPORT_SYMBOL(pkey_clr2seckey);
/*
* Derive a proteced key from the secure key blob.
*/
int pkey_sec2protkey(u16 cardnr, u16 domain,
const struct pkey_seckey *seckey,
struct pkey_protkey *protkey)
{
int rc;
u8 *mem;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct uskreqparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct lv1 {
u16 len;
u16 attr_len;
u16 attr_flags;
} lv1;
struct lv2 {
u16 len;
u16 attr_len;
u16 attr_flags;
u8 token[0]; /* cca secure key token */
} lv2 __packed;
} *preqparm;
struct uskrepparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct lv3 {
u16 len;
u16 attr_len;
u16 attr_flags;
struct cpacfkeyblock {
u8 version; /* version of this struct */
u8 flags[2];
u8 algo;
u8 form;
u8 pad1[3];
u16 keylen;
u8 key[64]; /* the key (keylen bytes) */
u16 keyattrlen;
u8 keyattr[32];
u8 pad2[1];
u8 vptype;
u8 vp[32]; /* verification pattern */
} keyblock;
} lv3 __packed;
} *prepparm;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
/* fill request cprb param block with USK request */
preqparm = (struct uskreqparm *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "US", 2);
preqparm->rule_array_len = sizeof(preqparm->rule_array_len);
preqparm->lv1.len = sizeof(struct lv1);
preqparm->lv1.attr_len = sizeof(struct lv1) - sizeof(preqparm->lv1.len);
preqparm->lv1.attr_flags = 0x0001;
preqparm->lv2.len = sizeof(struct lv2) + SECKEYBLOBSIZE;
preqparm->lv2.attr_len = sizeof(struct lv2)
- sizeof(preqparm->lv2.len) + SECKEYBLOBSIZE;
preqparm->lv2.attr_flags = 0x0000;
memcpy(preqparm->lv2.token, seckey->seckey, SECKEYBLOBSIZE);
preqcblk->req_parml = sizeof(struct uskreqparm) + SECKEYBLOBSIZE;
/* fill xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = _zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR(
"%s unwrap secure key failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
rc = -EIO;
goto out;
}
if (prepcblk->ccp_rscode != 0) {
DEBUG_WARN(
"%s unwrap secure key warning, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
}
/* process response cprb param block */
prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepparm = (struct uskrepparm *) prepcblk->rpl_parmb;
/* check the returned keyblock */
if (prepparm->lv3.keyblock.version != 0x01) {
DEBUG_ERR(
"%s reply param keyblock version mismatch 0x%02x != 0x01\n",
__func__, (int) prepparm->lv3.keyblock.version);
rc = -EIO;
goto out;
}
/* copy the tanslated protected key */
switch (prepparm->lv3.keyblock.keylen) {
case 16+32:
protkey->type = PKEY_KEYTYPE_AES_128;
break;
case 24+32:
protkey->type = PKEY_KEYTYPE_AES_192;
break;
case 32+32:
protkey->type = PKEY_KEYTYPE_AES_256;
break;
default:
DEBUG_ERR("%s unknown/unsupported keytype %d\n",
__func__, prepparm->lv3.keyblock.keylen);
rc = -EIO;
goto out;
}
protkey->len = prepparm->lv3.keyblock.keylen;
memcpy(protkey->protkey, prepparm->lv3.keyblock.key, protkey->len);
out:
free_cprbmem(mem, PARMBSIZE, 0);
return rc;
}
EXPORT_SYMBOL(pkey_sec2protkey);
/*
* Create a protected key from a clear key value.
*/
int pkey_clr2protkey(u32 keytype,
const struct pkey_clrkey *clrkey,
struct pkey_protkey *protkey)
{
long fc;
int keysize;
u8 paramblock[64];
switch (keytype) {
case PKEY_KEYTYPE_AES_128:
keysize = 16;
fc = CPACF_PCKMO_ENC_AES_128_KEY;
break;
case PKEY_KEYTYPE_AES_192:
keysize = 24;
fc = CPACF_PCKMO_ENC_AES_192_KEY;
break;
case PKEY_KEYTYPE_AES_256:
keysize = 32;
fc = CPACF_PCKMO_ENC_AES_256_KEY;
break;
default:
DEBUG_ERR("%s unknown/unsupported keytype %d\n",
__func__, keytype);
return -EINVAL;
}
/*
* Check if the needed pckmo subfunction is available.
* These subfunctions can be enabled/disabled by customers
* in the LPAR profile or may even change on the fly.
*/
if (!cpacf_test_func(&pckmo_functions, fc)) {
DEBUG_ERR("%s pckmo functions not available\n", __func__);
return -ENODEV;
}
/* prepare param block */
memset(paramblock, 0, sizeof(paramblock));
memcpy(paramblock, clrkey->clrkey, keysize);
/* call the pckmo instruction */
cpacf_pckmo(fc, paramblock);
/* copy created protected key */
protkey->type = keytype;
protkey->len = keysize + 32;
memcpy(protkey->protkey, paramblock, keysize + 32);
return 0;
}
EXPORT_SYMBOL(pkey_clr2protkey);
/*
* query cryptographic facility from adapter
*/
static int query_crypto_facility(u16 cardnr, u16 domain,
const char *keyword,
u8 *rarray, size_t *rarraylen,
u8 *varray, size_t *varraylen)
{
int rc;
u16 len;
u8 *mem, *ptr;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct fqreqparm {
u8 subfunc_code[2];
u16 rule_array_len;
char rule_array[8];
struct lv1 {
u16 len;
u8 data[VARDATASIZE];
} lv1;
u16 dummylen;
} *preqparm;
size_t parmbsize = sizeof(struct fqreqparm);
struct fqrepparm {
u8 subfunc_code[2];
u8 lvdata[0];
} *prepparm;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(parmbsize, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
/* fill request cprb param block with FQ request */
preqparm = (struct fqreqparm *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "FQ", 2);
memcpy(preqparm->rule_array, keyword, sizeof(preqparm->rule_array));
preqparm->rule_array_len =
sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array);
preqparm->lv1.len = sizeof(preqparm->lv1);
preqparm->dummylen = sizeof(preqparm->dummylen);
preqcblk->req_parml = parmbsize;
/* fill xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = _zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_cprb (cardnr=%d domain=%d) failed with errno %d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR(
"%s unwrap secure key failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
rc = -EIO;
goto out;
}
/* process response cprb param block */
prepcblk->rpl_parmb = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepparm = (struct fqrepparm *) prepcblk->rpl_parmb;
ptr = prepparm->lvdata;
/* check and possibly copy reply rule array */
len = *((u16 *) ptr);
if (len > sizeof(u16)) {
ptr += sizeof(u16);
len -= sizeof(u16);
if (rarray && rarraylen && *rarraylen > 0) {
*rarraylen = (len > *rarraylen ? *rarraylen : len);
memcpy(rarray, ptr, *rarraylen);
}
ptr += len;
}
/* check and possible copy reply var array */
len = *((u16 *) ptr);
if (len > sizeof(u16)) {
ptr += sizeof(u16);
len -= sizeof(u16);
if (varray && varraylen && *varraylen > 0) {
*varraylen = (len > *varraylen ? *varraylen : len);
memcpy(varray, ptr, *varraylen);
}
ptr += len;
}
out:
free_cprbmem(mem, parmbsize, 0);
return rc;
}
/*
* Fetch the current and old mkvp values via
* query_crypto_facility from adapter.
*/
static int fetch_mkvp(u16 cardnr, u16 domain, u64 mkvp[2])
{
int rc, found = 0;
size_t rlen, vlen;
u8 *rarray, *varray, *pg;
pg = (u8 *) __get_free_page(GFP_KERNEL);
if (!pg)
return -ENOMEM;
rarray = pg;
varray = pg + PAGE_SIZE/2;
rlen = vlen = PAGE_SIZE/2;
rc = query_crypto_facility(cardnr, domain, "STATICSA",
rarray, &rlen, varray, &vlen);
if (rc == 0 && rlen > 8*8 && vlen > 184+8) {
if (rarray[8*8] == '2') {
/* current master key state is valid */
mkvp[0] = *((u64 *)(varray + 184));
mkvp[1] = *((u64 *)(varray + 172));
found = 1;
}
}
free_page((unsigned long) pg);
return found ? 0 : -ENOENT;
}
/* struct to hold cached mkvp info for each card/domain */
struct mkvp_info {
struct list_head list;
u16 cardnr;
u16 domain;
u64 mkvp[2];
};
/* a list with mkvp_info entries */
static LIST_HEAD(mkvp_list);
static DEFINE_SPINLOCK(mkvp_list_lock);
static int mkvp_cache_fetch(u16 cardnr, u16 domain, u64 mkvp[2])
{
int rc = -ENOENT;
struct mkvp_info *ptr;
spin_lock_bh(&mkvp_list_lock);
list_for_each_entry(ptr, &mkvp_list, list) {
if (ptr->cardnr == cardnr &&
ptr->domain == domain) {
memcpy(mkvp, ptr->mkvp, 2 * sizeof(u64));
rc = 0;
break;
}
}
spin_unlock_bh(&mkvp_list_lock);
return rc;
}
static void mkvp_cache_update(u16 cardnr, u16 domain, u64 mkvp[2])
{
int found = 0;
struct mkvp_info *ptr;
spin_lock_bh(&mkvp_list_lock);
list_for_each_entry(ptr, &mkvp_list, list) {
if (ptr->cardnr == cardnr &&
ptr->domain == domain) {
memcpy(ptr->mkvp, mkvp, 2 * sizeof(u64));
found = 1;
break;
}
}
if (!found) {
ptr = kmalloc(sizeof(*ptr), GFP_ATOMIC);
if (!ptr) {
spin_unlock_bh(&mkvp_list_lock);
return;
}
ptr->cardnr = cardnr;
ptr->domain = domain;
memcpy(ptr->mkvp, mkvp, 2 * sizeof(u64));
list_add(&ptr->list, &mkvp_list);
}
spin_unlock_bh(&mkvp_list_lock);
}
static void mkvp_cache_scrub(u16 cardnr, u16 domain)
{
struct mkvp_info *ptr;
spin_lock_bh(&mkvp_list_lock);
list_for_each_entry(ptr, &mkvp_list, list) {
if (ptr->cardnr == cardnr &&
ptr->domain == domain) {
list_del(&ptr->list);
kfree(ptr);
break;
}
}
spin_unlock_bh(&mkvp_list_lock);
}
static void __exit mkvp_cache_free(void)
{
struct mkvp_info *ptr, *pnext;
spin_lock_bh(&mkvp_list_lock);
list_for_each_entry_safe(ptr, pnext, &mkvp_list, list) {
list_del(&ptr->list);
kfree(ptr);
}
spin_unlock_bh(&mkvp_list_lock);
}
/*
* Search for a matching crypto card based on the Master Key
* Verification Pattern provided inside a secure key.
*/
int pkey_findcard(const struct pkey_seckey *seckey,
u16 *pcardnr, u16 *pdomain, int verify)
{
struct secaeskeytoken *t = (struct secaeskeytoken *) seckey;
struct zcrypt_device_status_ext *device_status;
u16 card, dom;
u64 mkvp[2];
int i, rc, oi = -1;
/* mkvp must not be zero */
if (t->mkvp == 0)
return -EINVAL;
/* fetch status of all crypto cards */
device_status = kmalloc_array(MAX_ZDEV_ENTRIES_EXT,
sizeof(struct zcrypt_device_status_ext),
GFP_KERNEL);
if (!device_status)
return -ENOMEM;
zcrypt_device_status_mask_ext(device_status);
/* walk through all crypto cards */
for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) {
card = AP_QID_CARD(device_status[i].qid);
dom = AP_QID_QUEUE(device_status[i].qid);
if (device_status[i].online &&
device_status[i].functions & 0x04) {
/* an enabled CCA Coprocessor card */
/* try cached mkvp */
if (mkvp_cache_fetch(card, dom, mkvp) == 0 &&
t->mkvp == mkvp[0]) {
if (!verify)
break;
/* verify: fetch mkvp from adapter */
if (fetch_mkvp(card, dom, mkvp) == 0) {
mkvp_cache_update(card, dom, mkvp);
if (t->mkvp == mkvp[0])
break;
}
}
} else {
/* Card is offline and/or not a CCA card. */
/* del mkvp entry from cache if it exists */
mkvp_cache_scrub(card, dom);
}
}
if (i >= MAX_ZDEV_ENTRIES_EXT) {
/* nothing found, so this time without cache */
for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) {
if (!(device_status[i].online &&
device_status[i].functions & 0x04))
continue;
card = AP_QID_CARD(device_status[i].qid);
dom = AP_QID_QUEUE(device_status[i].qid);
/* fresh fetch mkvp from adapter */
if (fetch_mkvp(card, dom, mkvp) == 0) {
mkvp_cache_update(card, dom, mkvp);
if (t->mkvp == mkvp[0])
break;
if (t->mkvp == mkvp[1] && oi < 0)
oi = i;
}
}
if (i >= MAX_ZDEV_ENTRIES_EXT && oi >= 0) {
/* old mkvp matched, use this card then */
card = AP_QID_CARD(device_status[oi].qid);
dom = AP_QID_QUEUE(device_status[oi].qid);
}
}
if (i < MAX_ZDEV_ENTRIES_EXT || oi >= 0) {
if (pcardnr)
*pcardnr = card;
if (pdomain)
*pdomain = dom;
rc = 0;
} else
rc = -ENODEV;
kfree(device_status);
return rc;
}
EXPORT_SYMBOL(pkey_findcard);
/*
* Find card and transform secure key into protected key.
*/
int pkey_skey2pkey(const struct pkey_seckey *seckey,
struct pkey_protkey *protkey)
{
u16 cardnr, domain;
int rc, verify;
/*
* The pkey_sec2protkey call may fail when a card has been
* addressed where the master key was changed after last fetch
* of the mkvp into the cache. So first try without verify then
* with verify enabled (thus refreshing the mkvp for each card).
*/
for (verify = 0; verify < 2; verify++) {
rc = pkey_findcard(seckey, &cardnr, &domain, verify);
if (rc)
continue;
rc = pkey_sec2protkey(cardnr, domain, seckey, protkey);
if (rc == 0)
break;
}
if (rc)
DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
return rc;
}
EXPORT_SYMBOL(pkey_skey2pkey);
/*
* Verify key and give back some info about the key.
*/
int pkey_verifykey(const struct pkey_seckey *seckey,
u16 *pcardnr, u16 *pdomain,
u16 *pkeysize, u32 *pattributes)
{
struct secaeskeytoken *t = (struct secaeskeytoken *) seckey;
u16 cardnr, domain;
u64 mkvp[2];
int rc;
/* check the secure key for valid AES secure key */
rc = check_secaeskeytoken((u8 *) seckey, 0);
if (rc)
goto out;
if (pattributes)
*pattributes = PKEY_VERIFY_ATTR_AES;
if (pkeysize)
*pkeysize = t->bitsize;
/* try to find a card which can handle this key */
rc = pkey_findcard(seckey, &cardnr, &domain, 1);
if (rc)
goto out;
/* check mkvp for old mkvp match */
rc = mkvp_cache_fetch(cardnr, domain, mkvp);
if (rc)
goto out;
if (t->mkvp == mkvp[1] && t->mkvp != mkvp[0]) {
DEBUG_DBG("%s secure key has old mkvp\n", __func__);
if (pattributes)
*pattributes |= PKEY_VERIFY_ATTR_OLD_MKVP;
}
if (pcardnr)
*pcardnr = cardnr;
if (pdomain)
*pdomain = domain;
out:
DEBUG_DBG("%s rc=%d\n", __func__, rc);
return rc;
}
EXPORT_SYMBOL(pkey_verifykey);
/*
* Generate a random protected key
*/
int pkey_genprotkey(__u32 keytype, struct pkey_protkey *protkey)
{
struct pkey_clrkey clrkey;
int keysize;
int rc;
switch (keytype) {
case PKEY_KEYTYPE_AES_128:
keysize = 16;
break;
case PKEY_KEYTYPE_AES_192:
keysize = 24;
break;
case PKEY_KEYTYPE_AES_256:
keysize = 32;
break;
default:
DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__,
keytype);
return -EINVAL;
}
/* generate a dummy random clear key */
get_random_bytes(clrkey.clrkey, keysize);
/* convert it to a dummy protected key */
rc = pkey_clr2protkey(keytype, &clrkey, protkey);
if (rc)
return rc;
/* replace the key part of the protected key with random bytes */
get_random_bytes(protkey->protkey, keysize);
return 0;
}
EXPORT_SYMBOL(pkey_genprotkey);
/*
* Verify if a protected key is still valid
*/
int pkey_verifyprotkey(const struct pkey_protkey *protkey)
{
unsigned long fc;
struct {
u8 iv[AES_BLOCK_SIZE];
u8 key[MAXPROTKEYSIZE];
} param;
u8 null_msg[AES_BLOCK_SIZE];
u8 dest_buf[AES_BLOCK_SIZE];
unsigned int k;
switch (protkey->type) {
case PKEY_KEYTYPE_AES_128:
fc = CPACF_KMC_PAES_128;
break;
case PKEY_KEYTYPE_AES_192:
fc = CPACF_KMC_PAES_192;
break;
case PKEY_KEYTYPE_AES_256:
fc = CPACF_KMC_PAES_256;
break;
default:
DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__,
protkey->type);
return -EINVAL;
}
memset(null_msg, 0, sizeof(null_msg));
memset(param.iv, 0, sizeof(param.iv));
memcpy(param.key, protkey->protkey, sizeof(param.key));
k = cpacf_kmc(fc | CPACF_ENCRYPT, &param, null_msg, dest_buf,
sizeof(null_msg));
if (k != sizeof(null_msg)) {
DEBUG_ERR("%s protected key is not valid\n", __func__);
return -EKEYREJECTED;
}
return 0;
}
EXPORT_SYMBOL(pkey_verifyprotkey);
/*
* Transform a non-CCA key token into a protected key
*/
static int pkey_nonccatok2pkey(const __u8 *key, __u32 keylen,
struct pkey_protkey *protkey)
{
struct keytoken_header *hdr = (struct keytoken_header *)key;
struct protaeskeytoken *t;
switch (hdr->version) {
case TOKVER_PROTECTED_KEY:
if (keylen != sizeof(struct protaeskeytoken))
return -EINVAL;
t = (struct protaeskeytoken *)key;
protkey->len = t->len;
protkey->type = t->keytype;
memcpy(protkey->protkey, t->protkey,
sizeof(protkey->protkey));
return pkey_verifyprotkey(protkey);
default:
DEBUG_ERR("%s unknown/unsupported non-CCA token version %d\n",
__func__, hdr->version);
return -EINVAL;
}
}
/*
* Transform a CCA internal key token into a protected key
*/
static int pkey_ccainttok2pkey(const __u8 *key, __u32 keylen,
struct pkey_protkey *protkey)
{
struct keytoken_header *hdr = (struct keytoken_header *)key;
switch (hdr->version) {
case TOKVER_CCA_AES:
if (keylen != sizeof(struct secaeskeytoken))
return -EINVAL;
return pkey_skey2pkey((struct pkey_seckey *)key,
protkey);
default:
DEBUG_ERR("%s unknown/unsupported CCA internal token version %d\n",
__func__, hdr->version);
return -EINVAL;
}
}
/*
* Transform a key blob (of any type) into a protected key
*/
int pkey_keyblob2pkey(const __u8 *key, __u32 keylen,
struct pkey_protkey *protkey)
{
struct keytoken_header *hdr = (struct keytoken_header *)key;
if (keylen < sizeof(struct keytoken_header))
return -EINVAL;
switch (hdr->type) {
case TOKTYPE_NON_CCA:
return pkey_nonccatok2pkey(key, keylen, protkey);
case TOKTYPE_CCA_INTERNAL:
return pkey_ccainttok2pkey(key, keylen, protkey);
default:
DEBUG_ERR("%s unknown/unsupported blob type %d\n", __func__,
hdr->type);
return -EINVAL;
}
}
EXPORT_SYMBOL(pkey_keyblob2pkey);
/*
* File io functions
*/
static long pkey_unlocked_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
int rc;
switch (cmd) {
case PKEY_GENSECK: {
struct pkey_genseck __user *ugs = (void __user *) arg;
struct pkey_genseck kgs;
if (copy_from_user(&kgs, ugs, sizeof(kgs)))
return -EFAULT;
rc = pkey_genseckey(kgs.cardnr, kgs.domain,
kgs.keytype, &kgs.seckey);
DEBUG_DBG("%s pkey_genseckey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(ugs, &kgs, sizeof(kgs)))
return -EFAULT;
break;
}
case PKEY_CLR2SECK: {
struct pkey_clr2seck __user *ucs = (void __user *) arg;
struct pkey_clr2seck kcs;
if (copy_from_user(&kcs, ucs, sizeof(kcs)))
return -EFAULT;
rc = pkey_clr2seckey(kcs.cardnr, kcs.domain, kcs.keytype,
&kcs.clrkey, &kcs.seckey);
DEBUG_DBG("%s pkey_clr2seckey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(ucs, &kcs, sizeof(kcs)))
return -EFAULT;
memzero_explicit(&kcs, sizeof(kcs));
break;
}
case PKEY_SEC2PROTK: {
struct pkey_sec2protk __user *usp = (void __user *) arg;
struct pkey_sec2protk ksp;
if (copy_from_user(&ksp, usp, sizeof(ksp)))
return -EFAULT;
rc = pkey_sec2protkey(ksp.cardnr, ksp.domain,
&ksp.seckey, &ksp.protkey);
DEBUG_DBG("%s pkey_sec2protkey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(usp, &ksp, sizeof(ksp)))
return -EFAULT;
break;
}
case PKEY_CLR2PROTK: {
struct pkey_clr2protk __user *ucp = (void __user *) arg;
struct pkey_clr2protk kcp;
if (copy_from_user(&kcp, ucp, sizeof(kcp)))
return -EFAULT;
rc = pkey_clr2protkey(kcp.keytype,
&kcp.clrkey, &kcp.protkey);
DEBUG_DBG("%s pkey_clr2protkey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(ucp, &kcp, sizeof(kcp)))
return -EFAULT;
memzero_explicit(&kcp, sizeof(kcp));
break;
}
case PKEY_FINDCARD: {
struct pkey_findcard __user *ufc = (void __user *) arg;
struct pkey_findcard kfc;
if (copy_from_user(&kfc, ufc, sizeof(kfc)))
return -EFAULT;
rc = pkey_findcard(&kfc.seckey,
&kfc.cardnr, &kfc.domain, 1);
DEBUG_DBG("%s pkey_findcard()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(ufc, &kfc, sizeof(kfc)))
return -EFAULT;
break;
}
case PKEY_SKEY2PKEY: {
struct pkey_skey2pkey __user *usp = (void __user *) arg;
struct pkey_skey2pkey ksp;
if (copy_from_user(&ksp, usp, sizeof(ksp)))
return -EFAULT;
rc = pkey_skey2pkey(&ksp.seckey, &ksp.protkey);
DEBUG_DBG("%s pkey_skey2pkey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(usp, &ksp, sizeof(ksp)))
return -EFAULT;
break;
}
case PKEY_VERIFYKEY: {
struct pkey_verifykey __user *uvk = (void __user *) arg;
struct pkey_verifykey kvk;
if (copy_from_user(&kvk, uvk, sizeof(kvk)))
return -EFAULT;
rc = pkey_verifykey(&kvk.seckey, &kvk.cardnr, &kvk.domain,
&kvk.keysize, &kvk.attributes);
DEBUG_DBG("%s pkey_verifykey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(uvk, &kvk, sizeof(kvk)))
return -EFAULT;
break;
}
case PKEY_GENPROTK: {
struct pkey_genprotk __user *ugp = (void __user *) arg;
struct pkey_genprotk kgp;
if (copy_from_user(&kgp, ugp, sizeof(kgp)))
return -EFAULT;
rc = pkey_genprotkey(kgp.keytype, &kgp.protkey);
DEBUG_DBG("%s pkey_genprotkey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(ugp, &kgp, sizeof(kgp)))
return -EFAULT;
break;
}
case PKEY_VERIFYPROTK: {
struct pkey_verifyprotk __user *uvp = (void __user *) arg;
struct pkey_verifyprotk kvp;
if (copy_from_user(&kvp, uvp, sizeof(kvp)))
return -EFAULT;
rc = pkey_verifyprotkey(&kvp.protkey);
DEBUG_DBG("%s pkey_verifyprotkey()=%d\n", __func__, rc);
break;
}
case PKEY_KBLOB2PROTK: {
struct pkey_kblob2pkey __user *utp = (void __user *) arg;
struct pkey_kblob2pkey ktp;
__u8 __user *ukey;
__u8 *kkey;
if (copy_from_user(&ktp, utp, sizeof(ktp)))
return -EFAULT;
if (ktp.keylen < MINKEYBLOBSIZE ||
ktp.keylen > MAXKEYBLOBSIZE)
return -EINVAL;
ukey = ktp.key;
kkey = kmalloc(ktp.keylen, GFP_KERNEL);
if (kkey == NULL)
return -ENOMEM;
if (copy_from_user(kkey, ukey, ktp.keylen)) {
kfree(kkey);
return -EFAULT;
}
rc = pkey_keyblob2pkey(kkey, ktp.keylen, &ktp.protkey);
DEBUG_DBG("%s pkey_keyblob2pkey()=%d\n", __func__, rc);
kfree(kkey);
if (rc)
break;
if (copy_to_user(utp, &ktp, sizeof(ktp)))
return -EFAULT;
break;
}
default:
/* unknown/unsupported ioctl cmd */
return -ENOTTY;
}
return rc;
}
/*
* Sysfs and file io operations
*/
/*
* Sysfs attribute read function for all protected key binary attributes.
* The implementation can not deal with partial reads, because a new random
* protected key blob is generated with each read. In case of partial reads
* (i.e. off != 0 or count < key blob size) -EINVAL is returned.
*/
static ssize_t pkey_protkey_aes_attr_read(u32 keytype, bool is_xts, char *buf,
loff_t off, size_t count)
{
struct protaeskeytoken protkeytoken;
struct pkey_protkey protkey;
int rc;
if (off != 0 || count < sizeof(protkeytoken))
return -EINVAL;
if (is_xts)
if (count < 2 * sizeof(protkeytoken))
return -EINVAL;
memset(&protkeytoken, 0, sizeof(protkeytoken));
protkeytoken.type = TOKTYPE_NON_CCA;
protkeytoken.version = TOKVER_PROTECTED_KEY;
protkeytoken.keytype = keytype;
rc = pkey_genprotkey(protkeytoken.keytype, &protkey);
if (rc)
return rc;
protkeytoken.len = protkey.len;
memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len);
memcpy(buf, &protkeytoken, sizeof(protkeytoken));
if (is_xts) {
rc = pkey_genprotkey(protkeytoken.keytype, &protkey);
if (rc)
return rc;
protkeytoken.len = protkey.len;
memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len);
memcpy(buf + sizeof(protkeytoken), &protkeytoken,
sizeof(protkeytoken));
return 2 * sizeof(protkeytoken);
}
return sizeof(protkeytoken);
}
static ssize_t protkey_aes_128_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf,
off, count);
}
static ssize_t protkey_aes_192_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf,
off, count);
}
static ssize_t protkey_aes_256_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf,
off, count);
}
static ssize_t protkey_aes_128_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf,
off, count);
}
static ssize_t protkey_aes_256_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf,
off, count);
}
static BIN_ATTR_RO(protkey_aes_128, sizeof(struct protaeskeytoken));
static BIN_ATTR_RO(protkey_aes_192, sizeof(struct protaeskeytoken));
static BIN_ATTR_RO(protkey_aes_256, sizeof(struct protaeskeytoken));
static BIN_ATTR_RO(protkey_aes_128_xts, 2 * sizeof(struct protaeskeytoken));
static BIN_ATTR_RO(protkey_aes_256_xts, 2 * sizeof(struct protaeskeytoken));
static struct bin_attribute *protkey_attrs[] = {
&bin_attr_protkey_aes_128,
&bin_attr_protkey_aes_192,
&bin_attr_protkey_aes_256,
&bin_attr_protkey_aes_128_xts,
&bin_attr_protkey_aes_256_xts,
NULL
};
static struct attribute_group protkey_attr_group = {
.name = "protkey",
.bin_attrs = protkey_attrs,
};
/*
* Sysfs attribute read function for all secure key ccadata binary attributes.
* The implementation can not deal with partial reads, because a new random
* protected key blob is generated with each read. In case of partial reads
* (i.e. off != 0 or count < key blob size) -EINVAL is returned.
*/
static ssize_t pkey_ccadata_aes_attr_read(u32 keytype, bool is_xts, char *buf,
loff_t off, size_t count)
{
int rc;
if (off != 0 || count < sizeof(struct secaeskeytoken))
return -EINVAL;
if (is_xts)
if (count < 2 * sizeof(struct secaeskeytoken))
return -EINVAL;
rc = pkey_genseckey(-1, -1, keytype, (struct pkey_seckey *)buf);
if (rc)
return rc;
if (is_xts) {
buf += sizeof(struct pkey_seckey);
rc = pkey_genseckey(-1, -1, keytype, (struct pkey_seckey *)buf);
if (rc)
return rc;
return 2 * sizeof(struct secaeskeytoken);
}
return sizeof(struct secaeskeytoken);
}
static ssize_t ccadata_aes_128_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf,
off, count);
}
static ssize_t ccadata_aes_192_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf,
off, count);
}
static ssize_t ccadata_aes_256_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf,
off, count);
}
static ssize_t ccadata_aes_128_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf,
off, count);
}
static ssize_t ccadata_aes_256_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf,
off, count);
}
static BIN_ATTR_RO(ccadata_aes_128, sizeof(struct secaeskeytoken));
static BIN_ATTR_RO(ccadata_aes_192, sizeof(struct secaeskeytoken));
static BIN_ATTR_RO(ccadata_aes_256, sizeof(struct secaeskeytoken));
static BIN_ATTR_RO(ccadata_aes_128_xts, 2 * sizeof(struct secaeskeytoken));
static BIN_ATTR_RO(ccadata_aes_256_xts, 2 * sizeof(struct secaeskeytoken));
static struct bin_attribute *ccadata_attrs[] = {
&bin_attr_ccadata_aes_128,
&bin_attr_ccadata_aes_192,
&bin_attr_ccadata_aes_256,
&bin_attr_ccadata_aes_128_xts,
&bin_attr_ccadata_aes_256_xts,
NULL
};
static struct attribute_group ccadata_attr_group = {
.name = "ccadata",
.bin_attrs = ccadata_attrs,
};
static const struct attribute_group *pkey_attr_groups[] = {
&protkey_attr_group,
&ccadata_attr_group,
NULL,
};
static const struct file_operations pkey_fops = {
.owner = THIS_MODULE,
.open = nonseekable_open,
.llseek = no_llseek,
.unlocked_ioctl = pkey_unlocked_ioctl,
};
static struct miscdevice pkey_dev = {
.name = "pkey",
.minor = MISC_DYNAMIC_MINOR,
.mode = 0666,
.fops = &pkey_fops,
.groups = pkey_attr_groups,
};
/*
* Module init
*/
static int __init pkey_init(void)
{
cpacf_mask_t kmc_functions;
/*
* The pckmo instruction should be available - even if we don't
* actually invoke it. This instruction comes with MSA 3 which
* is also the minimum level for the kmc instructions which
* are able to work with protected keys.
*/
if (!cpacf_query(CPACF_PCKMO, &pckmo_functions))
return -ENODEV;
/* check for kmc instructions available */
if (!cpacf_query(CPACF_KMC, &kmc_functions))
return -ENODEV;
if (!cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_128) ||
!cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_192) ||
!cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_256))
return -ENODEV;
pkey_debug_init();
return misc_register(&pkey_dev);
}
/*
* Module exit
*/
static void __exit pkey_exit(void)
{
misc_deregister(&pkey_dev);
mkvp_cache_free();
pkey_debug_exit();
}
module_cpu_feature_match(MSA, pkey_init);
module_exit(pkey_exit);