linux/arch/mips/math-emu/cp1emu.c

2949 lines
70 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
*
* MIPS floating point support
* Copyright (C) 1994-2000 Algorithmics Ltd.
*
* Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
* Copyright (C) 2000 MIPS Technologies, Inc.
*
* A complete emulator for MIPS coprocessor 1 instructions. This is
* required for #float(switch) or #float(trap), where it catches all
* COP1 instructions via the "CoProcessor Unusable" exception.
*
* More surprisingly it is also required for #float(ieee), to help out
* the hardware FPU at the boundaries of the IEEE-754 representation
* (denormalised values, infinities, underflow, etc). It is made
* quite nasty because emulation of some non-COP1 instructions is
* required, e.g. in branch delay slots.
*
* Note if you know that you won't have an FPU, then you'll get much
* better performance by compiling with -msoft-float!
*/
#include <linux/sched.h>
#include <linux/debugfs.h>
#include <linux/percpu-defs.h>
#include <linux/perf_event.h>
#include <asm/branch.h>
#include <asm/inst.h>
#include <asm/ptrace.h>
#include <asm/signal.h>
#include <linux/uaccess.h>
#include <asm/cpu-info.h>
#include <asm/processor.h>
#include <asm/fpu_emulator.h>
#include <asm/fpu.h>
#include <asm/mips-r2-to-r6-emul.h>
#include "ieee754.h"
/* Function which emulates a floating point instruction. */
static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
mips_instruction);
static int fpux_emu(struct pt_regs *,
struct mips_fpu_struct *, mips_instruction, void __user **);
/* Control registers */
#define FPCREG_RID 0 /* $0 = revision id */
#define FPCREG_FCCR 25 /* $25 = fccr */
#define FPCREG_FEXR 26 /* $26 = fexr */
#define FPCREG_FENR 28 /* $28 = fenr */
#define FPCREG_CSR 31 /* $31 = csr */
/* convert condition code register number to csr bit */
const unsigned int fpucondbit[8] = {
FPU_CSR_COND,
FPU_CSR_COND1,
FPU_CSR_COND2,
FPU_CSR_COND3,
FPU_CSR_COND4,
FPU_CSR_COND5,
FPU_CSR_COND6,
FPU_CSR_COND7
};
/* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
/*
* This functions translates a 32-bit microMIPS instruction
* into a 32-bit MIPS32 instruction. Returns 0 on success
* and SIGILL otherwise.
*/
static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
{
union mips_instruction insn = *insn_ptr;
union mips_instruction mips32_insn = insn;
int func, fmt, op;
switch (insn.mm_i_format.opcode) {
case mm_ldc132_op:
mips32_insn.mm_i_format.opcode = ldc1_op;
mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
break;
case mm_lwc132_op:
mips32_insn.mm_i_format.opcode = lwc1_op;
mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
break;
case mm_sdc132_op:
mips32_insn.mm_i_format.opcode = sdc1_op;
mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
break;
case mm_swc132_op:
mips32_insn.mm_i_format.opcode = swc1_op;
mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
break;
case mm_pool32i_op:
/* NOTE: offset is << by 1 if in microMIPS mode. */
if ((insn.mm_i_format.rt == mm_bc1f_op) ||
(insn.mm_i_format.rt == mm_bc1t_op)) {
mips32_insn.fb_format.opcode = cop1_op;
mips32_insn.fb_format.bc = bc_op;
mips32_insn.fb_format.flag =
(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
} else
return SIGILL;
break;
case mm_pool32f_op:
switch (insn.mm_fp0_format.func) {
case mm_32f_01_op:
case mm_32f_11_op:
case mm_32f_02_op:
case mm_32f_12_op:
case mm_32f_41_op:
case mm_32f_51_op:
case mm_32f_42_op:
case mm_32f_52_op:
op = insn.mm_fp0_format.func;
if (op == mm_32f_01_op)
func = madd_s_op;
else if (op == mm_32f_11_op)
func = madd_d_op;
else if (op == mm_32f_02_op)
func = nmadd_s_op;
else if (op == mm_32f_12_op)
func = nmadd_d_op;
else if (op == mm_32f_41_op)
func = msub_s_op;
else if (op == mm_32f_51_op)
func = msub_d_op;
else if (op == mm_32f_42_op)
func = nmsub_s_op;
else
func = nmsub_d_op;
mips32_insn.fp6_format.opcode = cop1x_op;
mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
mips32_insn.fp6_format.func = func;
break;
case mm_32f_10_op:
func = -1; /* Invalid */
op = insn.mm_fp5_format.op & 0x7;
if (op == mm_ldxc1_op)
func = ldxc1_op;
else if (op == mm_sdxc1_op)
func = sdxc1_op;
else if (op == mm_lwxc1_op)
func = lwxc1_op;
else if (op == mm_swxc1_op)
func = swxc1_op;
if (func != -1) {
mips32_insn.r_format.opcode = cop1x_op;
mips32_insn.r_format.rs =
insn.mm_fp5_format.base;
mips32_insn.r_format.rt =
insn.mm_fp5_format.index;
mips32_insn.r_format.rd = 0;
mips32_insn.r_format.re = insn.mm_fp5_format.fd;
mips32_insn.r_format.func = func;
} else
return SIGILL;
break;
case mm_32f_40_op:
op = -1; /* Invalid */
if (insn.mm_fp2_format.op == mm_fmovt_op)
op = 1;
else if (insn.mm_fp2_format.op == mm_fmovf_op)
op = 0;
if (op != -1) {
mips32_insn.fp0_format.opcode = cop1_op;
mips32_insn.fp0_format.fmt =
sdps_format[insn.mm_fp2_format.fmt];
mips32_insn.fp0_format.ft =
(insn.mm_fp2_format.cc<<2) + op;
mips32_insn.fp0_format.fs =
insn.mm_fp2_format.fs;
mips32_insn.fp0_format.fd =
insn.mm_fp2_format.fd;
mips32_insn.fp0_format.func = fmovc_op;
} else
return SIGILL;
break;
case mm_32f_60_op:
func = -1; /* Invalid */
if (insn.mm_fp0_format.op == mm_fadd_op)
func = fadd_op;
else if (insn.mm_fp0_format.op == mm_fsub_op)
func = fsub_op;
else if (insn.mm_fp0_format.op == mm_fmul_op)
func = fmul_op;
else if (insn.mm_fp0_format.op == mm_fdiv_op)
func = fdiv_op;
if (func != -1) {
mips32_insn.fp0_format.opcode = cop1_op;
mips32_insn.fp0_format.fmt =
sdps_format[insn.mm_fp0_format.fmt];
mips32_insn.fp0_format.ft =
insn.mm_fp0_format.ft;
mips32_insn.fp0_format.fs =
insn.mm_fp0_format.fs;
mips32_insn.fp0_format.fd =
insn.mm_fp0_format.fd;
mips32_insn.fp0_format.func = func;
} else
return SIGILL;
break;
case mm_32f_70_op:
func = -1; /* Invalid */
if (insn.mm_fp0_format.op == mm_fmovn_op)
func = fmovn_op;
else if (insn.mm_fp0_format.op == mm_fmovz_op)
func = fmovz_op;
if (func != -1) {
mips32_insn.fp0_format.opcode = cop1_op;
mips32_insn.fp0_format.fmt =
sdps_format[insn.mm_fp0_format.fmt];
mips32_insn.fp0_format.ft =
insn.mm_fp0_format.ft;
mips32_insn.fp0_format.fs =
insn.mm_fp0_format.fs;
mips32_insn.fp0_format.fd =
insn.mm_fp0_format.fd;
mips32_insn.fp0_format.func = func;
} else
return SIGILL;
break;
case mm_32f_73_op: /* POOL32FXF */
switch (insn.mm_fp1_format.op) {
case mm_movf0_op:
case mm_movf1_op:
case mm_movt0_op:
case mm_movt1_op:
if ((insn.mm_fp1_format.op & 0x7f) ==
mm_movf0_op)
op = 0;
else
op = 1;
mips32_insn.r_format.opcode = spec_op;
mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
mips32_insn.r_format.rt =
(insn.mm_fp4_format.cc << 2) + op;
mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
mips32_insn.r_format.re = 0;
mips32_insn.r_format.func = movc_op;
break;
case mm_fcvtd0_op:
case mm_fcvtd1_op:
case mm_fcvts0_op:
case mm_fcvts1_op:
if ((insn.mm_fp1_format.op & 0x7f) ==
mm_fcvtd0_op) {
func = fcvtd_op;
fmt = swl_format[insn.mm_fp3_format.fmt];
} else {
func = fcvts_op;
fmt = dwl_format[insn.mm_fp3_format.fmt];
}
mips32_insn.fp0_format.opcode = cop1_op;
mips32_insn.fp0_format.fmt = fmt;
mips32_insn.fp0_format.ft = 0;
mips32_insn.fp0_format.fs =
insn.mm_fp3_format.fs;
mips32_insn.fp0_format.fd =
insn.mm_fp3_format.rt;
mips32_insn.fp0_format.func = func;
break;
case mm_fmov0_op:
case mm_fmov1_op:
case mm_fabs0_op:
case mm_fabs1_op:
case mm_fneg0_op:
case mm_fneg1_op:
if ((insn.mm_fp1_format.op & 0x7f) ==
mm_fmov0_op)
func = fmov_op;
else if ((insn.mm_fp1_format.op & 0x7f) ==
mm_fabs0_op)
func = fabs_op;
else
func = fneg_op;
mips32_insn.fp0_format.opcode = cop1_op;
mips32_insn.fp0_format.fmt =
sdps_format[insn.mm_fp3_format.fmt];
mips32_insn.fp0_format.ft = 0;
mips32_insn.fp0_format.fs =
insn.mm_fp3_format.fs;
mips32_insn.fp0_format.fd =
insn.mm_fp3_format.rt;
mips32_insn.fp0_format.func = func;
break;
case mm_ffloorl_op:
case mm_ffloorw_op:
case mm_fceill_op:
case mm_fceilw_op:
case mm_ftruncl_op:
case mm_ftruncw_op:
case mm_froundl_op:
case mm_froundw_op:
case mm_fcvtl_op:
case mm_fcvtw_op:
if (insn.mm_fp1_format.op == mm_ffloorl_op)
func = ffloorl_op;
else if (insn.mm_fp1_format.op == mm_ffloorw_op)
func = ffloor_op;
else if (insn.mm_fp1_format.op == mm_fceill_op)
func = fceill_op;
else if (insn.mm_fp1_format.op == mm_fceilw_op)
func = fceil_op;
else if (insn.mm_fp1_format.op == mm_ftruncl_op)
func = ftruncl_op;
else if (insn.mm_fp1_format.op == mm_ftruncw_op)
func = ftrunc_op;
else if (insn.mm_fp1_format.op == mm_froundl_op)
func = froundl_op;
else if (insn.mm_fp1_format.op == mm_froundw_op)
func = fround_op;
else if (insn.mm_fp1_format.op == mm_fcvtl_op)
func = fcvtl_op;
else
func = fcvtw_op;
mips32_insn.fp0_format.opcode = cop1_op;
mips32_insn.fp0_format.fmt =
sd_format[insn.mm_fp1_format.fmt];
mips32_insn.fp0_format.ft = 0;
mips32_insn.fp0_format.fs =
insn.mm_fp1_format.fs;
mips32_insn.fp0_format.fd =
insn.mm_fp1_format.rt;
mips32_insn.fp0_format.func = func;
break;
case mm_frsqrt_op:
case mm_fsqrt_op:
case mm_frecip_op:
if (insn.mm_fp1_format.op == mm_frsqrt_op)
func = frsqrt_op;
else if (insn.mm_fp1_format.op == mm_fsqrt_op)
func = fsqrt_op;
else
func = frecip_op;
mips32_insn.fp0_format.opcode = cop1_op;
mips32_insn.fp0_format.fmt =
sdps_format[insn.mm_fp1_format.fmt];
mips32_insn.fp0_format.ft = 0;
mips32_insn.fp0_format.fs =
insn.mm_fp1_format.fs;
mips32_insn.fp0_format.fd =
insn.mm_fp1_format.rt;
mips32_insn.fp0_format.func = func;
break;
case mm_mfc1_op:
case mm_mtc1_op:
case mm_cfc1_op:
case mm_ctc1_op:
case mm_mfhc1_op:
case mm_mthc1_op:
if (insn.mm_fp1_format.op == mm_mfc1_op)
op = mfc_op;
else if (insn.mm_fp1_format.op == mm_mtc1_op)
op = mtc_op;
else if (insn.mm_fp1_format.op == mm_cfc1_op)
op = cfc_op;
else if (insn.mm_fp1_format.op == mm_ctc1_op)
op = ctc_op;
else if (insn.mm_fp1_format.op == mm_mfhc1_op)
op = mfhc_op;
else
op = mthc_op;
mips32_insn.fp1_format.opcode = cop1_op;
mips32_insn.fp1_format.op = op;
mips32_insn.fp1_format.rt =
insn.mm_fp1_format.rt;
mips32_insn.fp1_format.fs =
insn.mm_fp1_format.fs;
mips32_insn.fp1_format.fd = 0;
mips32_insn.fp1_format.func = 0;
break;
default:
return SIGILL;
}
break;
case mm_32f_74_op: /* c.cond.fmt */
mips32_insn.fp0_format.opcode = cop1_op;
mips32_insn.fp0_format.fmt =
sdps_format[insn.mm_fp4_format.fmt];
mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
mips32_insn.fp0_format.func =
insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
break;
default:
return SIGILL;
}
break;
default:
return SIGILL;
}
*insn_ptr = mips32_insn;
return 0;
}
/*
* Redundant with logic already in kernel/branch.c,
* embedded in compute_return_epc. At some point,
* a single subroutine should be used across both
* modules.
*/
int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
unsigned long *contpc)
{
union mips_instruction insn = (union mips_instruction)dec_insn.insn;
unsigned int fcr31;
unsigned int bit = 0;
unsigned int bit0;
union fpureg *fpr;
switch (insn.i_format.opcode) {
case spec_op:
switch (insn.r_format.func) {
case jalr_op:
if (insn.r_format.rd != 0) {
regs->regs[insn.r_format.rd] =
regs->cp0_epc + dec_insn.pc_inc +
dec_insn.next_pc_inc;
}
fallthrough;
case jr_op:
/* For R6, JR already emulated in jalr_op */
if (NO_R6EMU && insn.r_format.func == jr_op)
break;
*contpc = regs->regs[insn.r_format.rs];
return 1;
}
break;
case bcond_op:
switch (insn.i_format.rt) {
case bltzal_op:
case bltzall_op:
if (NO_R6EMU && (insn.i_format.rs ||
insn.i_format.rt == bltzall_op))
break;
regs->regs[31] = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
fallthrough;
case bltzl_op:
if (NO_R6EMU)
break;
fallthrough;
case bltz_op:
if ((long)regs->regs[insn.i_format.rs] < 0)
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
(insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
case bgezal_op:
case bgezall_op:
if (NO_R6EMU && (insn.i_format.rs ||
insn.i_format.rt == bgezall_op))
break;
regs->regs[31] = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
fallthrough;
case bgezl_op:
if (NO_R6EMU)
break;
fallthrough;
case bgez_op:
if ((long)regs->regs[insn.i_format.rs] >= 0)
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
(insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
}
break;
case jalx_op:
set_isa16_mode(bit);
fallthrough;
case jal_op:
regs->regs[31] = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
fallthrough;
case j_op:
*contpc = regs->cp0_epc + dec_insn.pc_inc;
*contpc >>= 28;
*contpc <<= 28;
*contpc |= (insn.j_format.target << 2);
/* Set microMIPS mode bit: XOR for jalx. */
*contpc ^= bit;
return 1;
case beql_op:
if (NO_R6EMU)
break;
fallthrough;
case beq_op:
if (regs->regs[insn.i_format.rs] ==
regs->regs[insn.i_format.rt])
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
(insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
case bnel_op:
if (NO_R6EMU)
break;
fallthrough;
case bne_op:
if (regs->regs[insn.i_format.rs] !=
regs->regs[insn.i_format.rt])
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
(insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
case blezl_op:
if (!insn.i_format.rt && NO_R6EMU)
break;
fallthrough;
case blez_op:
/*
* Compact branches for R6 for the
* blez and blezl opcodes.
* BLEZ | rs = 0 | rt != 0 == BLEZALC
* BLEZ | rs = rt != 0 == BGEZALC
* BLEZ | rs != 0 | rt != 0 == BGEUC
* BLEZL | rs = 0 | rt != 0 == BLEZC
* BLEZL | rs = rt != 0 == BGEZC
* BLEZL | rs != 0 | rt != 0 == BGEC
*
* For real BLEZ{,L}, rt is always 0.
*/
if (cpu_has_mips_r6 && insn.i_format.rt) {
if ((insn.i_format.opcode == blez_op) &&
((!insn.i_format.rs && insn.i_format.rt) ||
(insn.i_format.rs == insn.i_format.rt)))
regs->regs[31] = regs->cp0_epc +
dec_insn.pc_inc;
*contpc = regs->cp0_epc + dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
}
if ((long)regs->regs[insn.i_format.rs] <= 0)
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
(insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
case bgtzl_op:
if (!insn.i_format.rt && NO_R6EMU)
break;
fallthrough;
case bgtz_op:
/*
* Compact branches for R6 for the
* bgtz and bgtzl opcodes.
* BGTZ | rs = 0 | rt != 0 == BGTZALC
* BGTZ | rs = rt != 0 == BLTZALC
* BGTZ | rs != 0 | rt != 0 == BLTUC
* BGTZL | rs = 0 | rt != 0 == BGTZC
* BGTZL | rs = rt != 0 == BLTZC
* BGTZL | rs != 0 | rt != 0 == BLTC
*
* *ZALC varint for BGTZ &&& rt != 0
* For real GTZ{,L}, rt is always 0.
*/
if (cpu_has_mips_r6 && insn.i_format.rt) {
if ((insn.i_format.opcode == blez_op) &&
((!insn.i_format.rs && insn.i_format.rt) ||
(insn.i_format.rs == insn.i_format.rt)))
regs->regs[31] = regs->cp0_epc +
dec_insn.pc_inc;
*contpc = regs->cp0_epc + dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
}
if ((long)regs->regs[insn.i_format.rs] > 0)
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
(insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
case pop10_op:
case pop30_op:
if (!cpu_has_mips_r6)
break;
if (insn.i_format.rt && !insn.i_format.rs)
regs->regs[31] = regs->cp0_epc + 4;
*contpc = regs->cp0_epc + dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
#ifdef CONFIG_CPU_CAVIUM_OCTEON
case lwc2_op: /* This is bbit0 on Octeon */
if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc + 8;
return 1;
case ldc2_op: /* This is bbit032 on Octeon */
if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc + 8;
return 1;
case swc2_op: /* This is bbit1 on Octeon */
if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc + 8;
return 1;
case sdc2_op: /* This is bbit132 on Octeon */
if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc + 8;
return 1;
#else
case bc6_op:
/*
* Only valid for MIPS R6 but we can still end up
* here from a broken userland so just tell emulator
* this is not a branch and let it break later on.
*/
if (!cpu_has_mips_r6)
break;
*contpc = regs->cp0_epc + dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
case balc6_op:
if (!cpu_has_mips_r6)
break;
regs->regs[31] = regs->cp0_epc + 4;
*contpc = regs->cp0_epc + dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
case pop66_op:
if (!cpu_has_mips_r6)
break;
*contpc = regs->cp0_epc + dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
case pop76_op:
if (!cpu_has_mips_r6)
break;
if (!insn.i_format.rs)
regs->regs[31] = regs->cp0_epc + 4;
*contpc = regs->cp0_epc + dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
#endif
case cop0_op:
case cop1_op:
/* Need to check for R6 bc1nez and bc1eqz branches */
if (cpu_has_mips_r6 &&
((insn.i_format.rs == bc1eqz_op) ||
(insn.i_format.rs == bc1nez_op))) {
bit = 0;
fpr = &current->thread.fpu.fpr[insn.i_format.rt];
bit0 = get_fpr32(fpr, 0) & 0x1;
switch (insn.i_format.rs) {
case bc1eqz_op:
bit = bit0 == 0;
break;
case bc1nez_op:
bit = bit0 != 0;
break;
}
if (bit)
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
(insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
}
/* R2/R6 compatible cop1 instruction */
fallthrough;
case cop2_op:
case cop1x_op:
if (insn.i_format.rs == bc_op) {
preempt_disable();
if (is_fpu_owner())
fcr31 = read_32bit_cp1_register(CP1_STATUS);
else
fcr31 = current->thread.fpu.fcr31;
preempt_enable();
bit = (insn.i_format.rt >> 2);
bit += (bit != 0);
bit += 23;
switch (insn.i_format.rt & 3) {
case 0: /* bc1f */
case 2: /* bc1fl */
if (~fcr31 & (1 << bit))
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
(insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
case 1: /* bc1t */
case 3: /* bc1tl */
if (fcr31 & (1 << bit))
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
(insn.i_format.simmediate << 2);
else
*contpc = regs->cp0_epc +
dec_insn.pc_inc +
dec_insn.next_pc_inc;
return 1;
}
}
break;
}
return 0;
}
/*
* In the Linux kernel, we support selection of FPR format on the
* basis of the Status.FR bit. If an FPU is not present, the FR bit
* is hardwired to zero, which would imply a 32-bit FPU even for
* 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
* FPU emu is slow and bulky and optimizing this function offers fairly
* sizeable benefits so we try to be clever and make this function return
* a constant whenever possible, that is on 64-bit kernels without O32
* compatibility enabled and on 32-bit without 64-bit FPU support.
*/
static inline int cop1_64bit(struct pt_regs *xcp)
{
if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32))
return 1;
else if (IS_ENABLED(CONFIG_32BIT) &&
!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
return 0;
return !test_thread_flag(TIF_32BIT_FPREGS);
}
static inline bool hybrid_fprs(void)
{
return test_thread_flag(TIF_HYBRID_FPREGS);
}
#define SIFROMREG(si, x) \
do { \
if (cop1_64bit(xcp) && !hybrid_fprs()) \
(si) = (int)get_fpr32(&ctx->fpr[x], 0); \
else \
(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1); \
} while (0)
#define SITOREG(si, x) \
do { \
if (cop1_64bit(xcp) && !hybrid_fprs()) { \
unsigned int i; \
set_fpr32(&ctx->fpr[x], 0, si); \
for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \
set_fpr32(&ctx->fpr[x], i, 0); \
} else { \
set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si); \
} \
} while (0)
#define SIFROMHREG(si, x) ((si) = (int)get_fpr32(&ctx->fpr[x], 1))
#define SITOHREG(si, x) \
do { \
unsigned int i; \
set_fpr32(&ctx->fpr[x], 1, si); \
for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \
set_fpr32(&ctx->fpr[x], i, 0); \
} while (0)
#define DIFROMREG(di, x) \
((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) ^ 1)], 0))
#define DITOREG(di, x) \
do { \
unsigned int fpr, i; \
fpr = (x) & ~(cop1_64bit(xcp) ^ 1); \
set_fpr64(&ctx->fpr[fpr], 0, di); \
for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++) \
set_fpr64(&ctx->fpr[fpr], i, 0); \
} while (0)
#define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
#define SPTOREG(sp, x) SITOREG((sp).bits, x)
#define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
#define DPTOREG(dp, x) DITOREG((dp).bits, x)
/*
* Emulate a CFC1 instruction.
*/
static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
mips_instruction ir)
{
u32 fcr31 = ctx->fcr31;
u32 value = 0;
switch (MIPSInst_RD(ir)) {
case FPCREG_CSR:
value = fcr31;
pr_debug("%p gpr[%d]<-csr=%08x\n",
(void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
break;
case FPCREG_FENR:
if (!cpu_has_mips_r)
break;
value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
MIPS_FENR_FS;
value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
pr_debug("%p gpr[%d]<-enr=%08x\n",
(void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
break;
case FPCREG_FEXR:
if (!cpu_has_mips_r)
break;
value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
pr_debug("%p gpr[%d]<-exr=%08x\n",
(void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
break;
case FPCREG_FCCR:
if (!cpu_has_mips_r)
break;
value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
MIPS_FCCR_COND0;
value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
(MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
pr_debug("%p gpr[%d]<-ccr=%08x\n",
(void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
break;
case FPCREG_RID:
value = boot_cpu_data.fpu_id;
break;
default:
break;
}
if (MIPSInst_RT(ir))
xcp->regs[MIPSInst_RT(ir)] = value;
}
/*
* Emulate a CTC1 instruction.
*/
static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
mips_instruction ir)
{
u32 fcr31 = ctx->fcr31;
u32 value;
u32 mask;
if (MIPSInst_RT(ir) == 0)
value = 0;
else
value = xcp->regs[MIPSInst_RT(ir)];
switch (MIPSInst_RD(ir)) {
case FPCREG_CSR:
pr_debug("%p gpr[%d]->csr=%08x\n",
(void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
/* Preserve read-only bits. */
mask = boot_cpu_data.fpu_msk31;
fcr31 = (value & ~mask) | (fcr31 & mask);
break;
case FPCREG_FENR:
if (!cpu_has_mips_r)
break;
pr_debug("%p gpr[%d]->enr=%08x\n",
(void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
FPU_CSR_FS;
fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
break;
case FPCREG_FEXR:
if (!cpu_has_mips_r)
break;
pr_debug("%p gpr[%d]->exr=%08x\n",
(void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
break;
case FPCREG_FCCR:
if (!cpu_has_mips_r)
break;
pr_debug("%p gpr[%d]->ccr=%08x\n",
(void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
FPU_CSR_COND;
fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
FPU_CSR_CONDX;
break;
default:
break;
}
ctx->fcr31 = fcr31;
}
/*
* Emulate the single floating point instruction pointed at by EPC.
* Two instructions if the instruction is in a branch delay slot.
*/
static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
struct mm_decoded_insn dec_insn, void __user **fault_addr)
{
unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
unsigned int cond, cbit, bit0;
mips_instruction ir;
int likely, pc_inc;
union fpureg *fpr;
u32 __user *wva;
u64 __user *dva;
u32 wval;
u64 dval;
int sig;
/*
* These are giving gcc a gentle hint about what to expect in
* dec_inst in order to do better optimization.
*/
if (!cpu_has_mmips && dec_insn.micro_mips_mode)
unreachable();
/* XXX NEC Vr54xx bug workaround */
if (delay_slot(xcp)) {
if (dec_insn.micro_mips_mode) {
if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
clear_delay_slot(xcp);
} else {
if (!isBranchInstr(xcp, dec_insn, &contpc))
clear_delay_slot(xcp);
}
}
if (delay_slot(xcp)) {
/*
* The instruction to be emulated is in a branch delay slot
* which means that we have to emulate the branch instruction
* BEFORE we do the cop1 instruction.
*
* This branch could be a COP1 branch, but in that case we
* would have had a trap for that instruction, and would not
* come through this route.
*
* Linux MIPS branch emulator operates on context, updating the
* cp0_epc.
*/
ir = dec_insn.next_insn; /* process delay slot instr */
pc_inc = dec_insn.next_pc_inc;
} else {
ir = dec_insn.insn; /* process current instr */
pc_inc = dec_insn.pc_inc;
}
/*
* Since microMIPS FPU instructios are a subset of MIPS32 FPU
* instructions, we want to convert microMIPS FPU instructions
* into MIPS32 instructions so that we could reuse all of the
* FPU emulation code.
*
* NOTE: We cannot do this for branch instructions since they
* are not a subset. Example: Cannot emulate a 16-bit
* aligned target address with a MIPS32 instruction.
*/
if (dec_insn.micro_mips_mode) {
/*
* If next instruction is a 16-bit instruction, then it
* it cannot be a FPU instruction. This could happen
* since we can be called for non-FPU instructions.
*/
if ((pc_inc == 2) ||
(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
== SIGILL))
return SIGILL;
}
emul:
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
MIPS_FPU_EMU_INC_STATS(emulated);
switch (MIPSInst_OPCODE(ir)) {
case ldc1_op:
dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
MIPSInst_SIMM(ir));
MIPS_FPU_EMU_INC_STATS(loads);
if (!access_ok(dva, sizeof(u64))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = dva;
return SIGBUS;
}
if (__get_user(dval, dva)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = dva;
return SIGSEGV;
}
DITOREG(dval, MIPSInst_RT(ir));
break;
case sdc1_op:
dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
MIPSInst_SIMM(ir));
MIPS_FPU_EMU_INC_STATS(stores);
DIFROMREG(dval, MIPSInst_RT(ir));
if (!access_ok(dva, sizeof(u64))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = dva;
return SIGBUS;
}
if (__put_user(dval, dva)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = dva;
return SIGSEGV;
}
break;
case lwc1_op:
wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
MIPSInst_SIMM(ir));
MIPS_FPU_EMU_INC_STATS(loads);
if (!access_ok(wva, sizeof(u32))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = wva;
return SIGBUS;
}
if (__get_user(wval, wva)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = wva;
return SIGSEGV;
}
SITOREG(wval, MIPSInst_RT(ir));
break;
case swc1_op:
wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
MIPSInst_SIMM(ir));
MIPS_FPU_EMU_INC_STATS(stores);
SIFROMREG(wval, MIPSInst_RT(ir));
if (!access_ok(wva, sizeof(u32))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = wva;
return SIGBUS;
}
if (__put_user(wval, wva)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = wva;
return SIGSEGV;
}
break;
case cop1_op:
switch (MIPSInst_RS(ir)) {
case dmfc_op:
if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
return SIGILL;
/* copregister fs -> gpr[rt] */
if (MIPSInst_RT(ir) != 0) {
DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
MIPSInst_RD(ir));
}
break;
case dmtc_op:
if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
return SIGILL;
/* copregister fs <- rt */
DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
break;
case mfhc_op:
if (!cpu_has_mips_r2_r6)
return SIGILL;
/* copregister rd -> gpr[rt] */
if (MIPSInst_RT(ir) != 0) {
SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
MIPSInst_RD(ir));
}
break;
case mthc_op:
if (!cpu_has_mips_r2_r6)
return SIGILL;
/* copregister rd <- gpr[rt] */
SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
break;
case mfc_op:
/* copregister rd -> gpr[rt] */
if (MIPSInst_RT(ir) != 0) {
SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
MIPSInst_RD(ir));
}
break;
case mtc_op:
/* copregister rd <- rt */
SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
break;
case cfc_op:
/* cop control register rd -> gpr[rt] */
cop1_cfc(xcp, ctx, ir);
break;
case ctc_op:
/* copregister rd <- rt */
cop1_ctc(xcp, ctx, ir);
if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
return SIGFPE;
}
break;
case bc1eqz_op:
case bc1nez_op:
if (!cpu_has_mips_r6 || delay_slot(xcp))
return SIGILL;
likely = 0;
cond = 0;
fpr = &current->thread.fpu.fpr[MIPSInst_RT(ir)];
bit0 = get_fpr32(fpr, 0) & 0x1;
switch (MIPSInst_RS(ir)) {
case bc1eqz_op:
MIPS_FPU_EMU_INC_STATS(bc1eqz);
cond = bit0 == 0;
break;
case bc1nez_op:
MIPS_FPU_EMU_INC_STATS(bc1nez);
cond = bit0 != 0;
break;
}
goto branch_common;
case bc_op:
if (delay_slot(xcp))
return SIGILL;
if (cpu_has_mips_4_5_r)
cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
else
cbit = FPU_CSR_COND;
cond = ctx->fcr31 & cbit;
likely = 0;
switch (MIPSInst_RT(ir) & 3) {
case bcfl_op:
if (cpu_has_mips_2_3_4_5_r)
likely = 1;
fallthrough;
case bcf_op:
cond = !cond;
break;
case bctl_op:
if (cpu_has_mips_2_3_4_5_r)
likely = 1;
fallthrough;
case bct_op:
break;
}
branch_common:
MIPS_FPU_EMU_INC_STATS(branches);
set_delay_slot(xcp);
if (cond) {
/*
* Branch taken: emulate dslot instruction
*/
unsigned long bcpc;
/*
* Remember EPC at the branch to point back
* at so that any delay-slot instruction
* signal is not silently ignored.
*/
bcpc = xcp->cp0_epc;
xcp->cp0_epc += dec_insn.pc_inc;
contpc = MIPSInst_SIMM(ir);
ir = dec_insn.next_insn;
if (dec_insn.micro_mips_mode) {
contpc = (xcp->cp0_epc + (contpc << 1));
/* If 16-bit instruction, not FPU. */
if ((dec_insn.next_pc_inc == 2) ||
(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
/*
* Since this instruction will
* be put on the stack with
* 32-bit words, get around
* this problem by putting a
* NOP16 as the second one.
*/
if (dec_insn.next_pc_inc == 2)
ir = (ir & (~0xffff)) | MM_NOP16;
/*
* Single step the non-CP1
* instruction in the dslot.
*/
sig = mips_dsemul(xcp, ir,
bcpc, contpc);
if (sig < 0)
break;
if (sig)
xcp->cp0_epc = bcpc;
/*
* SIGILL forces out of
* the emulation loop.
*/
return sig ? sig : SIGILL;
}
} else
contpc = (xcp->cp0_epc + (contpc << 2));
switch (MIPSInst_OPCODE(ir)) {
case lwc1_op:
case swc1_op:
goto emul;
case ldc1_op:
case sdc1_op:
if (cpu_has_mips_2_3_4_5_r)
goto emul;
goto bc_sigill;
case cop1_op:
goto emul;
case cop1x_op:
if (cpu_has_mips_4_5_64_r2_r6)
/* its one of ours */
goto emul;
goto bc_sigill;
case spec_op:
switch (MIPSInst_FUNC(ir)) {
case movc_op:
if (cpu_has_mips_4_5_r)
goto emul;
goto bc_sigill;
}
break;
bc_sigill:
xcp->cp0_epc = bcpc;
return SIGILL;
}
/*
* Single step the non-cp1
* instruction in the dslot
*/
sig = mips_dsemul(xcp, ir, bcpc, contpc);
if (sig < 0)
break;
if (sig)
xcp->cp0_epc = bcpc;
/* SIGILL forces out of the emulation loop. */
return sig ? sig : SIGILL;
} else if (likely) { /* branch not taken */
/*
* branch likely nullifies
* dslot if not taken
*/
xcp->cp0_epc += dec_insn.pc_inc;
contpc += dec_insn.pc_inc;
/*
* else continue & execute
* dslot as normal insn
*/
}
break;
default:
if (!(MIPSInst_RS(ir) & 0x10))
return SIGILL;
/* a real fpu computation instruction */
sig = fpu_emu(xcp, ctx, ir);
if (sig)
return sig;
}
break;
case cop1x_op:
if (!cpu_has_mips_4_5_64_r2_r6)
return SIGILL;
sig = fpux_emu(xcp, ctx, ir, fault_addr);
if (sig)
return sig;
break;
case spec_op:
if (!cpu_has_mips_4_5_r)
return SIGILL;
if (MIPSInst_FUNC(ir) != movc_op)
return SIGILL;
cond = fpucondbit[MIPSInst_RT(ir) >> 2];
if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
xcp->regs[MIPSInst_RD(ir)] =
xcp->regs[MIPSInst_RS(ir)];
break;
default:
return SIGILL;
}
/* we did it !! */
xcp->cp0_epc = contpc;
clear_delay_slot(xcp);
return 0;
}
/*
* Conversion table from MIPS compare ops 48-63
* cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
*/
static const unsigned char cmptab[8] = {
0, /* cmp_0 (sig) cmp_sf */
IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
};
static const unsigned char negative_cmptab[8] = {
0, /* Reserved */
IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
IEEE754_CLT | IEEE754_CGT,
/* Reserved */
};
/*
* Additional MIPS4 instructions
*/
#define DEF3OP(name, p, f1, f2, f3) \
static union ieee754##p fpemu_##p##_##name(union ieee754##p r, \
union ieee754##p s, union ieee754##p t) \
{ \
struct _ieee754_csr ieee754_csr_save; \
s = f1(s, t); \
ieee754_csr_save = ieee754_csr; \
s = f2(s, r); \
ieee754_csr_save.cx |= ieee754_csr.cx; \
ieee754_csr_save.sx |= ieee754_csr.sx; \
s = f3(s); \
ieee754_csr.cx |= ieee754_csr_save.cx; \
ieee754_csr.sx |= ieee754_csr_save.sx; \
return s; \
}
static union ieee754dp fpemu_dp_recip(union ieee754dp d)
{
return ieee754dp_div(ieee754dp_one(0), d);
}
static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
{
return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
}
static union ieee754sp fpemu_sp_recip(union ieee754sp s)
{
return ieee754sp_div(ieee754sp_one(0), s);
}
static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
{
return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
}
DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
mips_instruction ir, void __user **fault_addr)
{
unsigned int rcsr = 0; /* resulting csr */
MIPS_FPU_EMU_INC_STATS(cp1xops);
switch (MIPSInst_FMA_FFMT(ir)) {
case s_fmt:{ /* 0 */
union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
union ieee754sp fd, fr, fs, ft;
u32 __user *va;
u32 val;
switch (MIPSInst_FUNC(ir)) {
case lwxc1_op:
va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
xcp->regs[MIPSInst_FT(ir)]);
MIPS_FPU_EMU_INC_STATS(loads);
if (!access_ok(va, sizeof(u32))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGBUS;
}
if (__get_user(val, va)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGSEGV;
}
SITOREG(val, MIPSInst_FD(ir));
break;
case swxc1_op:
va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
xcp->regs[MIPSInst_FT(ir)]);
MIPS_FPU_EMU_INC_STATS(stores);
SIFROMREG(val, MIPSInst_FS(ir));
if (!access_ok(va, sizeof(u32))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGBUS;
}
if (put_user(val, va)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGSEGV;
}
break;
case madd_s_op:
if (cpu_has_mac2008_only)
handler = ieee754sp_madd;
else
handler = fpemu_sp_madd;
goto scoptop;
case msub_s_op:
if (cpu_has_mac2008_only)
handler = ieee754sp_msub;
else
handler = fpemu_sp_msub;
goto scoptop;
case nmadd_s_op:
if (cpu_has_mac2008_only)
handler = ieee754sp_nmadd;
else
handler = fpemu_sp_nmadd;
goto scoptop;
case nmsub_s_op:
if (cpu_has_mac2008_only)
handler = ieee754sp_nmsub;
else
handler = fpemu_sp_nmsub;
goto scoptop;
scoptop:
SPFROMREG(fr, MIPSInst_FR(ir));
SPFROMREG(fs, MIPSInst_FS(ir));
SPFROMREG(ft, MIPSInst_FT(ir));
fd = (*handler) (fr, fs, ft);
SPTOREG(fd, MIPSInst_FD(ir));
copcsr:
if (ieee754_cxtest(IEEE754_INEXACT)) {
MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
}
if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
}
if (ieee754_cxtest(IEEE754_OVERFLOW)) {
MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
}
if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
}
ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
/*printk ("SIGFPE: FPU csr = %08x\n",
ctx->fcr31); */
return SIGFPE;
}
break;
default:
return SIGILL;
}
break;
}
case d_fmt:{ /* 1 */
union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
union ieee754dp fd, fr, fs, ft;
u64 __user *va;
u64 val;
switch (MIPSInst_FUNC(ir)) {
case ldxc1_op:
va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
xcp->regs[MIPSInst_FT(ir)]);
MIPS_FPU_EMU_INC_STATS(loads);
if (!access_ok(va, sizeof(u64))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGBUS;
}
if (__get_user(val, va)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGSEGV;
}
DITOREG(val, MIPSInst_FD(ir));
break;
case sdxc1_op:
va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
xcp->regs[MIPSInst_FT(ir)]);
MIPS_FPU_EMU_INC_STATS(stores);
DIFROMREG(val, MIPSInst_FS(ir));
if (!access_ok(va, sizeof(u64))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGBUS;
}
if (__put_user(val, va)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGSEGV;
}
break;
case madd_d_op:
if (cpu_has_mac2008_only)
handler = ieee754dp_madd;
else
handler = fpemu_dp_madd;
goto dcoptop;
case msub_d_op:
if (cpu_has_mac2008_only)
handler = ieee754dp_msub;
else
handler = fpemu_dp_msub;
goto dcoptop;
case nmadd_d_op:
if (cpu_has_mac2008_only)
handler = ieee754dp_nmadd;
else
handler = fpemu_dp_nmadd;
goto dcoptop;
case nmsub_d_op:
if (cpu_has_mac2008_only)
handler = ieee754dp_nmsub;
else
handler = fpemu_dp_nmsub;
goto dcoptop;
dcoptop:
DPFROMREG(fr, MIPSInst_FR(ir));
DPFROMREG(fs, MIPSInst_FS(ir));
DPFROMREG(ft, MIPSInst_FT(ir));
fd = (*handler) (fr, fs, ft);
DPTOREG(fd, MIPSInst_FD(ir));
goto copcsr;
default:
return SIGILL;
}
break;
}
case 0x3:
if (MIPSInst_FUNC(ir) != pfetch_op)
return SIGILL;
/* ignore prefx operation */
break;
default:
return SIGILL;
}
return 0;
}
/*
* Emulate a single COP1 arithmetic instruction.
*/
static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
mips_instruction ir)
{
int rfmt; /* resulting format */
unsigned int rcsr = 0; /* resulting csr */
unsigned int oldrm;
unsigned int cbit;
unsigned int cond;
union {
union ieee754dp d;
union ieee754sp s;
int w;
s64 l;
} rv; /* resulting value */
u64 bits;
MIPS_FPU_EMU_INC_STATS(cp1ops);
switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
case s_fmt: { /* 0 */
union {
union ieee754sp(*b) (union ieee754sp, union ieee754sp);
union ieee754sp(*u) (union ieee754sp);
} handler;
union ieee754sp fd, fs, ft;
switch (MIPSInst_FUNC(ir)) {
/* binary ops */
case fadd_op:
MIPS_FPU_EMU_INC_STATS(add_s);
handler.b = ieee754sp_add;
goto scopbop;
case fsub_op:
MIPS_FPU_EMU_INC_STATS(sub_s);
handler.b = ieee754sp_sub;
goto scopbop;
case fmul_op:
MIPS_FPU_EMU_INC_STATS(mul_s);
handler.b = ieee754sp_mul;
goto scopbop;
case fdiv_op:
MIPS_FPU_EMU_INC_STATS(div_s);
handler.b = ieee754sp_div;
goto scopbop;
/* unary ops */
case fsqrt_op:
if (!cpu_has_mips_2_3_4_5_r)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(sqrt_s);
handler.u = ieee754sp_sqrt;
goto scopuop;
/*
* Note that on some MIPS IV implementations such as the
* R5000 and R8000 the FSQRT and FRECIP instructions do not
* achieve full IEEE-754 accuracy - however this emulator does.
*/
case frsqrt_op:
if (!cpu_has_mips_4_5_64_r2_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(rsqrt_s);
handler.u = fpemu_sp_rsqrt;
goto scopuop;
case frecip_op:
if (!cpu_has_mips_4_5_64_r2_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(recip_s);
handler.u = fpemu_sp_recip;
goto scopuop;
case fmovc_op:
if (!cpu_has_mips_4_5_r)
return SIGILL;
cond = fpucondbit[MIPSInst_FT(ir) >> 2];
if (((ctx->fcr31 & cond) != 0) !=
((MIPSInst_FT(ir) & 1) != 0))
return 0;
SPFROMREG(rv.s, MIPSInst_FS(ir));
break;
case fmovz_op:
if (!cpu_has_mips_4_5_r)
return SIGILL;
if (xcp->regs[MIPSInst_FT(ir)] != 0)
return 0;
SPFROMREG(rv.s, MIPSInst_FS(ir));
break;
case fmovn_op:
if (!cpu_has_mips_4_5_r)
return SIGILL;
if (xcp->regs[MIPSInst_FT(ir)] == 0)
return 0;
SPFROMREG(rv.s, MIPSInst_FS(ir));
break;
case fseleqz_op:
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(seleqz_s);
SPFROMREG(rv.s, MIPSInst_FT(ir));
if (rv.w & 0x1)
rv.w = 0;
else
SPFROMREG(rv.s, MIPSInst_FS(ir));
break;
case fselnez_op:
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(selnez_s);
SPFROMREG(rv.s, MIPSInst_FT(ir));
if (rv.w & 0x1)
SPFROMREG(rv.s, MIPSInst_FS(ir));
else
rv.w = 0;
break;
case fmaddf_op: {
union ieee754sp ft, fs, fd;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(maddf_s);
SPFROMREG(ft, MIPSInst_FT(ir));
SPFROMREG(fs, MIPSInst_FS(ir));
SPFROMREG(fd, MIPSInst_FD(ir));
rv.s = ieee754sp_maddf(fd, fs, ft);
goto copcsr;
}
case fmsubf_op: {
union ieee754sp ft, fs, fd;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(msubf_s);
SPFROMREG(ft, MIPSInst_FT(ir));
SPFROMREG(fs, MIPSInst_FS(ir));
SPFROMREG(fd, MIPSInst_FD(ir));
rv.s = ieee754sp_msubf(fd, fs, ft);
goto copcsr;
}
case frint_op: {
union ieee754sp fs;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(rint_s);
SPFROMREG(fs, MIPSInst_FS(ir));
rv.s = ieee754sp_rint(fs);
goto copcsr;
}
case fclass_op: {
union ieee754sp fs;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(class_s);
SPFROMREG(fs, MIPSInst_FS(ir));
rv.w = ieee754sp_2008class(fs);
rfmt = w_fmt;
goto copcsr;
}
case fmin_op: {
union ieee754sp fs, ft;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(min_s);
SPFROMREG(ft, MIPSInst_FT(ir));
SPFROMREG(fs, MIPSInst_FS(ir));
rv.s = ieee754sp_fmin(fs, ft);
goto copcsr;
}
case fmina_op: {
union ieee754sp fs, ft;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(mina_s);
SPFROMREG(ft, MIPSInst_FT(ir));
SPFROMREG(fs, MIPSInst_FS(ir));
rv.s = ieee754sp_fmina(fs, ft);
goto copcsr;
}
case fmax_op: {
union ieee754sp fs, ft;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(max_s);
SPFROMREG(ft, MIPSInst_FT(ir));
SPFROMREG(fs, MIPSInst_FS(ir));
rv.s = ieee754sp_fmax(fs, ft);
goto copcsr;
}
case fmaxa_op: {
union ieee754sp fs, ft;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(maxa_s);
SPFROMREG(ft, MIPSInst_FT(ir));
SPFROMREG(fs, MIPSInst_FS(ir));
rv.s = ieee754sp_fmaxa(fs, ft);
goto copcsr;
}
case fabs_op:
MIPS_FPU_EMU_INC_STATS(abs_s);
handler.u = ieee754sp_abs;
goto scopuop;
case fneg_op:
MIPS_FPU_EMU_INC_STATS(neg_s);
handler.u = ieee754sp_neg;
goto scopuop;
case fmov_op:
/* an easy one */
MIPS_FPU_EMU_INC_STATS(mov_s);
SPFROMREG(rv.s, MIPSInst_FS(ir));
goto copcsr;
/* binary op on handler */
scopbop:
SPFROMREG(fs, MIPSInst_FS(ir));
SPFROMREG(ft, MIPSInst_FT(ir));
rv.s = (*handler.b) (fs, ft);
goto copcsr;
scopuop:
SPFROMREG(fs, MIPSInst_FS(ir));
rv.s = (*handler.u) (fs);
goto copcsr;
copcsr:
if (ieee754_cxtest(IEEE754_INEXACT)) {
MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
}
if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
}
if (ieee754_cxtest(IEEE754_OVERFLOW)) {
MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
}
if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
}
if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
}
break;
/* unary conv ops */
case fcvts_op:
return SIGILL; /* not defined */
case fcvtd_op:
MIPS_FPU_EMU_INC_STATS(cvt_d_s);
SPFROMREG(fs, MIPSInst_FS(ir));
rv.d = ieee754dp_fsp(fs);
rfmt = d_fmt;
goto copcsr;
case fcvtw_op:
MIPS_FPU_EMU_INC_STATS(cvt_w_s);
SPFROMREG(fs, MIPSInst_FS(ir));
rv.w = ieee754sp_tint(fs);
rfmt = w_fmt;
goto copcsr;
case fround_op:
case ftrunc_op:
case fceil_op:
case ffloor_op:
if (!cpu_has_mips_2_3_4_5_r)
return SIGILL;
if (MIPSInst_FUNC(ir) == fceil_op)
MIPS_FPU_EMU_INC_STATS(ceil_w_s);
if (MIPSInst_FUNC(ir) == ffloor_op)
MIPS_FPU_EMU_INC_STATS(floor_w_s);
if (MIPSInst_FUNC(ir) == fround_op)
MIPS_FPU_EMU_INC_STATS(round_w_s);
if (MIPSInst_FUNC(ir) == ftrunc_op)
MIPS_FPU_EMU_INC_STATS(trunc_w_s);
oldrm = ieee754_csr.rm;
SPFROMREG(fs, MIPSInst_FS(ir));
ieee754_csr.rm = MIPSInst_FUNC(ir);
rv.w = ieee754sp_tint(fs);
ieee754_csr.rm = oldrm;
rfmt = w_fmt;
goto copcsr;
case fsel_op:
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(sel_s);
SPFROMREG(fd, MIPSInst_FD(ir));
if (fd.bits & 0x1)
SPFROMREG(rv.s, MIPSInst_FT(ir));
else
SPFROMREG(rv.s, MIPSInst_FS(ir));
break;
case fcvtl_op:
if (!cpu_has_mips_3_4_5_64_r2_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(cvt_l_s);
SPFROMREG(fs, MIPSInst_FS(ir));
rv.l = ieee754sp_tlong(fs);
rfmt = l_fmt;
goto copcsr;
case froundl_op:
case ftruncl_op:
case fceill_op:
case ffloorl_op:
if (!cpu_has_mips_3_4_5_64_r2_r6)
return SIGILL;
if (MIPSInst_FUNC(ir) == fceill_op)
MIPS_FPU_EMU_INC_STATS(ceil_l_s);
if (MIPSInst_FUNC(ir) == ffloorl_op)
MIPS_FPU_EMU_INC_STATS(floor_l_s);
if (MIPSInst_FUNC(ir) == froundl_op)
MIPS_FPU_EMU_INC_STATS(round_l_s);
if (MIPSInst_FUNC(ir) == ftruncl_op)
MIPS_FPU_EMU_INC_STATS(trunc_l_s);
oldrm = ieee754_csr.rm;
SPFROMREG(fs, MIPSInst_FS(ir));
ieee754_csr.rm = MIPSInst_FUNC(ir);
rv.l = ieee754sp_tlong(fs);
ieee754_csr.rm = oldrm;
rfmt = l_fmt;
goto copcsr;
default:
if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
unsigned int cmpop;
union ieee754sp fs, ft;
cmpop = MIPSInst_FUNC(ir) - fcmp_op;
SPFROMREG(fs, MIPSInst_FS(ir));
SPFROMREG(ft, MIPSInst_FT(ir));
rv.w = ieee754sp_cmp(fs, ft,
cmptab[cmpop & 0x7], cmpop & 0x8);
rfmt = -1;
if ((cmpop & 0x8) && ieee754_cxtest
(IEEE754_INVALID_OPERATION))
rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
else
goto copcsr;
} else
return SIGILL;
break;
}
break;
}
case d_fmt: {
union ieee754dp fd, fs, ft;
union {
union ieee754dp(*b) (union ieee754dp, union ieee754dp);
union ieee754dp(*u) (union ieee754dp);
} handler;
switch (MIPSInst_FUNC(ir)) {
/* binary ops */
case fadd_op:
MIPS_FPU_EMU_INC_STATS(add_d);
handler.b = ieee754dp_add;
goto dcopbop;
case fsub_op:
MIPS_FPU_EMU_INC_STATS(sub_d);
handler.b = ieee754dp_sub;
goto dcopbop;
case fmul_op:
MIPS_FPU_EMU_INC_STATS(mul_d);
handler.b = ieee754dp_mul;
goto dcopbop;
case fdiv_op:
MIPS_FPU_EMU_INC_STATS(div_d);
handler.b = ieee754dp_div;
goto dcopbop;
/* unary ops */
case fsqrt_op:
if (!cpu_has_mips_2_3_4_5_r)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(sqrt_d);
handler.u = ieee754dp_sqrt;
goto dcopuop;
/*
* Note that on some MIPS IV implementations such as the
* R5000 and R8000 the FSQRT and FRECIP instructions do not
* achieve full IEEE-754 accuracy - however this emulator does.
*/
case frsqrt_op:
if (!cpu_has_mips_4_5_64_r2_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(rsqrt_d);
handler.u = fpemu_dp_rsqrt;
goto dcopuop;
case frecip_op:
if (!cpu_has_mips_4_5_64_r2_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(recip_d);
handler.u = fpemu_dp_recip;
goto dcopuop;
case fmovc_op:
if (!cpu_has_mips_4_5_r)
return SIGILL;
cond = fpucondbit[MIPSInst_FT(ir) >> 2];
if (((ctx->fcr31 & cond) != 0) !=
((MIPSInst_FT(ir) & 1) != 0))
return 0;
DPFROMREG(rv.d, MIPSInst_FS(ir));
break;
case fmovz_op:
if (!cpu_has_mips_4_5_r)
return SIGILL;
if (xcp->regs[MIPSInst_FT(ir)] != 0)
return 0;
DPFROMREG(rv.d, MIPSInst_FS(ir));
break;
case fmovn_op:
if (!cpu_has_mips_4_5_r)
return SIGILL;
if (xcp->regs[MIPSInst_FT(ir)] == 0)
return 0;
DPFROMREG(rv.d, MIPSInst_FS(ir));
break;
case fseleqz_op:
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(seleqz_d);
DPFROMREG(rv.d, MIPSInst_FT(ir));
if (rv.l & 0x1)
rv.l = 0;
else
DPFROMREG(rv.d, MIPSInst_FS(ir));
break;
case fselnez_op:
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(selnez_d);
DPFROMREG(rv.d, MIPSInst_FT(ir));
if (rv.l & 0x1)
DPFROMREG(rv.d, MIPSInst_FS(ir));
else
rv.l = 0;
break;
case fmaddf_op: {
union ieee754dp ft, fs, fd;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(maddf_d);
DPFROMREG(ft, MIPSInst_FT(ir));
DPFROMREG(fs, MIPSInst_FS(ir));
DPFROMREG(fd, MIPSInst_FD(ir));
rv.d = ieee754dp_maddf(fd, fs, ft);
goto copcsr;
}
case fmsubf_op: {
union ieee754dp ft, fs, fd;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(msubf_d);
DPFROMREG(ft, MIPSInst_FT(ir));
DPFROMREG(fs, MIPSInst_FS(ir));
DPFROMREG(fd, MIPSInst_FD(ir));
rv.d = ieee754dp_msubf(fd, fs, ft);
goto copcsr;
}
case frint_op: {
union ieee754dp fs;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(rint_d);
DPFROMREG(fs, MIPSInst_FS(ir));
rv.d = ieee754dp_rint(fs);
goto copcsr;
}
case fclass_op: {
union ieee754dp fs;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(class_d);
DPFROMREG(fs, MIPSInst_FS(ir));
rv.l = ieee754dp_2008class(fs);
rfmt = l_fmt;
goto copcsr;
}
case fmin_op: {
union ieee754dp fs, ft;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(min_d);
DPFROMREG(ft, MIPSInst_FT(ir));
DPFROMREG(fs, MIPSInst_FS(ir));
rv.d = ieee754dp_fmin(fs, ft);
goto copcsr;
}
case fmina_op: {
union ieee754dp fs, ft;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(mina_d);
DPFROMREG(ft, MIPSInst_FT(ir));
DPFROMREG(fs, MIPSInst_FS(ir));
rv.d = ieee754dp_fmina(fs, ft);
goto copcsr;
}
case fmax_op: {
union ieee754dp fs, ft;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(max_d);
DPFROMREG(ft, MIPSInst_FT(ir));
DPFROMREG(fs, MIPSInst_FS(ir));
rv.d = ieee754dp_fmax(fs, ft);
goto copcsr;
}
case fmaxa_op: {
union ieee754dp fs, ft;
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(maxa_d);
DPFROMREG(ft, MIPSInst_FT(ir));
DPFROMREG(fs, MIPSInst_FS(ir));
rv.d = ieee754dp_fmaxa(fs, ft);
goto copcsr;
}
case fabs_op:
MIPS_FPU_EMU_INC_STATS(abs_d);
handler.u = ieee754dp_abs;
goto dcopuop;
case fneg_op:
MIPS_FPU_EMU_INC_STATS(neg_d);
handler.u = ieee754dp_neg;
goto dcopuop;
case fmov_op:
/* an easy one */
MIPS_FPU_EMU_INC_STATS(mov_d);
DPFROMREG(rv.d, MIPSInst_FS(ir));
goto copcsr;
/* binary op on handler */
dcopbop:
DPFROMREG(fs, MIPSInst_FS(ir));
DPFROMREG(ft, MIPSInst_FT(ir));
rv.d = (*handler.b) (fs, ft);
goto copcsr;
dcopuop:
DPFROMREG(fs, MIPSInst_FS(ir));
rv.d = (*handler.u) (fs);
goto copcsr;
/*
* unary conv ops
*/
case fcvts_op:
MIPS_FPU_EMU_INC_STATS(cvt_s_d);
DPFROMREG(fs, MIPSInst_FS(ir));
rv.s = ieee754sp_fdp(fs);
rfmt = s_fmt;
goto copcsr;
case fcvtd_op:
return SIGILL; /* not defined */
case fcvtw_op:
MIPS_FPU_EMU_INC_STATS(cvt_w_d);
DPFROMREG(fs, MIPSInst_FS(ir));
rv.w = ieee754dp_tint(fs); /* wrong */
rfmt = w_fmt;
goto copcsr;
case fround_op:
case ftrunc_op:
case fceil_op:
case ffloor_op:
if (!cpu_has_mips_2_3_4_5_r)
return SIGILL;
if (MIPSInst_FUNC(ir) == fceil_op)
MIPS_FPU_EMU_INC_STATS(ceil_w_d);
if (MIPSInst_FUNC(ir) == ffloor_op)
MIPS_FPU_EMU_INC_STATS(floor_w_d);
if (MIPSInst_FUNC(ir) == fround_op)
MIPS_FPU_EMU_INC_STATS(round_w_d);
if (MIPSInst_FUNC(ir) == ftrunc_op)
MIPS_FPU_EMU_INC_STATS(trunc_w_d);
oldrm = ieee754_csr.rm;
DPFROMREG(fs, MIPSInst_FS(ir));
ieee754_csr.rm = MIPSInst_FUNC(ir);
rv.w = ieee754dp_tint(fs);
ieee754_csr.rm = oldrm;
rfmt = w_fmt;
goto copcsr;
case fsel_op:
if (!cpu_has_mips_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(sel_d);
DPFROMREG(fd, MIPSInst_FD(ir));
if (fd.bits & 0x1)
DPFROMREG(rv.d, MIPSInst_FT(ir));
else
DPFROMREG(rv.d, MIPSInst_FS(ir));
break;
case fcvtl_op:
if (!cpu_has_mips_3_4_5_64_r2_r6)
return SIGILL;
MIPS_FPU_EMU_INC_STATS(cvt_l_d);
DPFROMREG(fs, MIPSInst_FS(ir));
rv.l = ieee754dp_tlong(fs);
rfmt = l_fmt;
goto copcsr;
case froundl_op:
case ftruncl_op:
case fceill_op:
case ffloorl_op:
if (!cpu_has_mips_3_4_5_64_r2_r6)
return SIGILL;
if (MIPSInst_FUNC(ir) == fceill_op)
MIPS_FPU_EMU_INC_STATS(ceil_l_d);
if (MIPSInst_FUNC(ir) == ffloorl_op)
MIPS_FPU_EMU_INC_STATS(floor_l_d);
if (MIPSInst_FUNC(ir) == froundl_op)
MIPS_FPU_EMU_INC_STATS(round_l_d);
if (MIPSInst_FUNC(ir) == ftruncl_op)
MIPS_FPU_EMU_INC_STATS(trunc_l_d);
oldrm = ieee754_csr.rm;
DPFROMREG(fs, MIPSInst_FS(ir));
ieee754_csr.rm = MIPSInst_FUNC(ir);
rv.l = ieee754dp_tlong(fs);
ieee754_csr.rm = oldrm;
rfmt = l_fmt;
goto copcsr;
default:
if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
unsigned int cmpop;
union ieee754dp fs, ft;
cmpop = MIPSInst_FUNC(ir) - fcmp_op;
DPFROMREG(fs, MIPSInst_FS(ir));
DPFROMREG(ft, MIPSInst_FT(ir));
rv.w = ieee754dp_cmp(fs, ft,
cmptab[cmpop & 0x7], cmpop & 0x8);
rfmt = -1;
if ((cmpop & 0x8)
&&
ieee754_cxtest
(IEEE754_INVALID_OPERATION))
rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
else
goto copcsr;
}
else {
return SIGILL;
}
break;
}
break;
}
case w_fmt: {
union ieee754dp fs;
switch (MIPSInst_FUNC(ir)) {
case fcvts_op:
/* convert word to single precision real */
MIPS_FPU_EMU_INC_STATS(cvt_s_w);
SPFROMREG(fs, MIPSInst_FS(ir));
rv.s = ieee754sp_fint(fs.bits);
rfmt = s_fmt;
goto copcsr;
case fcvtd_op:
/* convert word to double precision real */
MIPS_FPU_EMU_INC_STATS(cvt_d_w);
SPFROMREG(fs, MIPSInst_FS(ir));
rv.d = ieee754dp_fint(fs.bits);
rfmt = d_fmt;
goto copcsr;
default: {
/* Emulating the new CMP.condn.fmt R6 instruction */
#define CMPOP_MASK 0x7
#define SIGN_BIT (0x1 << 3)
#define PREDICATE_BIT (0x1 << 4)
int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
union ieee754sp fs, ft;
/* This is an R6 only instruction */
if (!cpu_has_mips_r6 ||
(MIPSInst_FUNC(ir) & 0x20))
return SIGILL;
if (!sig) {
if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
switch (cmpop) {
case 0:
MIPS_FPU_EMU_INC_STATS(cmp_af_s);
break;
case 1:
MIPS_FPU_EMU_INC_STATS(cmp_un_s);
break;
case 2:
MIPS_FPU_EMU_INC_STATS(cmp_eq_s);
break;
case 3:
MIPS_FPU_EMU_INC_STATS(cmp_ueq_s);
break;
case 4:
MIPS_FPU_EMU_INC_STATS(cmp_lt_s);
break;
case 5:
MIPS_FPU_EMU_INC_STATS(cmp_ult_s);
break;
case 6:
MIPS_FPU_EMU_INC_STATS(cmp_le_s);
break;
case 7:
MIPS_FPU_EMU_INC_STATS(cmp_ule_s);
break;
}
} else {
switch (cmpop) {
case 1:
MIPS_FPU_EMU_INC_STATS(cmp_or_s);
break;
case 2:
MIPS_FPU_EMU_INC_STATS(cmp_une_s);
break;
case 3:
MIPS_FPU_EMU_INC_STATS(cmp_ne_s);
break;
}
}
} else {
if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
switch (cmpop) {
case 0:
MIPS_FPU_EMU_INC_STATS(cmp_saf_s);
break;
case 1:
MIPS_FPU_EMU_INC_STATS(cmp_sun_s);
break;
case 2:
MIPS_FPU_EMU_INC_STATS(cmp_seq_s);
break;
case 3:
MIPS_FPU_EMU_INC_STATS(cmp_sueq_s);
break;
case 4:
MIPS_FPU_EMU_INC_STATS(cmp_slt_s);
break;
case 5:
MIPS_FPU_EMU_INC_STATS(cmp_sult_s);
break;
case 6:
MIPS_FPU_EMU_INC_STATS(cmp_sle_s);
break;
case 7:
MIPS_FPU_EMU_INC_STATS(cmp_sule_s);
break;
}
} else {
switch (cmpop) {
case 1:
MIPS_FPU_EMU_INC_STATS(cmp_sor_s);
break;
case 2:
MIPS_FPU_EMU_INC_STATS(cmp_sune_s);
break;
case 3:
MIPS_FPU_EMU_INC_STATS(cmp_sne_s);
break;
}
}
}
/* fmt is w_fmt for single precision so fix it */
rfmt = s_fmt;
/* default to false */
rv.w = 0;
/* CMP.condn.S */
SPFROMREG(fs, MIPSInst_FS(ir));
SPFROMREG(ft, MIPSInst_FT(ir));
/* positive predicates */
if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
sig))
rv.w = -1; /* true, all 1s */
if ((sig) &&
ieee754_cxtest(IEEE754_INVALID_OPERATION))
rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
else
goto copcsr;
} else {
/* negative predicates */
switch (cmpop) {
case 1:
case 2:
case 3:
if (ieee754sp_cmp(fs, ft,
negative_cmptab[cmpop],
sig))
rv.w = -1; /* true, all 1s */
if (sig &&
ieee754_cxtest(IEEE754_INVALID_OPERATION))
rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
else
goto copcsr;
break;
default:
/* Reserved R6 ops */
return SIGILL;
}
}
break;
}
}
break;
}
case l_fmt:
if (!cpu_has_mips_3_4_5_64_r2_r6)
return SIGILL;
DIFROMREG(bits, MIPSInst_FS(ir));
switch (MIPSInst_FUNC(ir)) {
case fcvts_op:
/* convert long to single precision real */
MIPS_FPU_EMU_INC_STATS(cvt_s_l);
rv.s = ieee754sp_flong(bits);
rfmt = s_fmt;
goto copcsr;
case fcvtd_op:
/* convert long to double precision real */
MIPS_FPU_EMU_INC_STATS(cvt_d_l);
rv.d = ieee754dp_flong(bits);
rfmt = d_fmt;
goto copcsr;
default: {
/* Emulating the new CMP.condn.fmt R6 instruction */
int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
union ieee754dp fs, ft;
if (!cpu_has_mips_r6 ||
(MIPSInst_FUNC(ir) & 0x20))
return SIGILL;
if (!sig) {
if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
switch (cmpop) {
case 0:
MIPS_FPU_EMU_INC_STATS(cmp_af_d);
break;
case 1:
MIPS_FPU_EMU_INC_STATS(cmp_un_d);
break;
case 2:
MIPS_FPU_EMU_INC_STATS(cmp_eq_d);
break;
case 3:
MIPS_FPU_EMU_INC_STATS(cmp_ueq_d);
break;
case 4:
MIPS_FPU_EMU_INC_STATS(cmp_lt_d);
break;
case 5:
MIPS_FPU_EMU_INC_STATS(cmp_ult_d);
break;
case 6:
MIPS_FPU_EMU_INC_STATS(cmp_le_d);
break;
case 7:
MIPS_FPU_EMU_INC_STATS(cmp_ule_d);
break;
}
} else {
switch (cmpop) {
case 1:
MIPS_FPU_EMU_INC_STATS(cmp_or_d);
break;
case 2:
MIPS_FPU_EMU_INC_STATS(cmp_une_d);
break;
case 3:
MIPS_FPU_EMU_INC_STATS(cmp_ne_d);
break;
}
}
} else {
if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
switch (cmpop) {
case 0:
MIPS_FPU_EMU_INC_STATS(cmp_saf_d);
break;
case 1:
MIPS_FPU_EMU_INC_STATS(cmp_sun_d);
break;
case 2:
MIPS_FPU_EMU_INC_STATS(cmp_seq_d);
break;
case 3:
MIPS_FPU_EMU_INC_STATS(cmp_sueq_d);
break;
case 4:
MIPS_FPU_EMU_INC_STATS(cmp_slt_d);
break;
case 5:
MIPS_FPU_EMU_INC_STATS(cmp_sult_d);
break;
case 6:
MIPS_FPU_EMU_INC_STATS(cmp_sle_d);
break;
case 7:
MIPS_FPU_EMU_INC_STATS(cmp_sule_d);
break;
}
} else {
switch (cmpop) {
case 1:
MIPS_FPU_EMU_INC_STATS(cmp_sor_d);
break;
case 2:
MIPS_FPU_EMU_INC_STATS(cmp_sune_d);
break;
case 3:
MIPS_FPU_EMU_INC_STATS(cmp_sne_d);
break;
}
}
}
/* fmt is l_fmt for double precision so fix it */
rfmt = d_fmt;
/* default to false */
rv.l = 0;
/* CMP.condn.D */
DPFROMREG(fs, MIPSInst_FS(ir));
DPFROMREG(ft, MIPSInst_FT(ir));
/* positive predicates */
if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
if (ieee754dp_cmp(fs, ft,
cmptab[cmpop], sig))
rv.l = -1LL; /* true, all 1s */
if (sig &&
ieee754_cxtest(IEEE754_INVALID_OPERATION))
rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
else
goto copcsr;
} else {
/* negative predicates */
switch (cmpop) {
case 1:
case 2:
case 3:
if (ieee754dp_cmp(fs, ft,
negative_cmptab[cmpop],
sig))
rv.l = -1LL; /* true, all 1s */
if (sig &&
ieee754_cxtest(IEEE754_INVALID_OPERATION))
rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
else
goto copcsr;
break;
default:
/* Reserved R6 ops */
return SIGILL;
}
}
break;
}
}
break;
default:
return SIGILL;
}
/*
* Update the fpu CSR register for this operation.
* If an exception is required, generate a tidy SIGFPE exception,
* without updating the result register.
* Note: cause exception bits do not accumulate, they are rewritten
* for each op; only the flag/sticky bits accumulate.
*/
ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
return SIGFPE;
}
/*
* Now we can safely write the result back to the register file.
*/
switch (rfmt) {
case -1:
if (cpu_has_mips_4_5_r)
cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
else
cbit = FPU_CSR_COND;
if (rv.w)
ctx->fcr31 |= cbit;
else
ctx->fcr31 &= ~cbit;
break;
case d_fmt:
DPTOREG(rv.d, MIPSInst_FD(ir));
break;
case s_fmt:
SPTOREG(rv.s, MIPSInst_FD(ir));
break;
case w_fmt:
SITOREG(rv.w, MIPSInst_FD(ir));
break;
case l_fmt:
if (!cpu_has_mips_3_4_5_64_r2_r6)
return SIGILL;
DITOREG(rv.l, MIPSInst_FD(ir));
break;
default:
return SIGILL;
}
return 0;
}
/*
* Emulate FPU instructions.
*
* If we use FPU hardware, then we have been typically called to handle
* an unimplemented operation, such as where an operand is a NaN or
* denormalized. In that case exit the emulation loop after a single
* iteration so as to let hardware execute any subsequent instructions.
*
* If we have no FPU hardware or it has been disabled, then continue
* emulating floating-point instructions until one of these conditions
* has occurred:
*
* - a non-FPU instruction has been encountered,
*
* - an attempt to emulate has ended with a signal,
*
* - the ISA mode has been switched.
*
* We need to terminate the emulation loop if we got switched to the
* MIPS16 mode, whether supported or not, so that we do not attempt
* to emulate a MIPS16 instruction as a regular MIPS FPU instruction.
* Similarly if we got switched to the microMIPS mode and only the
* regular MIPS mode is supported, so that we do not attempt to emulate
* a microMIPS instruction as a regular MIPS FPU instruction. Or if
* we got switched to the regular MIPS mode and only the microMIPS mode
* is supported, so that we do not attempt to emulate a regular MIPS
* instruction that should cause an Address Error exception instead.
* For simplicity we always terminate upon an ISA mode switch.
*/
int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
int has_fpu, void __user **fault_addr)
{
unsigned long oldepc, prevepc;
struct mm_decoded_insn dec_insn;
u16 instr[4];
u16 *instr_ptr;
int sig = 0;
/*
* Initialize context if it hasn't been used already, otherwise ensure
* it has been saved to struct thread_struct.
*/
if (!init_fp_ctx(current))
lose_fpu(1);
oldepc = xcp->cp0_epc;
do {
prevepc = xcp->cp0_epc;
if (get_isa16_mode(prevepc) && cpu_has_mmips) {
/*
* Get next 2 microMIPS instructions and convert them
* into 32-bit instructions.
*/
if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
(get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
(get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
(get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
MIPS_FPU_EMU_INC_STATS(errors);
return SIGBUS;
}
instr_ptr = instr;
/* Get first instruction. */
if (mm_insn_16bit(*instr_ptr)) {
/* Duplicate the half-word. */
dec_insn.insn = (*instr_ptr << 16) |
(*instr_ptr);
/* 16-bit instruction. */
dec_insn.pc_inc = 2;
instr_ptr += 1;
} else {
dec_insn.insn = (*instr_ptr << 16) |
*(instr_ptr+1);
/* 32-bit instruction. */
dec_insn.pc_inc = 4;
instr_ptr += 2;
}
/* Get second instruction. */
if (mm_insn_16bit(*instr_ptr)) {
/* Duplicate the half-word. */
dec_insn.next_insn = (*instr_ptr << 16) |
(*instr_ptr);
/* 16-bit instruction. */
dec_insn.next_pc_inc = 2;
} else {
dec_insn.next_insn = (*instr_ptr << 16) |
*(instr_ptr+1);
/* 32-bit instruction. */
dec_insn.next_pc_inc = 4;
}
dec_insn.micro_mips_mode = 1;
} else {
if ((get_user(dec_insn.insn,
(mips_instruction __user *) xcp->cp0_epc)) ||
(get_user(dec_insn.next_insn,
(mips_instruction __user *)(xcp->cp0_epc+4)))) {
MIPS_FPU_EMU_INC_STATS(errors);
return SIGBUS;
}
dec_insn.pc_inc = 4;
dec_insn.next_pc_inc = 4;
dec_insn.micro_mips_mode = 0;
}
if ((dec_insn.insn == 0) ||
((dec_insn.pc_inc == 2) &&
((dec_insn.insn & 0xffff) == MM_NOP16)))
xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */
else {
/*
* The 'ieee754_csr' is an alias of ctx->fcr31.
* No need to copy ctx->fcr31 to ieee754_csr.
*/
sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
}
if (has_fpu)
break;
if (sig)
break;
/*
* We have to check for the ISA bit explicitly here,
* because `get_isa16_mode' may return 0 if support
* for code compression has been globally disabled,
* or otherwise we may produce the wrong signal or
* even proceed successfully where we must not.
*/
if ((xcp->cp0_epc ^ prevepc) & 0x1)
break;
cond_resched();
} while (xcp->cp0_epc > prevepc);
/* SIGILL indicates a non-fpu instruction */
if (sig == SIGILL && xcp->cp0_epc != oldepc)
/* but if EPC has advanced, then ignore it */
sig = 0;
return sig;
}