mirror of https://gitee.com/openkylin/linux.git
495 lines
11 KiB
C
495 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Implementation of the SID table type.
|
|
*
|
|
* Original author: Stephen Smalley, <sds@tycho.nsa.gov>
|
|
* Author: Ondrej Mosnacek, <omosnacek@gmail.com>
|
|
*
|
|
* Copyright (C) 2018 Red Hat, Inc.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/spinlock.h>
|
|
#include <asm/barrier.h>
|
|
#include "flask.h"
|
|
#include "security.h"
|
|
#include "sidtab.h"
|
|
|
|
int sidtab_init(struct sidtab *s)
|
|
{
|
|
u32 i;
|
|
|
|
memset(s->roots, 0, sizeof(s->roots));
|
|
|
|
/* max count is SIDTAB_MAX so valid index is always < SIDTAB_MAX */
|
|
for (i = 0; i < SIDTAB_RCACHE_SIZE; i++)
|
|
s->rcache[i] = SIDTAB_MAX;
|
|
|
|
for (i = 0; i < SECINITSID_NUM; i++)
|
|
s->isids[i].set = 0;
|
|
|
|
s->count = 0;
|
|
s->convert = NULL;
|
|
|
|
spin_lock_init(&s->lock);
|
|
return 0;
|
|
}
|
|
|
|
int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
|
|
{
|
|
struct sidtab_isid_entry *entry;
|
|
int rc;
|
|
|
|
if (sid == 0 || sid > SECINITSID_NUM)
|
|
return -EINVAL;
|
|
|
|
entry = &s->isids[sid - 1];
|
|
|
|
rc = context_cpy(&entry->context, context);
|
|
if (rc)
|
|
return rc;
|
|
|
|
entry->set = 1;
|
|
return 0;
|
|
}
|
|
|
|
static u32 sidtab_level_from_count(u32 count)
|
|
{
|
|
u32 capacity = SIDTAB_LEAF_ENTRIES;
|
|
u32 level = 0;
|
|
|
|
while (count > capacity) {
|
|
capacity <<= SIDTAB_INNER_SHIFT;
|
|
++level;
|
|
}
|
|
return level;
|
|
}
|
|
|
|
static int sidtab_alloc_roots(struct sidtab *s, u32 level)
|
|
{
|
|
u32 l;
|
|
|
|
if (!s->roots[0].ptr_leaf) {
|
|
s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
|
GFP_ATOMIC);
|
|
if (!s->roots[0].ptr_leaf)
|
|
return -ENOMEM;
|
|
}
|
|
for (l = 1; l <= level; ++l)
|
|
if (!s->roots[l].ptr_inner) {
|
|
s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
|
GFP_ATOMIC);
|
|
if (!s->roots[l].ptr_inner)
|
|
return -ENOMEM;
|
|
s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct context *sidtab_do_lookup(struct sidtab *s, u32 index, int alloc)
|
|
{
|
|
union sidtab_entry_inner *entry;
|
|
u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
|
|
|
|
/* find the level of the subtree we need */
|
|
level = sidtab_level_from_count(index + 1);
|
|
capacity_shift = level * SIDTAB_INNER_SHIFT;
|
|
|
|
/* allocate roots if needed */
|
|
if (alloc && sidtab_alloc_roots(s, level) != 0)
|
|
return NULL;
|
|
|
|
/* lookup inside the subtree */
|
|
entry = &s->roots[level];
|
|
while (level != 0) {
|
|
capacity_shift -= SIDTAB_INNER_SHIFT;
|
|
--level;
|
|
|
|
entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
|
|
leaf_index &= ((u32)1 << capacity_shift) - 1;
|
|
|
|
if (!entry->ptr_inner) {
|
|
if (alloc)
|
|
entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
|
GFP_ATOMIC);
|
|
if (!entry->ptr_inner)
|
|
return NULL;
|
|
}
|
|
}
|
|
if (!entry->ptr_leaf) {
|
|
if (alloc)
|
|
entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
|
GFP_ATOMIC);
|
|
if (!entry->ptr_leaf)
|
|
return NULL;
|
|
}
|
|
return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES].context;
|
|
}
|
|
|
|
static struct context *sidtab_lookup(struct sidtab *s, u32 index)
|
|
{
|
|
/* read entries only after reading count */
|
|
u32 count = smp_load_acquire(&s->count);
|
|
|
|
if (index >= count)
|
|
return NULL;
|
|
|
|
return sidtab_do_lookup(s, index, 0);
|
|
}
|
|
|
|
static struct context *sidtab_lookup_initial(struct sidtab *s, u32 sid)
|
|
{
|
|
return s->isids[sid - 1].set ? &s->isids[sid - 1].context : NULL;
|
|
}
|
|
|
|
static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
|
|
{
|
|
struct context *context;
|
|
|
|
if (sid != 0) {
|
|
if (sid > SECINITSID_NUM)
|
|
context = sidtab_lookup(s, sid - (SECINITSID_NUM + 1));
|
|
else
|
|
context = sidtab_lookup_initial(s, sid);
|
|
if (context && (!context->len || force))
|
|
return context;
|
|
}
|
|
|
|
return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
|
|
}
|
|
|
|
struct context *sidtab_search(struct sidtab *s, u32 sid)
|
|
{
|
|
return sidtab_search_core(s, sid, 0);
|
|
}
|
|
|
|
struct context *sidtab_search_force(struct sidtab *s, u32 sid)
|
|
{
|
|
return sidtab_search_core(s, sid, 1);
|
|
}
|
|
|
|
static int sidtab_find_context(union sidtab_entry_inner entry,
|
|
u32 *pos, u32 count, u32 level,
|
|
struct context *context, u32 *index)
|
|
{
|
|
int rc;
|
|
u32 i;
|
|
|
|
if (level != 0) {
|
|
struct sidtab_node_inner *node = entry.ptr_inner;
|
|
|
|
i = 0;
|
|
while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
|
|
rc = sidtab_find_context(node->entries[i],
|
|
pos, count, level - 1,
|
|
context, index);
|
|
if (rc == 0)
|
|
return 0;
|
|
i++;
|
|
}
|
|
} else {
|
|
struct sidtab_node_leaf *node = entry.ptr_leaf;
|
|
|
|
i = 0;
|
|
while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
|
|
if (context_cmp(&node->entries[i].context, context)) {
|
|
*index = *pos;
|
|
return 0;
|
|
}
|
|
(*pos)++;
|
|
i++;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
static void sidtab_rcache_update(struct sidtab *s, u32 index, u32 pos)
|
|
{
|
|
while (pos > 0) {
|
|
WRITE_ONCE(s->rcache[pos], READ_ONCE(s->rcache[pos - 1]));
|
|
--pos;
|
|
}
|
|
WRITE_ONCE(s->rcache[0], index);
|
|
}
|
|
|
|
static void sidtab_rcache_push(struct sidtab *s, u32 index)
|
|
{
|
|
sidtab_rcache_update(s, index, SIDTAB_RCACHE_SIZE - 1);
|
|
}
|
|
|
|
static int sidtab_rcache_search(struct sidtab *s, struct context *context,
|
|
u32 *index)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < SIDTAB_RCACHE_SIZE; i++) {
|
|
u32 v = READ_ONCE(s->rcache[i]);
|
|
|
|
if (v >= SIDTAB_MAX)
|
|
continue;
|
|
|
|
if (context_cmp(sidtab_do_lookup(s, v, 0), context)) {
|
|
sidtab_rcache_update(s, v, i);
|
|
*index = v;
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int sidtab_reverse_lookup(struct sidtab *s, struct context *context,
|
|
u32 *index)
|
|
{
|
|
unsigned long flags;
|
|
u32 count, count_locked, level, pos;
|
|
struct sidtab_convert_params *convert;
|
|
struct context *dst, *dst_convert;
|
|
int rc;
|
|
|
|
rc = sidtab_rcache_search(s, context, index);
|
|
if (rc == 0)
|
|
return 0;
|
|
|
|
/* read entries only after reading count */
|
|
count = smp_load_acquire(&s->count);
|
|
level = sidtab_level_from_count(count);
|
|
|
|
pos = 0;
|
|
rc = sidtab_find_context(s->roots[level], &pos, count, level,
|
|
context, index);
|
|
if (rc == 0) {
|
|
sidtab_rcache_push(s, *index);
|
|
return 0;
|
|
}
|
|
|
|
/* lock-free search failed: lock, re-search, and insert if not found */
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
|
|
convert = s->convert;
|
|
count_locked = s->count;
|
|
level = sidtab_level_from_count(count_locked);
|
|
|
|
/* if count has changed before we acquired the lock, then catch up */
|
|
while (count < count_locked) {
|
|
if (context_cmp(sidtab_do_lookup(s, count, 0), context)) {
|
|
sidtab_rcache_push(s, count);
|
|
*index = count;
|
|
rc = 0;
|
|
goto out_unlock;
|
|
}
|
|
++count;
|
|
}
|
|
|
|
/* bail out if we already reached max entries */
|
|
rc = -EOVERFLOW;
|
|
if (count >= SIDTAB_MAX)
|
|
goto out_unlock;
|
|
|
|
/* insert context into new entry */
|
|
rc = -ENOMEM;
|
|
dst = sidtab_do_lookup(s, count, 1);
|
|
if (!dst)
|
|
goto out_unlock;
|
|
|
|
rc = context_cpy(dst, context);
|
|
if (rc)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* if we are building a new sidtab, we need to convert the context
|
|
* and insert it there as well
|
|
*/
|
|
if (convert) {
|
|
rc = -ENOMEM;
|
|
dst_convert = sidtab_do_lookup(convert->target, count, 1);
|
|
if (!dst_convert) {
|
|
context_destroy(dst);
|
|
goto out_unlock;
|
|
}
|
|
|
|
rc = convert->func(context, dst_convert, convert->args);
|
|
if (rc) {
|
|
context_destroy(dst);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* at this point we know the insert won't fail */
|
|
convert->target->count = count + 1;
|
|
}
|
|
|
|
if (context->len)
|
|
pr_info("SELinux: Context %s is not valid (left unmapped).\n",
|
|
context->str);
|
|
|
|
sidtab_rcache_push(s, count);
|
|
*index = count;
|
|
|
|
/* write entries before writing new count */
|
|
smp_store_release(&s->count, count + 1);
|
|
|
|
rc = 0;
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
return rc;
|
|
}
|
|
|
|
int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
|
|
{
|
|
int rc;
|
|
u32 i;
|
|
|
|
for (i = 0; i < SECINITSID_NUM; i++) {
|
|
struct sidtab_isid_entry *entry = &s->isids[i];
|
|
|
|
if (entry->set && context_cmp(context, &entry->context)) {
|
|
*sid = i + 1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
rc = sidtab_reverse_lookup(s, context, sid);
|
|
if (rc)
|
|
return rc;
|
|
*sid += SECINITSID_NUM + 1;
|
|
return 0;
|
|
}
|
|
|
|
static int sidtab_convert_tree(union sidtab_entry_inner *edst,
|
|
union sidtab_entry_inner *esrc,
|
|
u32 *pos, u32 count, u32 level,
|
|
struct sidtab_convert_params *convert)
|
|
{
|
|
int rc;
|
|
u32 i;
|
|
|
|
if (level != 0) {
|
|
if (!edst->ptr_inner) {
|
|
edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
|
GFP_KERNEL);
|
|
if (!edst->ptr_inner)
|
|
return -ENOMEM;
|
|
}
|
|
i = 0;
|
|
while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
|
|
rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
|
|
&esrc->ptr_inner->entries[i],
|
|
pos, count, level - 1,
|
|
convert);
|
|
if (rc)
|
|
return rc;
|
|
i++;
|
|
}
|
|
} else {
|
|
if (!edst->ptr_leaf) {
|
|
edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
|
|
GFP_KERNEL);
|
|
if (!edst->ptr_leaf)
|
|
return -ENOMEM;
|
|
}
|
|
i = 0;
|
|
while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
|
|
rc = convert->func(&esrc->ptr_leaf->entries[i].context,
|
|
&edst->ptr_leaf->entries[i].context,
|
|
convert->args);
|
|
if (rc)
|
|
return rc;
|
|
(*pos)++;
|
|
i++;
|
|
}
|
|
cond_resched();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
|
|
{
|
|
unsigned long flags;
|
|
u32 count, level, pos;
|
|
int rc;
|
|
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
|
|
/* concurrent policy loads are not allowed */
|
|
if (s->convert) {
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
return -EBUSY;
|
|
}
|
|
|
|
count = s->count;
|
|
level = sidtab_level_from_count(count);
|
|
|
|
/* allocate last leaf in the new sidtab (to avoid race with
|
|
* live convert)
|
|
*/
|
|
rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
|
|
if (rc) {
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
return rc;
|
|
}
|
|
|
|
/* set count in case no new entries are added during conversion */
|
|
params->target->count = count;
|
|
|
|
/* enable live convert of new entries */
|
|
s->convert = params;
|
|
|
|
/* we can safely do the rest of the conversion outside the lock */
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
|
|
pr_info("SELinux: Converting %u SID table entries...\n", count);
|
|
|
|
/* convert all entries not covered by live convert */
|
|
pos = 0;
|
|
rc = sidtab_convert_tree(¶ms->target->roots[level],
|
|
&s->roots[level], &pos, count, level, params);
|
|
if (rc) {
|
|
/* we need to keep the old table - disable live convert */
|
|
spin_lock_irqsave(&s->lock, flags);
|
|
s->convert = NULL;
|
|
spin_unlock_irqrestore(&s->lock, flags);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
|
|
{
|
|
u32 i;
|
|
|
|
if (level != 0) {
|
|
struct sidtab_node_inner *node = entry.ptr_inner;
|
|
|
|
if (!node)
|
|
return;
|
|
|
|
for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
|
|
sidtab_destroy_tree(node->entries[i], level - 1);
|
|
kfree(node);
|
|
} else {
|
|
struct sidtab_node_leaf *node = entry.ptr_leaf;
|
|
|
|
if (!node)
|
|
return;
|
|
|
|
for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
|
|
context_destroy(&node->entries[i].context);
|
|
kfree(node);
|
|
}
|
|
}
|
|
|
|
void sidtab_destroy(struct sidtab *s)
|
|
{
|
|
u32 i, level;
|
|
|
|
for (i = 0; i < SECINITSID_NUM; i++)
|
|
if (s->isids[i].set)
|
|
context_destroy(&s->isids[i].context);
|
|
|
|
level = SIDTAB_MAX_LEVEL;
|
|
while (level && !s->roots[level].ptr_inner)
|
|
--level;
|
|
|
|
sidtab_destroy_tree(s->roots[level], level);
|
|
}
|