mirror of https://gitee.com/openkylin/linux.git
530 lines
14 KiB
C
530 lines
14 KiB
C
/*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
* PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/lmb.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/btext.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/sparsemem.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/fixmap.h>
|
|
|
|
#include "mmu_decl.h"
|
|
|
|
#ifndef CPU_FTR_COHERENT_ICACHE
|
|
#define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
|
|
#define CPU_FTR_NOEXECUTE 0
|
|
#endif
|
|
|
|
int init_bootmem_done;
|
|
int mem_init_done;
|
|
unsigned long memory_limit;
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
pte_t *kmap_pte;
|
|
pgprot_t kmap_prot;
|
|
|
|
EXPORT_SYMBOL(kmap_prot);
|
|
EXPORT_SYMBOL(kmap_pte);
|
|
|
|
static inline pte_t *virt_to_kpte(unsigned long vaddr)
|
|
{
|
|
return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr),
|
|
vaddr), vaddr), vaddr);
|
|
}
|
|
#endif
|
|
|
|
int page_is_ram(unsigned long pfn)
|
|
{
|
|
#ifndef CONFIG_PPC64 /* XXX for now */
|
|
return pfn < max_pfn;
|
|
#else
|
|
unsigned long paddr = (pfn << PAGE_SHIFT);
|
|
int i;
|
|
for (i=0; i < lmb.memory.cnt; i++) {
|
|
unsigned long base;
|
|
|
|
base = lmb.memory.region[i].base;
|
|
|
|
if ((paddr >= base) &&
|
|
(paddr < (base + lmb.memory.region[i].size))) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
if (ppc_md.phys_mem_access_prot)
|
|
return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
|
|
|
|
if (!page_is_ram(pfn))
|
|
vma_prot = __pgprot(pgprot_val(vma_prot)
|
|
| _PAGE_GUARDED | _PAGE_NO_CACHE);
|
|
return vma_prot;
|
|
}
|
|
EXPORT_SYMBOL(phys_mem_access_prot);
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
|
|
#ifdef CONFIG_NUMA
|
|
int memory_add_physaddr_to_nid(u64 start)
|
|
{
|
|
return hot_add_scn_to_nid(start);
|
|
}
|
|
#endif
|
|
|
|
int arch_add_memory(int nid, u64 start, u64 size)
|
|
{
|
|
struct pglist_data *pgdata;
|
|
struct zone *zone;
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
|
|
pgdata = NODE_DATA(nid);
|
|
|
|
start = (unsigned long)__va(start);
|
|
create_section_mapping(start, start + size);
|
|
|
|
/* this should work for most non-highmem platforms */
|
|
zone = pgdata->node_zones;
|
|
|
|
return __add_pages(zone, start_pfn, nr_pages);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
/*
|
|
* walk_memory_resource() needs to make sure there is no holes in a given
|
|
* memory range. PPC64 does not maintain the memory layout in /proc/iomem.
|
|
* Instead it maintains it in lmb.memory structures. Walk through the
|
|
* memory regions, find holes and callback for contiguous regions.
|
|
*/
|
|
int
|
|
walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg,
|
|
int (*func)(unsigned long, unsigned long, void *))
|
|
{
|
|
struct lmb_property res;
|
|
unsigned long pfn, len;
|
|
u64 end;
|
|
int ret = -1;
|
|
|
|
res.base = (u64) start_pfn << PAGE_SHIFT;
|
|
res.size = (u64) nr_pages << PAGE_SHIFT;
|
|
|
|
end = res.base + res.size - 1;
|
|
while ((res.base < end) && (lmb_find(&res) >= 0)) {
|
|
pfn = (unsigned long)(res.base >> PAGE_SHIFT);
|
|
len = (unsigned long)(res.size >> PAGE_SHIFT);
|
|
ret = (*func)(pfn, len, arg);
|
|
if (ret)
|
|
break;
|
|
res.base += (res.size + 1);
|
|
res.size = (end - res.base + 1);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(walk_memory_resource);
|
|
|
|
/*
|
|
* Initialize the bootmem system and give it all the memory we
|
|
* have available. If we are using highmem, we only put the
|
|
* lowmem into the bootmem system.
|
|
*/
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
void __init do_init_bootmem(void)
|
|
{
|
|
unsigned long i;
|
|
unsigned long start, bootmap_pages;
|
|
unsigned long total_pages;
|
|
int boot_mapsize;
|
|
|
|
max_low_pfn = max_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
|
|
total_pages = (lmb_end_of_DRAM() - memstart_addr) >> PAGE_SHIFT;
|
|
#ifdef CONFIG_HIGHMEM
|
|
total_pages = total_lowmem >> PAGE_SHIFT;
|
|
max_low_pfn = lowmem_end_addr >> PAGE_SHIFT;
|
|
#endif
|
|
|
|
/*
|
|
* Find an area to use for the bootmem bitmap. Calculate the size of
|
|
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
|
|
* Add 1 additional page in case the address isn't page-aligned.
|
|
*/
|
|
bootmap_pages = bootmem_bootmap_pages(total_pages);
|
|
|
|
start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
|
|
|
|
min_low_pfn = MEMORY_START >> PAGE_SHIFT;
|
|
boot_mapsize = init_bootmem_node(NODE_DATA(0), start >> PAGE_SHIFT, min_low_pfn, max_low_pfn);
|
|
|
|
/* Add active regions with valid PFNs */
|
|
for (i = 0; i < lmb.memory.cnt; i++) {
|
|
unsigned long start_pfn, end_pfn;
|
|
start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
|
|
end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
|
|
add_active_range(0, start_pfn, end_pfn);
|
|
}
|
|
|
|
/* Add all physical memory to the bootmem map, mark each area
|
|
* present.
|
|
*/
|
|
#ifdef CONFIG_HIGHMEM
|
|
free_bootmem_with_active_regions(0, lowmem_end_addr >> PAGE_SHIFT);
|
|
|
|
/* reserve the sections we're already using */
|
|
for (i = 0; i < lmb.reserved.cnt; i++) {
|
|
unsigned long addr = lmb.reserved.region[i].base +
|
|
lmb_size_bytes(&lmb.reserved, i) - 1;
|
|
if (addr < lowmem_end_addr)
|
|
reserve_bootmem(lmb.reserved.region[i].base,
|
|
lmb_size_bytes(&lmb.reserved, i),
|
|
BOOTMEM_DEFAULT);
|
|
else if (lmb.reserved.region[i].base < lowmem_end_addr) {
|
|
unsigned long adjusted_size = lowmem_end_addr -
|
|
lmb.reserved.region[i].base;
|
|
reserve_bootmem(lmb.reserved.region[i].base,
|
|
adjusted_size, BOOTMEM_DEFAULT);
|
|
}
|
|
}
|
|
#else
|
|
free_bootmem_with_active_regions(0, max_pfn);
|
|
|
|
/* reserve the sections we're already using */
|
|
for (i = 0; i < lmb.reserved.cnt; i++)
|
|
reserve_bootmem(lmb.reserved.region[i].base,
|
|
lmb_size_bytes(&lmb.reserved, i),
|
|
BOOTMEM_DEFAULT);
|
|
|
|
#endif
|
|
/* XXX need to clip this if using highmem? */
|
|
sparse_memory_present_with_active_regions(0);
|
|
|
|
init_bootmem_done = 1;
|
|
}
|
|
|
|
/* mark pages that don't exist as nosave */
|
|
static int __init mark_nonram_nosave(void)
|
|
{
|
|
unsigned long lmb_next_region_start_pfn,
|
|
lmb_region_max_pfn;
|
|
int i;
|
|
|
|
for (i = 0; i < lmb.memory.cnt - 1; i++) {
|
|
lmb_region_max_pfn =
|
|
(lmb.memory.region[i].base >> PAGE_SHIFT) +
|
|
(lmb.memory.region[i].size >> PAGE_SHIFT);
|
|
lmb_next_region_start_pfn =
|
|
lmb.memory.region[i+1].base >> PAGE_SHIFT;
|
|
|
|
if (lmb_region_max_pfn < lmb_next_region_start_pfn)
|
|
register_nosave_region(lmb_region_max_pfn,
|
|
lmb_next_region_start_pfn);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables - in fact we've already done this.
|
|
*/
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long total_ram = lmb_phys_mem_size();
|
|
phys_addr_t top_of_ram = lmb_end_of_DRAM();
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
#ifdef CONFIG_PPC32
|
|
unsigned long v = __fix_to_virt(__end_of_fixed_addresses - 1);
|
|
unsigned long end = __fix_to_virt(FIX_HOLE);
|
|
|
|
for (; v < end; v += PAGE_SIZE)
|
|
map_page(v, 0, 0); /* XXX gross */
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
map_page(PKMAP_BASE, 0, 0); /* XXX gross */
|
|
pkmap_page_table = virt_to_kpte(PKMAP_BASE);
|
|
|
|
kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
|
|
kmap_prot = PAGE_KERNEL;
|
|
#endif /* CONFIG_HIGHMEM */
|
|
|
|
printk(KERN_DEBUG "Top of RAM: 0x%llx, Total RAM: 0x%lx\n",
|
|
(unsigned long long)top_of_ram, total_ram);
|
|
printk(KERN_DEBUG "Memory hole size: %ldMB\n",
|
|
(long int)((top_of_ram - total_ram) >> 20));
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
#ifdef CONFIG_HIGHMEM
|
|
max_zone_pfns[ZONE_DMA] = lowmem_end_addr >> PAGE_SHIFT;
|
|
max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
|
|
#else
|
|
max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
|
|
#endif
|
|
free_area_init_nodes(max_zone_pfns);
|
|
|
|
mark_nonram_nosave();
|
|
}
|
|
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
int nid;
|
|
#endif
|
|
pg_data_t *pgdat;
|
|
unsigned long i;
|
|
struct page *page;
|
|
unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
|
|
|
|
num_physpages = lmb.memory.size >> PAGE_SHIFT;
|
|
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
for_each_online_node(nid) {
|
|
if (NODE_DATA(nid)->node_spanned_pages != 0) {
|
|
printk("freeing bootmem node %d\n", nid);
|
|
totalram_pages +=
|
|
free_all_bootmem_node(NODE_DATA(nid));
|
|
}
|
|
}
|
|
#else
|
|
max_mapnr = max_pfn;
|
|
totalram_pages += free_all_bootmem();
|
|
#endif
|
|
for_each_online_pgdat(pgdat) {
|
|
for (i = 0; i < pgdat->node_spanned_pages; i++) {
|
|
if (!pfn_valid(pgdat->node_start_pfn + i))
|
|
continue;
|
|
page = pgdat_page_nr(pgdat, i);
|
|
if (PageReserved(page))
|
|
reservedpages++;
|
|
}
|
|
}
|
|
|
|
codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
|
|
datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
|
|
initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
|
|
bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
{
|
|
unsigned long pfn, highmem_mapnr;
|
|
|
|
highmem_mapnr = lowmem_end_addr >> PAGE_SHIFT;
|
|
for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
if (lmb_is_reserved(pfn << PAGE_SHIFT))
|
|
continue;
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
__free_page(page);
|
|
totalhigh_pages++;
|
|
reservedpages--;
|
|
}
|
|
totalram_pages += totalhigh_pages;
|
|
printk(KERN_DEBUG "High memory: %luk\n",
|
|
totalhigh_pages << (PAGE_SHIFT-10));
|
|
}
|
|
#endif /* CONFIG_HIGHMEM */
|
|
|
|
printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
|
|
"%luk reserved, %luk data, %luk bss, %luk init)\n",
|
|
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
|
|
num_physpages << (PAGE_SHIFT-10),
|
|
codesize >> 10,
|
|
reservedpages << (PAGE_SHIFT-10),
|
|
datasize >> 10,
|
|
bsssize >> 10,
|
|
initsize >> 10);
|
|
|
|
mem_init_done = 1;
|
|
}
|
|
|
|
/*
|
|
* This is called when a page has been modified by the kernel.
|
|
* It just marks the page as not i-cache clean. We do the i-cache
|
|
* flush later when the page is given to a user process, if necessary.
|
|
*/
|
|
void flush_dcache_page(struct page *page)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
|
|
return;
|
|
/* avoid an atomic op if possible */
|
|
if (test_bit(PG_arch_1, &page->flags))
|
|
clear_bit(PG_arch_1, &page->flags);
|
|
}
|
|
EXPORT_SYMBOL(flush_dcache_page);
|
|
|
|
void flush_dcache_icache_page(struct page *page)
|
|
{
|
|
#ifdef CONFIG_BOOKE
|
|
void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
|
|
__flush_dcache_icache(start);
|
|
kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
|
|
#elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
|
|
/* On 8xx there is no need to kmap since highmem is not supported */
|
|
__flush_dcache_icache(page_address(page));
|
|
#else
|
|
__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
|
|
#endif
|
|
|
|
}
|
|
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
|
|
{
|
|
clear_page(page);
|
|
|
|
/*
|
|
* We shouldnt have to do this, but some versions of glibc
|
|
* require it (ld.so assumes zero filled pages are icache clean)
|
|
* - Anton
|
|
*/
|
|
flush_dcache_page(pg);
|
|
}
|
|
EXPORT_SYMBOL(clear_user_page);
|
|
|
|
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
|
|
struct page *pg)
|
|
{
|
|
copy_page(vto, vfrom);
|
|
|
|
/*
|
|
* We should be able to use the following optimisation, however
|
|
* there are two problems.
|
|
* Firstly a bug in some versions of binutils meant PLT sections
|
|
* were not marked executable.
|
|
* Secondly the first word in the GOT section is blrl, used
|
|
* to establish the GOT address. Until recently the GOT was
|
|
* not marked executable.
|
|
* - Anton
|
|
*/
|
|
#if 0
|
|
if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
|
|
return;
|
|
#endif
|
|
|
|
flush_dcache_page(pg);
|
|
}
|
|
|
|
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
|
|
unsigned long addr, int len)
|
|
{
|
|
unsigned long maddr;
|
|
|
|
maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
|
|
flush_icache_range(maddr, maddr + len);
|
|
kunmap(page);
|
|
}
|
|
EXPORT_SYMBOL(flush_icache_user_range);
|
|
|
|
/*
|
|
* This is called at the end of handling a user page fault, when the
|
|
* fault has been handled by updating a PTE in the linux page tables.
|
|
* We use it to preload an HPTE into the hash table corresponding to
|
|
* the updated linux PTE.
|
|
*
|
|
* This must always be called with the pte lock held.
|
|
*/
|
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
|
|
pte_t pte)
|
|
{
|
|
#ifdef CONFIG_PPC_STD_MMU
|
|
unsigned long access = 0, trap;
|
|
#endif
|
|
unsigned long pfn = pte_pfn(pte);
|
|
|
|
/* handle i-cache coherency */
|
|
if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
|
|
!cpu_has_feature(CPU_FTR_NOEXECUTE) &&
|
|
pfn_valid(pfn)) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
#ifdef CONFIG_8xx
|
|
/* On 8xx, cache control instructions (particularly
|
|
* "dcbst" from flush_dcache_icache) fault as write
|
|
* operation if there is an unpopulated TLB entry
|
|
* for the address in question. To workaround that,
|
|
* we invalidate the TLB here, thus avoiding dcbst
|
|
* misbehaviour.
|
|
*/
|
|
_tlbie(address, 0 /* 8xx doesn't care about PID */);
|
|
#endif
|
|
/* The _PAGE_USER test should really be _PAGE_EXEC, but
|
|
* older glibc versions execute some code from no-exec
|
|
* pages, which for now we are supporting. If exec-only
|
|
* pages are ever implemented, this will have to change.
|
|
*/
|
|
if (!PageReserved(page) && (pte_val(pte) & _PAGE_USER)
|
|
&& !test_bit(PG_arch_1, &page->flags)) {
|
|
if (vma->vm_mm == current->active_mm) {
|
|
__flush_dcache_icache((void *) address);
|
|
} else
|
|
flush_dcache_icache_page(page);
|
|
set_bit(PG_arch_1, &page->flags);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU
|
|
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
|
|
if (!pte_young(pte) || address >= TASK_SIZE)
|
|
return;
|
|
|
|
/* We try to figure out if we are coming from an instruction
|
|
* access fault and pass that down to __hash_page so we avoid
|
|
* double-faulting on execution of fresh text. We have to test
|
|
* for regs NULL since init will get here first thing at boot
|
|
*
|
|
* We also avoid filling the hash if not coming from a fault
|
|
*/
|
|
if (current->thread.regs == NULL)
|
|
return;
|
|
trap = TRAP(current->thread.regs);
|
|
if (trap == 0x400)
|
|
access |= _PAGE_EXEC;
|
|
else if (trap != 0x300)
|
|
return;
|
|
hash_preload(vma->vm_mm, address, access, trap);
|
|
#endif /* CONFIG_PPC_STD_MMU */
|
|
}
|