mirror of https://gitee.com/openkylin/linux.git
677 lines
16 KiB
C
677 lines
16 KiB
C
/*
|
|
* Copyright (C) 2017 Free Electrons
|
|
* Copyright (C) 2017 NextThing Co
|
|
*
|
|
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/slab.h>
|
|
|
|
#define NAND_HYNIX_CMD_SET_PARAMS 0x36
|
|
#define NAND_HYNIX_CMD_APPLY_PARAMS 0x16
|
|
|
|
#define NAND_HYNIX_1XNM_RR_REPEAT 8
|
|
|
|
/**
|
|
* struct hynix_read_retry - read-retry data
|
|
* @nregs: number of register to set when applying a new read-retry mode
|
|
* @regs: register offsets (NAND chip dependent)
|
|
* @values: array of values to set in registers. The array size is equal to
|
|
* (nregs * nmodes)
|
|
*/
|
|
struct hynix_read_retry {
|
|
int nregs;
|
|
const u8 *regs;
|
|
u8 values[0];
|
|
};
|
|
|
|
/**
|
|
* struct hynix_nand - private Hynix NAND struct
|
|
* @nand_technology: manufacturing process expressed in picometer
|
|
* @read_retry: read-retry information
|
|
*/
|
|
struct hynix_nand {
|
|
const struct hynix_read_retry *read_retry;
|
|
};
|
|
|
|
/**
|
|
* struct hynix_read_retry_otp - structure describing how the read-retry OTP
|
|
* area
|
|
* @nregs: number of hynix private registers to set before reading the reading
|
|
* the OTP area
|
|
* @regs: registers that should be configured
|
|
* @values: values that should be set in regs
|
|
* @page: the address to pass to the READ_PAGE command. Depends on the NAND
|
|
* chip
|
|
* @size: size of the read-retry OTP section
|
|
*/
|
|
struct hynix_read_retry_otp {
|
|
int nregs;
|
|
const u8 *regs;
|
|
const u8 *values;
|
|
int page;
|
|
int size;
|
|
};
|
|
|
|
static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
|
|
{
|
|
u8 jedecid[5] = { };
|
|
int ret;
|
|
|
|
ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
|
|
if (ret)
|
|
return false;
|
|
|
|
return !strncmp("JEDEC", jedecid, sizeof(jedecid));
|
|
}
|
|
|
|
static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (chip->exec_op) {
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(cmd, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(instrs);
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->cmdfunc(mtd, cmd, -1, -1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u16 column = ((u16)addr << 8) | addr;
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
|
|
chip->write_byte(mtd, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
|
|
const u8 *values;
|
|
int i, ret;
|
|
|
|
values = hynix->read_retry->values +
|
|
(retry_mode * hynix->read_retry->nregs);
|
|
|
|
/* Enter 'Set Hynix Parameters' mode */
|
|
ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Configure the NAND in the requested read-retry mode.
|
|
* This is done by setting pre-defined values in internal NAND
|
|
* registers.
|
|
*
|
|
* The set of registers is NAND specific, and the values are either
|
|
* predefined or extracted from an OTP area on the NAND (values are
|
|
* probably tweaked at production in this case).
|
|
*/
|
|
for (i = 0; i < hynix->read_retry->nregs; i++) {
|
|
ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
|
|
values[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Apply the new settings. */
|
|
return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
|
|
}
|
|
|
|
/**
|
|
* hynix_get_majority - get the value that is occurring the most in a given
|
|
* set of values
|
|
* @in: the array of values to test
|
|
* @repeat: the size of the in array
|
|
* @out: pointer used to store the output value
|
|
*
|
|
* This function implements the 'majority check' logic that is supposed to
|
|
* overcome the unreliability of MLC NANDs when reading the OTP area storing
|
|
* the read-retry parameters.
|
|
*
|
|
* It's based on a pretty simple assumption: if we repeat the same value
|
|
* several times and then take the one that is occurring the most, we should
|
|
* find the correct value.
|
|
* Let's hope this dummy algorithm prevents us from losing the read-retry
|
|
* parameters.
|
|
*/
|
|
static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
|
|
{
|
|
int i, j, half = repeat / 2;
|
|
|
|
/*
|
|
* We only test the first half of the in array because we must ensure
|
|
* that the value is at least occurring repeat / 2 times.
|
|
*
|
|
* This loop is suboptimal since we may count the occurrences of the
|
|
* same value several time, but we are doing that on small sets, which
|
|
* makes it acceptable.
|
|
*/
|
|
for (i = 0; i < half; i++) {
|
|
int cnt = 0;
|
|
u8 val = in[i];
|
|
|
|
/* Count all values that are matching the one at index i. */
|
|
for (j = i + 1; j < repeat; j++) {
|
|
if (in[j] == val)
|
|
cnt++;
|
|
}
|
|
|
|
/* We found a value occurring more than repeat / 2. */
|
|
if (cnt > half) {
|
|
*out = val;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static int hynix_read_rr_otp(struct nand_chip *chip,
|
|
const struct hynix_read_retry_otp *info,
|
|
void *buf)
|
|
{
|
|
int i, ret;
|
|
|
|
ret = nand_reset_op(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < info->nregs; i++) {
|
|
ret = hynix_nand_reg_write_op(chip, info->regs[i],
|
|
info->values[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Sequence to enter OTP mode? */
|
|
ret = hynix_nand_cmd_op(chip, 0x17);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = hynix_nand_cmd_op(chip, 0x4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = hynix_nand_cmd_op(chip, 0x19);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Now read the page */
|
|
ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Put everything back to normal */
|
|
ret = nand_reset_op(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = hynix_nand_reg_write_op(chip, 0x38, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return nand_read_page_op(chip, 0, 0, NULL, 0);
|
|
}
|
|
|
|
#define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0
|
|
#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8
|
|
#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \
|
|
(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
|
|
|
|
static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
|
|
int mode, int reg, bool inv, u8 *val)
|
|
{
|
|
u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
|
|
int val_offs = (mode * nregs) + reg;
|
|
int set_size = nmodes * nregs;
|
|
int i, ret;
|
|
|
|
for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
|
|
int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
|
|
|
|
tmp[i] = buf[val_offs + set_offs];
|
|
}
|
|
|
|
ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (inv)
|
|
*val = ~*val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u8 hynix_1xnm_mlc_read_retry_regs[] = {
|
|
0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
|
|
};
|
|
|
|
static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
|
|
const struct hynix_read_retry_otp *info)
|
|
{
|
|
struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
|
|
struct hynix_read_retry *rr = NULL;
|
|
int ret, i, j;
|
|
u8 nregs, nmodes;
|
|
u8 *buf;
|
|
|
|
buf = kmalloc(info->size, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
ret = hynix_read_rr_otp(chip, info, buf);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
|
|
&nmodes);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
|
|
NAND_HYNIX_1XNM_RR_REPEAT,
|
|
&nregs);
|
|
if (ret)
|
|
goto out;
|
|
|
|
rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
|
|
if (!rr) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < nmodes; i++) {
|
|
for (j = 0; j < nregs; j++) {
|
|
u8 *val = rr->values + (i * nregs);
|
|
|
|
ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
|
|
false, val);
|
|
if (!ret)
|
|
continue;
|
|
|
|
ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
|
|
true, val);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
rr->nregs = nregs;
|
|
rr->regs = hynix_1xnm_mlc_read_retry_regs;
|
|
hynix->read_retry = rr;
|
|
chip->setup_read_retry = hynix_nand_setup_read_retry;
|
|
chip->read_retries = nmodes;
|
|
|
|
out:
|
|
kfree(buf);
|
|
|
|
if (ret)
|
|
kfree(rr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
|
|
static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
|
|
|
|
static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
|
|
{
|
|
.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
|
|
.regs = hynix_mlc_1xnm_rr_otp_regs,
|
|
.values = hynix_mlc_1xnm_rr_otp_values,
|
|
.page = 0x21f,
|
|
.size = 784
|
|
},
|
|
{
|
|
.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
|
|
.regs = hynix_mlc_1xnm_rr_otp_regs,
|
|
.values = hynix_mlc_1xnm_rr_otp_values,
|
|
.page = 0x200,
|
|
.size = 528,
|
|
},
|
|
};
|
|
|
|
static int hynix_nand_rr_init(struct nand_chip *chip)
|
|
{
|
|
int i, ret = 0;
|
|
bool valid_jedecid;
|
|
|
|
valid_jedecid = hynix_nand_has_valid_jedecid(chip);
|
|
|
|
/*
|
|
* We only support read-retry for 1xnm NANDs, and those NANDs all
|
|
* expose a valid JEDEC ID.
|
|
*/
|
|
if (valid_jedecid) {
|
|
u8 nand_tech = chip->id.data[5] >> 4;
|
|
|
|
/* 1xnm technology */
|
|
if (nand_tech == 4) {
|
|
for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
|
|
i++) {
|
|
/*
|
|
* FIXME: Hynix recommend to copy the
|
|
* read-retry OTP area into a normal page.
|
|
*/
|
|
ret = hynix_mlc_1xnm_rr_init(chip,
|
|
hynix_mlc_1xnm_rr_otps);
|
|
if (!ret)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ret)
|
|
pr_warn("failed to initialize read-retry infrastructure");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hynix_nand_extract_oobsize(struct nand_chip *chip,
|
|
bool valid_jedecid)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u8 oobsize;
|
|
|
|
oobsize = ((chip->id.data[3] >> 2) & 0x3) |
|
|
((chip->id.data[3] >> 4) & 0x4);
|
|
|
|
if (valid_jedecid) {
|
|
switch (oobsize) {
|
|
case 0:
|
|
mtd->oobsize = 2048;
|
|
break;
|
|
case 1:
|
|
mtd->oobsize = 1664;
|
|
break;
|
|
case 2:
|
|
mtd->oobsize = 1024;
|
|
break;
|
|
case 3:
|
|
mtd->oobsize = 640;
|
|
break;
|
|
default:
|
|
/*
|
|
* We should never reach this case, but if that
|
|
* happens, this probably means Hynix decided to use
|
|
* a different extended ID format, and we should find
|
|
* a way to support it.
|
|
*/
|
|
WARN(1, "Invalid OOB size");
|
|
break;
|
|
}
|
|
} else {
|
|
switch (oobsize) {
|
|
case 0:
|
|
mtd->oobsize = 128;
|
|
break;
|
|
case 1:
|
|
mtd->oobsize = 224;
|
|
break;
|
|
case 2:
|
|
mtd->oobsize = 448;
|
|
break;
|
|
case 3:
|
|
mtd->oobsize = 64;
|
|
break;
|
|
case 4:
|
|
mtd->oobsize = 32;
|
|
break;
|
|
case 5:
|
|
mtd->oobsize = 16;
|
|
break;
|
|
case 6:
|
|
mtd->oobsize = 640;
|
|
break;
|
|
default:
|
|
/*
|
|
* We should never reach this case, but if that
|
|
* happens, this probably means Hynix decided to use
|
|
* a different extended ID format, and we should find
|
|
* a way to support it.
|
|
*/
|
|
WARN(1, "Invalid OOB size");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
|
|
bool valid_jedecid)
|
|
{
|
|
u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
|
|
|
|
if (valid_jedecid) {
|
|
/* Reference: H27UCG8T2E datasheet */
|
|
chip->ecc_step_ds = 1024;
|
|
|
|
switch (ecc_level) {
|
|
case 0:
|
|
chip->ecc_step_ds = 0;
|
|
chip->ecc_strength_ds = 0;
|
|
break;
|
|
case 1:
|
|
chip->ecc_strength_ds = 4;
|
|
break;
|
|
case 2:
|
|
chip->ecc_strength_ds = 24;
|
|
break;
|
|
case 3:
|
|
chip->ecc_strength_ds = 32;
|
|
break;
|
|
case 4:
|
|
chip->ecc_strength_ds = 40;
|
|
break;
|
|
case 5:
|
|
chip->ecc_strength_ds = 50;
|
|
break;
|
|
case 6:
|
|
chip->ecc_strength_ds = 60;
|
|
break;
|
|
default:
|
|
/*
|
|
* We should never reach this case, but if that
|
|
* happens, this probably means Hynix decided to use
|
|
* a different extended ID format, and we should find
|
|
* a way to support it.
|
|
*/
|
|
WARN(1, "Invalid ECC requirements");
|
|
}
|
|
} else {
|
|
/*
|
|
* The ECC requirements field meaning depends on the
|
|
* NAND technology.
|
|
*/
|
|
u8 nand_tech = chip->id.data[5] & 0x7;
|
|
|
|
if (nand_tech < 3) {
|
|
/* > 26nm, reference: H27UBG8T2A datasheet */
|
|
if (ecc_level < 5) {
|
|
chip->ecc_step_ds = 512;
|
|
chip->ecc_strength_ds = 1 << ecc_level;
|
|
} else if (ecc_level < 7) {
|
|
if (ecc_level == 5)
|
|
chip->ecc_step_ds = 2048;
|
|
else
|
|
chip->ecc_step_ds = 1024;
|
|
chip->ecc_strength_ds = 24;
|
|
} else {
|
|
/*
|
|
* We should never reach this case, but if that
|
|
* happens, this probably means Hynix decided
|
|
* to use a different extended ID format, and
|
|
* we should find a way to support it.
|
|
*/
|
|
WARN(1, "Invalid ECC requirements");
|
|
}
|
|
} else {
|
|
/* <= 26nm, reference: H27UBG8T2B datasheet */
|
|
if (!ecc_level) {
|
|
chip->ecc_step_ds = 0;
|
|
chip->ecc_strength_ds = 0;
|
|
} else if (ecc_level < 5) {
|
|
chip->ecc_step_ds = 512;
|
|
chip->ecc_strength_ds = 1 << (ecc_level - 1);
|
|
} else {
|
|
chip->ecc_step_ds = 1024;
|
|
chip->ecc_strength_ds = 24 +
|
|
(8 * (ecc_level - 5));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
|
|
bool valid_jedecid)
|
|
{
|
|
u8 nand_tech;
|
|
|
|
/* We need scrambling on all TLC NANDs*/
|
|
if (chip->bits_per_cell > 2)
|
|
chip->options |= NAND_NEED_SCRAMBLING;
|
|
|
|
/* And on MLC NANDs with sub-3xnm process */
|
|
if (valid_jedecid) {
|
|
nand_tech = chip->id.data[5] >> 4;
|
|
|
|
/* < 3xnm */
|
|
if (nand_tech > 0)
|
|
chip->options |= NAND_NEED_SCRAMBLING;
|
|
} else {
|
|
nand_tech = chip->id.data[5] & 0x7;
|
|
|
|
/* < 32nm */
|
|
if (nand_tech > 2)
|
|
chip->options |= NAND_NEED_SCRAMBLING;
|
|
}
|
|
}
|
|
|
|
static void hynix_nand_decode_id(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
bool valid_jedecid;
|
|
u8 tmp;
|
|
|
|
/*
|
|
* Exclude all SLC NANDs from this advanced detection scheme.
|
|
* According to the ranges defined in several datasheets, it might
|
|
* appear that even SLC NANDs could fall in this extended ID scheme.
|
|
* If that the case rework the test to let SLC NANDs go through the
|
|
* detection process.
|
|
*/
|
|
if (chip->id.len < 6 || nand_is_slc(chip)) {
|
|
nand_decode_ext_id(chip);
|
|
return;
|
|
}
|
|
|
|
/* Extract pagesize */
|
|
mtd->writesize = 2048 << (chip->id.data[3] & 0x03);
|
|
|
|
tmp = (chip->id.data[3] >> 4) & 0x3;
|
|
/*
|
|
* When bit7 is set that means we start counting at 1MiB, otherwise
|
|
* we start counting at 128KiB and shift this value the content of
|
|
* ID[3][4:5].
|
|
* The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
|
|
* this case the erasesize is set to 768KiB.
|
|
*/
|
|
if (chip->id.data[3] & 0x80)
|
|
mtd->erasesize = SZ_1M << tmp;
|
|
else if (tmp == 3)
|
|
mtd->erasesize = SZ_512K + SZ_256K;
|
|
else
|
|
mtd->erasesize = SZ_128K << tmp;
|
|
|
|
/*
|
|
* Modern Toggle DDR NANDs have a valid JEDECID even though they are
|
|
* not exposing a valid JEDEC parameter table.
|
|
* These NANDs use a different NAND ID scheme.
|
|
*/
|
|
valid_jedecid = hynix_nand_has_valid_jedecid(chip);
|
|
|
|
hynix_nand_extract_oobsize(chip, valid_jedecid);
|
|
hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
|
|
hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
|
|
}
|
|
|
|
static void hynix_nand_cleanup(struct nand_chip *chip)
|
|
{
|
|
struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
|
|
|
|
if (!hynix)
|
|
return;
|
|
|
|
kfree(hynix->read_retry);
|
|
kfree(hynix);
|
|
nand_set_manufacturer_data(chip, NULL);
|
|
}
|
|
|
|
static int hynix_nand_init(struct nand_chip *chip)
|
|
{
|
|
struct hynix_nand *hynix;
|
|
int ret;
|
|
|
|
if (!nand_is_slc(chip))
|
|
chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
|
|
else
|
|
chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
|
|
|
|
hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
|
|
if (!hynix)
|
|
return -ENOMEM;
|
|
|
|
nand_set_manufacturer_data(chip, hynix);
|
|
|
|
ret = hynix_nand_rr_init(chip);
|
|
if (ret)
|
|
hynix_nand_cleanup(chip);
|
|
|
|
return ret;
|
|
}
|
|
|
|
const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
|
|
.detect = hynix_nand_decode_id,
|
|
.init = hynix_nand_init,
|
|
.cleanup = hynix_nand_cleanup,
|
|
};
|