linux/arch/x86/include/asm/mshyperv.h

356 lines
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_MSHYPER_H
#define _ASM_X86_MSHYPER_H
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/nmi.h>
#include <asm/io.h>
#include <asm/hyperv-tlfs.h>
#include <asm/nospec-branch.h>
struct ms_hyperv_info {
u32 features;
u32 misc_features;
u32 hints;
u32 nested_features;
u32 max_vp_index;
u32 max_lp_index;
};
extern struct ms_hyperv_info ms_hyperv;
/*
* Generate the guest ID.
*/
static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
__u64 d_info2)
{
__u64 guest_id = 0;
guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
guest_id |= (d_info1 << 48);
guest_id |= (kernel_version << 16);
guest_id |= d_info2;
return guest_id;
}
/* Free the message slot and signal end-of-message if required */
static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
{
/*
* On crash we're reading some other CPU's message page and we need
* to be careful: this other CPU may already had cleared the header
* and the host may already had delivered some other message there.
* In case we blindly write msg->header.message_type we're going
* to lose it. We can still lose a message of the same type but
* we count on the fact that there can only be one
* CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
* on crash.
*/
if (cmpxchg(&msg->header.message_type, old_msg_type,
HVMSG_NONE) != old_msg_type)
return;
/*
* Make sure the write to MessageType (ie set to
* HVMSG_NONE) happens before we read the
* MessagePending and EOMing. Otherwise, the EOMing
* will not deliver any more messages since there is
* no empty slot
*/
mb();
if (msg->header.message_flags.msg_pending) {
/*
* This will cause message queue rescan to
* possibly deliver another msg from the
* hypervisor
*/
wrmsrl(HV_X64_MSR_EOM, 0);
}
}
#define hv_init_timer(timer, tick) wrmsrl(timer, tick)
#define hv_init_timer_config(config, val) wrmsrl(config, val)
#define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
#define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
#define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
#define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
#define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
#define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
#define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
#define hv_get_synint_state(int_num, val) rdmsrl(int_num, val)
#define hv_set_synint_state(int_num, val) wrmsrl(int_num, val)
void hyperv_callback_vector(void);
void hyperv_reenlightenment_vector(void);
#ifdef CONFIG_TRACING
#define trace_hyperv_callback_vector hyperv_callback_vector
#endif
void hyperv_vector_handler(struct pt_regs *regs);
void hv_setup_vmbus_irq(void (*handler)(void));
void hv_remove_vmbus_irq(void);
void hv_setup_kexec_handler(void (*handler)(void));
void hv_remove_kexec_handler(void);
void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
void hv_remove_crash_handler(void);
/*
* Routines for stimer0 Direct Mode handling.
* On x86/x64, there are no percpu actions to take.
*/
void hv_stimer0_vector_handler(struct pt_regs *regs);
void hv_stimer0_callback_vector(void);
int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void));
void hv_remove_stimer0_irq(int irq);
static inline void hv_enable_stimer0_percpu_irq(int irq) {}
static inline void hv_disable_stimer0_percpu_irq(int irq) {}
#if IS_ENABLED(CONFIG_HYPERV)
extern struct clocksource *hyperv_cs;
extern void *hv_hypercall_pg;
static inline u64 hv_do_hypercall(u64 control, void *input, void *output)
{
u64 input_address = input ? virt_to_phys(input) : 0;
u64 output_address = output ? virt_to_phys(output) : 0;
u64 hv_status;
#ifdef CONFIG_X86_64
if (!hv_hypercall_pg)
return U64_MAX;
__asm__ __volatile__("mov %4, %%r8\n"
CALL_NOSPEC
: "=a" (hv_status), ASM_CALL_CONSTRAINT,
"+c" (control), "+d" (input_address)
: "r" (output_address),
THUNK_TARGET(hv_hypercall_pg)
: "cc", "memory", "r8", "r9", "r10", "r11");
#else
u32 input_address_hi = upper_32_bits(input_address);
u32 input_address_lo = lower_32_bits(input_address);
u32 output_address_hi = upper_32_bits(output_address);
u32 output_address_lo = lower_32_bits(output_address);
if (!hv_hypercall_pg)
return U64_MAX;
__asm__ __volatile__(CALL_NOSPEC
: "=A" (hv_status),
"+c" (input_address_lo), ASM_CALL_CONSTRAINT
: "A" (control),
"b" (input_address_hi),
"D"(output_address_hi), "S"(output_address_lo),
THUNK_TARGET(hv_hypercall_pg)
: "cc", "memory");
#endif /* !x86_64 */
return hv_status;
}
/* Fast hypercall with 8 bytes of input and no output */
static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1)
{
u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
#ifdef CONFIG_X86_64
{
__asm__ __volatile__(CALL_NOSPEC
: "=a" (hv_status), ASM_CALL_CONSTRAINT,
"+c" (control), "+d" (input1)
: THUNK_TARGET(hv_hypercall_pg)
: "cc", "r8", "r9", "r10", "r11");
}
#else
{
u32 input1_hi = upper_32_bits(input1);
u32 input1_lo = lower_32_bits(input1);
__asm__ __volatile__ (CALL_NOSPEC
: "=A"(hv_status),
"+c"(input1_lo),
ASM_CALL_CONSTRAINT
: "A" (control),
"b" (input1_hi),
THUNK_TARGET(hv_hypercall_pg)
: "cc", "edi", "esi");
}
#endif
return hv_status;
}
/*
* Rep hypercalls. Callers of this functions are supposed to ensure that
* rep_count and varhead_size comply with Hyper-V hypercall definition.
*/
static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
void *input, void *output)
{
u64 control = code;
u64 status;
u16 rep_comp;
control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
do {
status = hv_do_hypercall(control, input, output);
if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS)
return status;
/* Bits 32-43 of status have 'Reps completed' data. */
rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >>
HV_HYPERCALL_REP_COMP_OFFSET;
control &= ~HV_HYPERCALL_REP_START_MASK;
control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
touch_nmi_watchdog();
} while (rep_comp < rep_count);
return status;
}
/*
* Hypervisor's notion of virtual processor ID is different from
* Linux' notion of CPU ID. This information can only be retrieved
* in the context of the calling CPU. Setup a map for easy access
* to this information.
*/
extern u32 *hv_vp_index;
extern u32 hv_max_vp_index;
extern struct hv_vp_assist_page **hv_vp_assist_page;
static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
{
if (!hv_vp_assist_page)
return NULL;
return hv_vp_assist_page[cpu];
}
/**
* hv_cpu_number_to_vp_number() - Map CPU to VP.
* @cpu_number: CPU number in Linux terms
*
* This function returns the mapping between the Linux processor
* number and the hypervisor's virtual processor number, useful
* in making hypercalls and such that talk about specific
* processors.
*
* Return: Virtual processor number in Hyper-V terms
*/
static inline int hv_cpu_number_to_vp_number(int cpu_number)
{
return hv_vp_index[cpu_number];
}
void hyperv_init(void);
void hyperv_setup_mmu_ops(void);
void hyper_alloc_mmu(void);
void hyperv_report_panic(struct pt_regs *regs, long err);
bool hv_is_hyperv_initialized(void);
void hyperv_cleanup(void);
void hyperv_reenlightenment_intr(struct pt_regs *regs);
void set_hv_tscchange_cb(void (*cb)(void));
void clear_hv_tscchange_cb(void);
void hyperv_stop_tsc_emulation(void);
#else /* CONFIG_HYPERV */
static inline void hyperv_init(void) {}
static inline bool hv_is_hyperv_initialized(void) { return false; }
static inline void hyperv_cleanup(void) {}
static inline void hyperv_setup_mmu_ops(void) {}
static inline void set_hv_tscchange_cb(void (*cb)(void)) {}
static inline void clear_hv_tscchange_cb(void) {}
static inline void hyperv_stop_tsc_emulation(void) {};
static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
{
return NULL;
}
#endif /* CONFIG_HYPERV */
#ifdef CONFIG_HYPERV_TSCPAGE
struct ms_hyperv_tsc_page *hv_get_tsc_page(void);
static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
u64 *cur_tsc)
{
u64 scale, offset;
u32 sequence;
/*
* The protocol for reading Hyper-V TSC page is specified in Hypervisor
* Top-Level Functional Specification ver. 3.0 and above. To get the
* reference time we must do the following:
* - READ ReferenceTscSequence
* A special '0' value indicates the time source is unreliable and we
* need to use something else. The currently published specification
* versions (up to 4.0b) contain a mistake and wrongly claim '-1'
* instead of '0' as the special value, see commit c35b82ef0294.
* - ReferenceTime =
* ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
* - READ ReferenceTscSequence again. In case its value has changed
* since our first reading we need to discard ReferenceTime and repeat
* the whole sequence as the hypervisor was updating the page in
* between.
*/
do {
sequence = READ_ONCE(tsc_pg->tsc_sequence);
if (!sequence)
return U64_MAX;
/*
* Make sure we read sequence before we read other values from
* TSC page.
*/
smp_rmb();
scale = READ_ONCE(tsc_pg->tsc_scale);
offset = READ_ONCE(tsc_pg->tsc_offset);
*cur_tsc = rdtsc_ordered();
/*
* Make sure we read sequence after we read all other values
* from TSC page.
*/
smp_rmb();
} while (READ_ONCE(tsc_pg->tsc_sequence) != sequence);
return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset;
}
static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg)
{
u64 cur_tsc;
return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc);
}
#else
static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
{
return NULL;
}
static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
u64 *cur_tsc)
{
BUG();
return U64_MAX;
}
#endif
#endif