mirror of https://gitee.com/openkylin/linux.git
4893 lines
130 KiB
C
4893 lines
130 KiB
C
/*
|
|
* Copyright © 2008-2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include <drm/drm_vma_manager.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_vgpu.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
#include "intel_frontbuffer.h"
|
|
#include "intel_mocs.h"
|
|
#include <linux/dma-fence-array.h>
|
|
#include <linux/reservation.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-buf.h>
|
|
|
|
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
|
|
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
|
|
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
|
|
|
|
static bool cpu_cache_is_coherent(struct drm_device *dev,
|
|
enum i915_cache_level level)
|
|
{
|
|
return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
|
|
}
|
|
|
|
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
|
|
return false;
|
|
|
|
if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
|
|
return true;
|
|
|
|
return obj->pin_display;
|
|
}
|
|
|
|
static int
|
|
insert_mappable_node(struct i915_ggtt *ggtt,
|
|
struct drm_mm_node *node, u32 size)
|
|
{
|
|
memset(node, 0, sizeof(*node));
|
|
return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
|
|
size, 0,
|
|
I915_COLOR_UNEVICTABLE,
|
|
0, ggtt->mappable_end,
|
|
DRM_MM_SEARCH_DEFAULT,
|
|
DRM_MM_CREATE_DEFAULT);
|
|
}
|
|
|
|
static void
|
|
remove_mappable_node(struct drm_mm_node *node)
|
|
{
|
|
drm_mm_remove_node(node);
|
|
}
|
|
|
|
/* some bookkeeping */
|
|
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
|
|
u64 size)
|
|
{
|
|
spin_lock(&dev_priv->mm.object_stat_lock);
|
|
dev_priv->mm.object_count++;
|
|
dev_priv->mm.object_memory += size;
|
|
spin_unlock(&dev_priv->mm.object_stat_lock);
|
|
}
|
|
|
|
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
|
|
u64 size)
|
|
{
|
|
spin_lock(&dev_priv->mm.object_stat_lock);
|
|
dev_priv->mm.object_count--;
|
|
dev_priv->mm.object_memory -= size;
|
|
spin_unlock(&dev_priv->mm.object_stat_lock);
|
|
}
|
|
|
|
static int
|
|
i915_gem_wait_for_error(struct i915_gpu_error *error)
|
|
{
|
|
int ret;
|
|
|
|
might_sleep();
|
|
|
|
if (!i915_reset_in_progress(error))
|
|
return 0;
|
|
|
|
/*
|
|
* Only wait 10 seconds for the gpu reset to complete to avoid hanging
|
|
* userspace. If it takes that long something really bad is going on and
|
|
* we should simply try to bail out and fail as gracefully as possible.
|
|
*/
|
|
ret = wait_event_interruptible_timeout(error->reset_queue,
|
|
!i915_reset_in_progress(error),
|
|
I915_RESET_TIMEOUT);
|
|
if (ret == 0) {
|
|
DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
|
|
return -EIO;
|
|
} else if (ret < 0) {
|
|
return ret;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int i915_mutex_lock_interruptible(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int ret;
|
|
|
|
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mutex_lock_interruptible(&dev->struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
struct drm_i915_gem_get_aperture *args = data;
|
|
struct i915_vma *vma;
|
|
size_t pinned;
|
|
|
|
pinned = 0;
|
|
mutex_lock(&dev->struct_mutex);
|
|
list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
|
|
if (i915_vma_is_pinned(vma))
|
|
pinned += vma->node.size;
|
|
list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
|
|
if (i915_vma_is_pinned(vma))
|
|
pinned += vma->node.size;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
args->aper_size = ggtt->base.total;
|
|
args->aper_available_size = args->aper_size - pinned;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct sg_table *
|
|
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct address_space *mapping = obj->base.filp->f_mapping;
|
|
drm_dma_handle_t *phys;
|
|
struct sg_table *st;
|
|
struct scatterlist *sg;
|
|
char *vaddr;
|
|
int i;
|
|
|
|
if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Always aligning to the object size, allows a single allocation
|
|
* to handle all possible callers, and given typical object sizes,
|
|
* the alignment of the buddy allocation will naturally match.
|
|
*/
|
|
phys = drm_pci_alloc(obj->base.dev,
|
|
obj->base.size,
|
|
roundup_pow_of_two(obj->base.size));
|
|
if (!phys)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
vaddr = phys->vaddr;
|
|
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
|
|
struct page *page;
|
|
char *src;
|
|
|
|
page = shmem_read_mapping_page(mapping, i);
|
|
if (IS_ERR(page)) {
|
|
st = ERR_CAST(page);
|
|
goto err_phys;
|
|
}
|
|
|
|
src = kmap_atomic(page);
|
|
memcpy(vaddr, src, PAGE_SIZE);
|
|
drm_clflush_virt_range(vaddr, PAGE_SIZE);
|
|
kunmap_atomic(src);
|
|
|
|
put_page(page);
|
|
vaddr += PAGE_SIZE;
|
|
}
|
|
|
|
i915_gem_chipset_flush(to_i915(obj->base.dev));
|
|
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (!st) {
|
|
st = ERR_PTR(-ENOMEM);
|
|
goto err_phys;
|
|
}
|
|
|
|
if (sg_alloc_table(st, 1, GFP_KERNEL)) {
|
|
kfree(st);
|
|
st = ERR_PTR(-ENOMEM);
|
|
goto err_phys;
|
|
}
|
|
|
|
sg = st->sgl;
|
|
sg->offset = 0;
|
|
sg->length = obj->base.size;
|
|
|
|
sg_dma_address(sg) = phys->busaddr;
|
|
sg_dma_len(sg) = obj->base.size;
|
|
|
|
obj->phys_handle = phys;
|
|
return st;
|
|
|
|
err_phys:
|
|
drm_pci_free(obj->base.dev, phys);
|
|
return st;
|
|
}
|
|
|
|
static void
|
|
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
|
|
struct sg_table *pages,
|
|
bool needs_clflush)
|
|
{
|
|
GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
|
|
|
|
if (obj->mm.madv == I915_MADV_DONTNEED)
|
|
obj->mm.dirty = false;
|
|
|
|
if (needs_clflush &&
|
|
(obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
|
|
!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
|
|
drm_clflush_sg(pages);
|
|
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
|
|
struct sg_table *pages)
|
|
{
|
|
__i915_gem_object_release_shmem(obj, pages, false);
|
|
|
|
if (obj->mm.dirty) {
|
|
struct address_space *mapping = obj->base.filp->f_mapping;
|
|
char *vaddr = obj->phys_handle->vaddr;
|
|
int i;
|
|
|
|
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
|
|
struct page *page;
|
|
char *dst;
|
|
|
|
page = shmem_read_mapping_page(mapping, i);
|
|
if (IS_ERR(page))
|
|
continue;
|
|
|
|
dst = kmap_atomic(page);
|
|
drm_clflush_virt_range(vaddr, PAGE_SIZE);
|
|
memcpy(dst, vaddr, PAGE_SIZE);
|
|
kunmap_atomic(dst);
|
|
|
|
set_page_dirty(page);
|
|
if (obj->mm.madv == I915_MADV_WILLNEED)
|
|
mark_page_accessed(page);
|
|
put_page(page);
|
|
vaddr += PAGE_SIZE;
|
|
}
|
|
obj->mm.dirty = false;
|
|
}
|
|
|
|
sg_free_table(pages);
|
|
kfree(pages);
|
|
|
|
drm_pci_free(obj->base.dev, obj->phys_handle);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
|
|
{
|
|
i915_gem_object_unpin_pages(obj);
|
|
}
|
|
|
|
static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
|
|
.get_pages = i915_gem_object_get_pages_phys,
|
|
.put_pages = i915_gem_object_put_pages_phys,
|
|
.release = i915_gem_object_release_phys,
|
|
};
|
|
|
|
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_vma *vma;
|
|
LIST_HEAD(still_in_list);
|
|
int ret;
|
|
|
|
lockdep_assert_held(&obj->base.dev->struct_mutex);
|
|
|
|
/* Closed vma are removed from the obj->vma_list - but they may
|
|
* still have an active binding on the object. To remove those we
|
|
* must wait for all rendering to complete to the object (as unbinding
|
|
* must anyway), and retire the requests.
|
|
*/
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
I915_WAIT_LOCKED |
|
|
I915_WAIT_ALL,
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_retire_requests(to_i915(obj->base.dev));
|
|
|
|
while ((vma = list_first_entry_or_null(&obj->vma_list,
|
|
struct i915_vma,
|
|
obj_link))) {
|
|
list_move_tail(&vma->obj_link, &still_in_list);
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
break;
|
|
}
|
|
list_splice(&still_in_list, &obj->vma_list);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static long
|
|
i915_gem_object_wait_fence(struct dma_fence *fence,
|
|
unsigned int flags,
|
|
long timeout,
|
|
struct intel_rps_client *rps)
|
|
{
|
|
struct drm_i915_gem_request *rq;
|
|
|
|
BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
|
|
|
|
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
|
|
return timeout;
|
|
|
|
if (!dma_fence_is_i915(fence))
|
|
return dma_fence_wait_timeout(fence,
|
|
flags & I915_WAIT_INTERRUPTIBLE,
|
|
timeout);
|
|
|
|
rq = to_request(fence);
|
|
if (i915_gem_request_completed(rq))
|
|
goto out;
|
|
|
|
/* This client is about to stall waiting for the GPU. In many cases
|
|
* this is undesirable and limits the throughput of the system, as
|
|
* many clients cannot continue processing user input/output whilst
|
|
* blocked. RPS autotuning may take tens of milliseconds to respond
|
|
* to the GPU load and thus incurs additional latency for the client.
|
|
* We can circumvent that by promoting the GPU frequency to maximum
|
|
* before we wait. This makes the GPU throttle up much more quickly
|
|
* (good for benchmarks and user experience, e.g. window animations),
|
|
* but at a cost of spending more power processing the workload
|
|
* (bad for battery). Not all clients even want their results
|
|
* immediately and for them we should just let the GPU select its own
|
|
* frequency to maximise efficiency. To prevent a single client from
|
|
* forcing the clocks too high for the whole system, we only allow
|
|
* each client to waitboost once in a busy period.
|
|
*/
|
|
if (rps) {
|
|
if (INTEL_GEN(rq->i915) >= 6)
|
|
gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
|
|
else
|
|
rps = NULL;
|
|
}
|
|
|
|
timeout = i915_wait_request(rq, flags, timeout);
|
|
|
|
out:
|
|
if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
|
|
i915_gem_request_retire_upto(rq);
|
|
|
|
if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
|
|
/* The GPU is now idle and this client has stalled.
|
|
* Since no other client has submitted a request in the
|
|
* meantime, assume that this client is the only one
|
|
* supplying work to the GPU but is unable to keep that
|
|
* work supplied because it is waiting. Since the GPU is
|
|
* then never kept fully busy, RPS autoclocking will
|
|
* keep the clocks relatively low, causing further delays.
|
|
* Compensate by giving the synchronous client credit for
|
|
* a waitboost next time.
|
|
*/
|
|
spin_lock(&rq->i915->rps.client_lock);
|
|
list_del_init(&rps->link);
|
|
spin_unlock(&rq->i915->rps.client_lock);
|
|
}
|
|
|
|
return timeout;
|
|
}
|
|
|
|
static long
|
|
i915_gem_object_wait_reservation(struct reservation_object *resv,
|
|
unsigned int flags,
|
|
long timeout,
|
|
struct intel_rps_client *rps)
|
|
{
|
|
struct dma_fence *excl;
|
|
|
|
if (flags & I915_WAIT_ALL) {
|
|
struct dma_fence **shared;
|
|
unsigned int count, i;
|
|
int ret;
|
|
|
|
ret = reservation_object_get_fences_rcu(resv,
|
|
&excl, &count, &shared);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
timeout = i915_gem_object_wait_fence(shared[i],
|
|
flags, timeout,
|
|
rps);
|
|
if (timeout <= 0)
|
|
break;
|
|
|
|
dma_fence_put(shared[i]);
|
|
}
|
|
|
|
for (; i < count; i++)
|
|
dma_fence_put(shared[i]);
|
|
kfree(shared);
|
|
} else {
|
|
excl = reservation_object_get_excl_rcu(resv);
|
|
}
|
|
|
|
if (excl && timeout > 0)
|
|
timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
|
|
|
|
dma_fence_put(excl);
|
|
|
|
return timeout;
|
|
}
|
|
|
|
static void __fence_set_priority(struct dma_fence *fence, int prio)
|
|
{
|
|
struct drm_i915_gem_request *rq;
|
|
struct intel_engine_cs *engine;
|
|
|
|
if (!dma_fence_is_i915(fence))
|
|
return;
|
|
|
|
rq = to_request(fence);
|
|
engine = rq->engine;
|
|
if (!engine->schedule)
|
|
return;
|
|
|
|
engine->schedule(rq, prio);
|
|
}
|
|
|
|
static void fence_set_priority(struct dma_fence *fence, int prio)
|
|
{
|
|
/* Recurse once into a fence-array */
|
|
if (dma_fence_is_array(fence)) {
|
|
struct dma_fence_array *array = to_dma_fence_array(fence);
|
|
int i;
|
|
|
|
for (i = 0; i < array->num_fences; i++)
|
|
__fence_set_priority(array->fences[i], prio);
|
|
} else {
|
|
__fence_set_priority(fence, prio);
|
|
}
|
|
}
|
|
|
|
int
|
|
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
|
|
unsigned int flags,
|
|
int prio)
|
|
{
|
|
struct dma_fence *excl;
|
|
|
|
if (flags & I915_WAIT_ALL) {
|
|
struct dma_fence **shared;
|
|
unsigned int count, i;
|
|
int ret;
|
|
|
|
ret = reservation_object_get_fences_rcu(obj->resv,
|
|
&excl, &count, &shared);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
fence_set_priority(shared[i], prio);
|
|
dma_fence_put(shared[i]);
|
|
}
|
|
|
|
kfree(shared);
|
|
} else {
|
|
excl = reservation_object_get_excl_rcu(obj->resv);
|
|
}
|
|
|
|
if (excl) {
|
|
fence_set_priority(excl, prio);
|
|
dma_fence_put(excl);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Waits for rendering to the object to be completed
|
|
* @obj: i915 gem object
|
|
* @flags: how to wait (under a lock, for all rendering or just for writes etc)
|
|
* @timeout: how long to wait
|
|
* @rps: client (user process) to charge for any waitboosting
|
|
*/
|
|
int
|
|
i915_gem_object_wait(struct drm_i915_gem_object *obj,
|
|
unsigned int flags,
|
|
long timeout,
|
|
struct intel_rps_client *rps)
|
|
{
|
|
might_sleep();
|
|
#if IS_ENABLED(CONFIG_LOCKDEP)
|
|
GEM_BUG_ON(debug_locks &&
|
|
!!lockdep_is_held(&obj->base.dev->struct_mutex) !=
|
|
!!(flags & I915_WAIT_LOCKED));
|
|
#endif
|
|
GEM_BUG_ON(timeout < 0);
|
|
|
|
timeout = i915_gem_object_wait_reservation(obj->resv,
|
|
flags, timeout,
|
|
rps);
|
|
return timeout < 0 ? timeout : 0;
|
|
}
|
|
|
|
static struct intel_rps_client *to_rps_client(struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *fpriv = file->driver_priv;
|
|
|
|
return &fpriv->rps;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
|
|
int align)
|
|
{
|
|
int ret;
|
|
|
|
if (align > obj->base.size)
|
|
return -EINVAL;
|
|
|
|
if (obj->ops == &i915_gem_phys_ops)
|
|
return 0;
|
|
|
|
if (obj->mm.madv != I915_MADV_WILLNEED)
|
|
return -EFAULT;
|
|
|
|
if (obj->base.filp == NULL)
|
|
return -EINVAL;
|
|
|
|
ret = i915_gem_object_unbind(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
|
|
if (obj->mm.pages)
|
|
return -EBUSY;
|
|
|
|
obj->ops = &i915_gem_phys_ops;
|
|
|
|
return i915_gem_object_pin_pages(obj);
|
|
}
|
|
|
|
static int
|
|
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
void *vaddr = obj->phys_handle->vaddr + args->offset;
|
|
char __user *user_data = u64_to_user_ptr(args->data_ptr);
|
|
|
|
/* We manually control the domain here and pretend that it
|
|
* remains coherent i.e. in the GTT domain, like shmem_pwrite.
|
|
*/
|
|
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
|
|
if (copy_from_user(vaddr, user_data, args->size))
|
|
return -EFAULT;
|
|
|
|
drm_clflush_virt_range(vaddr, args->size);
|
|
i915_gem_chipset_flush(to_i915(obj->base.dev));
|
|
|
|
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
|
|
return 0;
|
|
}
|
|
|
|
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
|
|
{
|
|
return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
|
|
}
|
|
|
|
void i915_gem_object_free(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
|
|
kmem_cache_free(dev_priv->objects, obj);
|
|
}
|
|
|
|
static int
|
|
i915_gem_create(struct drm_file *file,
|
|
struct drm_i915_private *dev_priv,
|
|
uint64_t size,
|
|
uint32_t *handle_p)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
u32 handle;
|
|
|
|
size = roundup(size, PAGE_SIZE);
|
|
if (size == 0)
|
|
return -EINVAL;
|
|
|
|
/* Allocate the new object */
|
|
obj = i915_gem_object_create(dev_priv, size);
|
|
if (IS_ERR(obj))
|
|
return PTR_ERR(obj);
|
|
|
|
ret = drm_gem_handle_create(file, &obj->base, &handle);
|
|
/* drop reference from allocate - handle holds it now */
|
|
i915_gem_object_put(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*handle_p = handle;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_dumb_create(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
struct drm_mode_create_dumb *args)
|
|
{
|
|
/* have to work out size/pitch and return them */
|
|
args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
|
|
args->size = args->pitch * args->height;
|
|
return i915_gem_create(file, to_i915(dev),
|
|
args->size, &args->handle);
|
|
}
|
|
|
|
/**
|
|
* Creates a new mm object and returns a handle to it.
|
|
* @dev: drm device pointer
|
|
* @data: ioctl data blob
|
|
* @file: drm file pointer
|
|
*/
|
|
int
|
|
i915_gem_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_i915_gem_create *args = data;
|
|
|
|
i915_gem_flush_free_objects(dev_priv);
|
|
|
|
return i915_gem_create(file, dev_priv,
|
|
args->size, &args->handle);
|
|
}
|
|
|
|
static inline int
|
|
__copy_to_user_swizzled(char __user *cpu_vaddr,
|
|
const char *gpu_vaddr, int gpu_offset,
|
|
int length)
|
|
{
|
|
int ret, cpu_offset = 0;
|
|
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
ret = __copy_to_user(cpu_vaddr + cpu_offset,
|
|
gpu_vaddr + swizzled_gpu_offset,
|
|
this_length);
|
|
if (ret)
|
|
return ret + length;
|
|
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
|
|
const char __user *cpu_vaddr,
|
|
int length)
|
|
{
|
|
int ret, cpu_offset = 0;
|
|
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
|
|
cpu_vaddr + cpu_offset,
|
|
this_length);
|
|
if (ret)
|
|
return ret + length;
|
|
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pins the specified object's pages and synchronizes the object with
|
|
* GPU accesses. Sets needs_clflush to non-zero if the caller should
|
|
* flush the object from the CPU cache.
|
|
*/
|
|
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
|
|
unsigned int *needs_clflush)
|
|
{
|
|
int ret;
|
|
|
|
lockdep_assert_held(&obj->base.dev->struct_mutex);
|
|
|
|
*needs_clflush = 0;
|
|
if (!i915_gem_object_has_struct_page(obj))
|
|
return -ENODEV;
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
I915_WAIT_LOCKED,
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
/* If we're not in the cpu read domain, set ourself into the gtt
|
|
* read domain and manually flush cachelines (if required). This
|
|
* optimizes for the case when the gpu will dirty the data
|
|
* anyway again before the next pread happens.
|
|
*/
|
|
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
|
|
*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
|
|
obj->cache_level);
|
|
|
|
if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, false);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
*needs_clflush = 0;
|
|
}
|
|
|
|
/* return with the pages pinned */
|
|
return 0;
|
|
|
|
err_unpin:
|
|
i915_gem_object_unpin_pages(obj);
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
|
|
unsigned int *needs_clflush)
|
|
{
|
|
int ret;
|
|
|
|
lockdep_assert_held(&obj->base.dev->struct_mutex);
|
|
|
|
*needs_clflush = 0;
|
|
if (!i915_gem_object_has_struct_page(obj))
|
|
return -ENODEV;
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
I915_WAIT_LOCKED |
|
|
I915_WAIT_ALL,
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
/* If we're not in the cpu write domain, set ourself into the
|
|
* gtt write domain and manually flush cachelines (as required).
|
|
* This optimizes for the case when the gpu will use the data
|
|
* right away and we therefore have to clflush anyway.
|
|
*/
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
|
|
*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
|
|
|
|
/* Same trick applies to invalidate partially written cachelines read
|
|
* before writing.
|
|
*/
|
|
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
|
|
*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
|
|
obj->cache_level);
|
|
|
|
if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, true);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
*needs_clflush = 0;
|
|
}
|
|
|
|
if ((*needs_clflush & CLFLUSH_AFTER) == 0)
|
|
obj->cache_dirty = true;
|
|
|
|
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
|
|
obj->mm.dirty = true;
|
|
/* return with the pages pinned */
|
|
return 0;
|
|
|
|
err_unpin:
|
|
i915_gem_object_unpin_pages(obj);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
shmem_clflush_swizzled_range(char *addr, unsigned long length,
|
|
bool swizzled)
|
|
{
|
|
if (unlikely(swizzled)) {
|
|
unsigned long start = (unsigned long) addr;
|
|
unsigned long end = (unsigned long) addr + length;
|
|
|
|
/* For swizzling simply ensure that we always flush both
|
|
* channels. Lame, but simple and it works. Swizzled
|
|
* pwrite/pread is far from a hotpath - current userspace
|
|
* doesn't use it at all. */
|
|
start = round_down(start, 128);
|
|
end = round_up(end, 128);
|
|
|
|
drm_clflush_virt_range((void *)start, end - start);
|
|
} else {
|
|
drm_clflush_virt_range(addr, length);
|
|
}
|
|
|
|
}
|
|
|
|
/* Only difference to the fast-path function is that this can handle bit17
|
|
* and uses non-atomic copy and kmap functions. */
|
|
static int
|
|
shmem_pread_slow(struct page *page, int offset, int length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling, bool needs_clflush)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
if (needs_clflush)
|
|
shmem_clflush_swizzled_range(vaddr + offset, length,
|
|
page_do_bit17_swizzling);
|
|
|
|
if (page_do_bit17_swizzling)
|
|
ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
|
|
else
|
|
ret = __copy_to_user(user_data, vaddr + offset, length);
|
|
kunmap(page);
|
|
|
|
return ret ? - EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
|
|
bool page_do_bit17_swizzling, bool needs_clflush)
|
|
{
|
|
int ret;
|
|
|
|
ret = -ENODEV;
|
|
if (!page_do_bit17_swizzling) {
|
|
char *vaddr = kmap_atomic(page);
|
|
|
|
if (needs_clflush)
|
|
drm_clflush_virt_range(vaddr + offset, length);
|
|
ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
if (ret == 0)
|
|
return 0;
|
|
|
|
return shmem_pread_slow(page, offset, length, user_data,
|
|
page_do_bit17_swizzling, needs_clflush);
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pread *args)
|
|
{
|
|
char __user *user_data;
|
|
u64 remain;
|
|
unsigned int obj_do_bit17_swizzling;
|
|
unsigned int needs_clflush;
|
|
unsigned int idx, offset;
|
|
int ret;
|
|
|
|
obj_do_bit17_swizzling = 0;
|
|
if (i915_gem_object_needs_bit17_swizzle(obj))
|
|
obj_do_bit17_swizzling = BIT(17);
|
|
|
|
ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
|
|
mutex_unlock(&obj->base.dev->struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
remain = args->size;
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
offset = offset_in_page(args->offset);
|
|
for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
|
|
struct page *page = i915_gem_object_get_page(obj, idx);
|
|
int length;
|
|
|
|
length = remain;
|
|
if (offset + length > PAGE_SIZE)
|
|
length = PAGE_SIZE - offset;
|
|
|
|
ret = shmem_pread(page, offset, length, user_data,
|
|
page_to_phys(page) & obj_do_bit17_swizzling,
|
|
needs_clflush);
|
|
if (ret)
|
|
break;
|
|
|
|
remain -= length;
|
|
user_data += length;
|
|
offset = 0;
|
|
}
|
|
|
|
i915_gem_obj_finish_shmem_access(obj);
|
|
return ret;
|
|
}
|
|
|
|
static inline bool
|
|
gtt_user_read(struct io_mapping *mapping,
|
|
loff_t base, int offset,
|
|
char __user *user_data, int length)
|
|
{
|
|
void *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
/* We can use the cpu mem copy function because this is X86. */
|
|
vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
|
|
unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
|
|
io_mapping_unmap_atomic(vaddr);
|
|
if (unwritten) {
|
|
vaddr = (void __force *)
|
|
io_mapping_map_wc(mapping, base, PAGE_SIZE);
|
|
unwritten = copy_to_user(user_data, vaddr + offset, length);
|
|
io_mapping_unmap(vaddr);
|
|
}
|
|
return unwritten;
|
|
}
|
|
|
|
static int
|
|
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_pread *args)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
struct drm_mm_node node;
|
|
struct i915_vma *vma;
|
|
void __user *user_data;
|
|
u64 remain, offset;
|
|
int ret;
|
|
|
|
ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_runtime_pm_get(i915);
|
|
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
|
|
PIN_MAPPABLE | PIN_NONBLOCK);
|
|
if (!IS_ERR(vma)) {
|
|
node.start = i915_ggtt_offset(vma);
|
|
node.allocated = false;
|
|
ret = i915_vma_put_fence(vma);
|
|
if (ret) {
|
|
i915_vma_unpin(vma);
|
|
vma = ERR_PTR(ret);
|
|
}
|
|
}
|
|
if (IS_ERR(vma)) {
|
|
ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
|
|
if (ret)
|
|
goto out_unlock;
|
|
GEM_BUG_ON(!node.allocated);
|
|
}
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, false);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
mutex_unlock(&i915->drm.struct_mutex);
|
|
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
offset = args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
u32 page_base = node.start;
|
|
unsigned page_offset = offset_in_page(offset);
|
|
unsigned page_length = PAGE_SIZE - page_offset;
|
|
page_length = remain < page_length ? remain : page_length;
|
|
if (node.allocated) {
|
|
wmb();
|
|
ggtt->base.insert_page(&ggtt->base,
|
|
i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
|
|
node.start, I915_CACHE_NONE, 0);
|
|
wmb();
|
|
} else {
|
|
page_base += offset & PAGE_MASK;
|
|
}
|
|
|
|
if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
|
|
user_data, page_length)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
mutex_lock(&i915->drm.struct_mutex);
|
|
out_unpin:
|
|
if (node.allocated) {
|
|
wmb();
|
|
ggtt->base.clear_range(&ggtt->base,
|
|
node.start, node.size);
|
|
remove_mappable_node(&node);
|
|
} else {
|
|
i915_vma_unpin(vma);
|
|
}
|
|
out_unlock:
|
|
intel_runtime_pm_put(i915);
|
|
mutex_unlock(&i915->drm.struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Reads data from the object referenced by handle.
|
|
* @dev: drm device pointer
|
|
* @data: ioctl data blob
|
|
* @file: drm file pointer
|
|
*
|
|
* On error, the contents of *data are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pread *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(VERIFY_WRITE,
|
|
u64_to_user_ptr(args->data_ptr),
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/* Bounds check source. */
|
|
if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trace_i915_gem_object_pread(obj, args->offset, args->size);
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE,
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
to_rps_client(file));
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = i915_gem_shmem_pread(obj, args);
|
|
if (ret == -EFAULT || ret == -ENODEV)
|
|
ret = i915_gem_gtt_pread(obj, args);
|
|
|
|
i915_gem_object_unpin_pages(obj);
|
|
out:
|
|
i915_gem_object_put(obj);
|
|
return ret;
|
|
}
|
|
|
|
/* This is the fast write path which cannot handle
|
|
* page faults in the source data
|
|
*/
|
|
|
|
static inline bool
|
|
ggtt_write(struct io_mapping *mapping,
|
|
loff_t base, int offset,
|
|
char __user *user_data, int length)
|
|
{
|
|
void *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
/* We can use the cpu mem copy function because this is X86. */
|
|
vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
|
|
unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
|
|
user_data, length);
|
|
io_mapping_unmap_atomic(vaddr);
|
|
if (unwritten) {
|
|
vaddr = (void __force *)
|
|
io_mapping_map_wc(mapping, base, PAGE_SIZE);
|
|
unwritten = copy_from_user(vaddr + offset, user_data, length);
|
|
io_mapping_unmap(vaddr);
|
|
}
|
|
|
|
return unwritten;
|
|
}
|
|
|
|
/**
|
|
* This is the fast pwrite path, where we copy the data directly from the
|
|
* user into the GTT, uncached.
|
|
* @obj: i915 GEM object
|
|
* @args: pwrite arguments structure
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_pwrite *args)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
struct drm_mm_node node;
|
|
struct i915_vma *vma;
|
|
u64 remain, offset;
|
|
void __user *user_data;
|
|
int ret;
|
|
|
|
ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_runtime_pm_get(i915);
|
|
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
|
|
PIN_MAPPABLE | PIN_NONBLOCK);
|
|
if (!IS_ERR(vma)) {
|
|
node.start = i915_ggtt_offset(vma);
|
|
node.allocated = false;
|
|
ret = i915_vma_put_fence(vma);
|
|
if (ret) {
|
|
i915_vma_unpin(vma);
|
|
vma = ERR_PTR(ret);
|
|
}
|
|
}
|
|
if (IS_ERR(vma)) {
|
|
ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
|
|
if (ret)
|
|
goto out_unlock;
|
|
GEM_BUG_ON(!node.allocated);
|
|
}
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, true);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
mutex_unlock(&i915->drm.struct_mutex);
|
|
|
|
intel_fb_obj_invalidate(obj, ORIGIN_CPU);
|
|
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
offset = args->offset;
|
|
remain = args->size;
|
|
while (remain) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
u32 page_base = node.start;
|
|
unsigned int page_offset = offset_in_page(offset);
|
|
unsigned int page_length = PAGE_SIZE - page_offset;
|
|
page_length = remain < page_length ? remain : page_length;
|
|
if (node.allocated) {
|
|
wmb(); /* flush the write before we modify the GGTT */
|
|
ggtt->base.insert_page(&ggtt->base,
|
|
i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
|
|
node.start, I915_CACHE_NONE, 0);
|
|
wmb(); /* flush modifications to the GGTT (insert_page) */
|
|
} else {
|
|
page_base += offset & PAGE_MASK;
|
|
}
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
* If the object is non-shmem backed, we retry again with the
|
|
* path that handles page fault.
|
|
*/
|
|
if (ggtt_write(&ggtt->mappable, page_base, page_offset,
|
|
user_data, page_length)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
|
|
|
|
mutex_lock(&i915->drm.struct_mutex);
|
|
out_unpin:
|
|
if (node.allocated) {
|
|
wmb();
|
|
ggtt->base.clear_range(&ggtt->base,
|
|
node.start, node.size);
|
|
remove_mappable_node(&node);
|
|
} else {
|
|
i915_vma_unpin(vma);
|
|
}
|
|
out_unlock:
|
|
intel_runtime_pm_put(i915);
|
|
mutex_unlock(&i915->drm.struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
shmem_pwrite_slow(struct page *page, int offset, int length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling,
|
|
bool needs_clflush_before,
|
|
bool needs_clflush_after)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
|
|
shmem_clflush_swizzled_range(vaddr + offset, length,
|
|
page_do_bit17_swizzling);
|
|
if (page_do_bit17_swizzling)
|
|
ret = __copy_from_user_swizzled(vaddr, offset, user_data,
|
|
length);
|
|
else
|
|
ret = __copy_from_user(vaddr + offset, user_data, length);
|
|
if (needs_clflush_after)
|
|
shmem_clflush_swizzled_range(vaddr + offset, length,
|
|
page_do_bit17_swizzling);
|
|
kunmap(page);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
/* Per-page copy function for the shmem pwrite fastpath.
|
|
* Flushes invalid cachelines before writing to the target if
|
|
* needs_clflush_before is set and flushes out any written cachelines after
|
|
* writing if needs_clflush is set.
|
|
*/
|
|
static int
|
|
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
|
|
bool page_do_bit17_swizzling,
|
|
bool needs_clflush_before,
|
|
bool needs_clflush_after)
|
|
{
|
|
int ret;
|
|
|
|
ret = -ENODEV;
|
|
if (!page_do_bit17_swizzling) {
|
|
char *vaddr = kmap_atomic(page);
|
|
|
|
if (needs_clflush_before)
|
|
drm_clflush_virt_range(vaddr + offset, len);
|
|
ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
|
|
if (needs_clflush_after)
|
|
drm_clflush_virt_range(vaddr + offset, len);
|
|
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
if (ret == 0)
|
|
return ret;
|
|
|
|
return shmem_pwrite_slow(page, offset, len, user_data,
|
|
page_do_bit17_swizzling,
|
|
needs_clflush_before,
|
|
needs_clflush_after);
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_pwrite *args)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
void __user *user_data;
|
|
u64 remain;
|
|
unsigned int obj_do_bit17_swizzling;
|
|
unsigned int partial_cacheline_write;
|
|
unsigned int needs_clflush;
|
|
unsigned int offset, idx;
|
|
int ret;
|
|
|
|
ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
|
|
mutex_unlock(&i915->drm.struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj_do_bit17_swizzling = 0;
|
|
if (i915_gem_object_needs_bit17_swizzle(obj))
|
|
obj_do_bit17_swizzling = BIT(17);
|
|
|
|
/* If we don't overwrite a cacheline completely we need to be
|
|
* careful to have up-to-date data by first clflushing. Don't
|
|
* overcomplicate things and flush the entire patch.
|
|
*/
|
|
partial_cacheline_write = 0;
|
|
if (needs_clflush & CLFLUSH_BEFORE)
|
|
partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
|
|
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
offset = offset_in_page(args->offset);
|
|
for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
|
|
struct page *page = i915_gem_object_get_page(obj, idx);
|
|
int length;
|
|
|
|
length = remain;
|
|
if (offset + length > PAGE_SIZE)
|
|
length = PAGE_SIZE - offset;
|
|
|
|
ret = shmem_pwrite(page, offset, length, user_data,
|
|
page_to_phys(page) & obj_do_bit17_swizzling,
|
|
(offset | length) & partial_cacheline_write,
|
|
needs_clflush & CLFLUSH_AFTER);
|
|
if (ret)
|
|
break;
|
|
|
|
remain -= length;
|
|
user_data += length;
|
|
offset = 0;
|
|
}
|
|
|
|
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
|
|
i915_gem_obj_finish_shmem_access(obj);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Writes data to the object referenced by handle.
|
|
* @dev: drm device
|
|
* @data: ioctl data blob
|
|
* @file: drm file
|
|
*
|
|
* On error, the contents of the buffer that were to be modified are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pwrite *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(VERIFY_READ,
|
|
u64_to_user_ptr(args->data_ptr),
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/* Bounds check destination. */
|
|
if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
I915_WAIT_ALL,
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
to_rps_client(file));
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = -EFAULT;
|
|
/* We can only do the GTT pwrite on untiled buffers, as otherwise
|
|
* it would end up going through the fenced access, and we'll get
|
|
* different detiling behavior between reading and writing.
|
|
* pread/pwrite currently are reading and writing from the CPU
|
|
* perspective, requiring manual detiling by the client.
|
|
*/
|
|
if (!i915_gem_object_has_struct_page(obj) ||
|
|
cpu_write_needs_clflush(obj))
|
|
/* Note that the gtt paths might fail with non-page-backed user
|
|
* pointers (e.g. gtt mappings when moving data between
|
|
* textures). Fallback to the shmem path in that case.
|
|
*/
|
|
ret = i915_gem_gtt_pwrite_fast(obj, args);
|
|
|
|
if (ret == -EFAULT || ret == -ENOSPC) {
|
|
if (obj->phys_handle)
|
|
ret = i915_gem_phys_pwrite(obj, args, file);
|
|
else
|
|
ret = i915_gem_shmem_pwrite(obj, args);
|
|
}
|
|
|
|
i915_gem_object_unpin_pages(obj);
|
|
err:
|
|
i915_gem_object_put(obj);
|
|
return ret;
|
|
}
|
|
|
|
static inline enum fb_op_origin
|
|
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
|
|
{
|
|
return (domain == I915_GEM_DOMAIN_GTT ?
|
|
obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
|
|
}
|
|
|
|
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *i915;
|
|
struct list_head *list;
|
|
struct i915_vma *vma;
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link) {
|
|
if (!i915_vma_is_ggtt(vma))
|
|
break;
|
|
|
|
if (i915_vma_is_active(vma))
|
|
continue;
|
|
|
|
if (!drm_mm_node_allocated(&vma->node))
|
|
continue;
|
|
|
|
list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
|
|
}
|
|
|
|
i915 = to_i915(obj->base.dev);
|
|
list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
|
|
list_move_tail(&obj->global_link, list);
|
|
}
|
|
|
|
/**
|
|
* Called when user space prepares to use an object with the CPU, either
|
|
* through the mmap ioctl's mapping or a GTT mapping.
|
|
* @dev: drm device
|
|
* @data: ioctl data blob
|
|
* @file: drm file
|
|
*/
|
|
int
|
|
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_set_domain *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
uint32_t read_domains = args->read_domains;
|
|
uint32_t write_domain = args->write_domain;
|
|
int err;
|
|
|
|
/* Only handle setting domains to types used by the CPU. */
|
|
if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
/* Having something in the write domain implies it's in the read
|
|
* domain, and only that read domain. Enforce that in the request.
|
|
*/
|
|
if (write_domain != 0 && read_domains != write_domain)
|
|
return -EINVAL;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/* Try to flush the object off the GPU without holding the lock.
|
|
* We will repeat the flush holding the lock in the normal manner
|
|
* to catch cases where we are gazumped.
|
|
*/
|
|
err = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
(write_domain ? I915_WAIT_ALL : 0),
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
to_rps_client(file));
|
|
if (err)
|
|
goto out;
|
|
|
|
/* Flush and acquire obj->pages so that we are coherent through
|
|
* direct access in memory with previous cached writes through
|
|
* shmemfs and that our cache domain tracking remains valid.
|
|
* For example, if the obj->filp was moved to swap without us
|
|
* being notified and releasing the pages, we would mistakenly
|
|
* continue to assume that the obj remained out of the CPU cached
|
|
* domain.
|
|
*/
|
|
err = i915_gem_object_pin_pages(obj);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = i915_mutex_lock_interruptible(dev);
|
|
if (err)
|
|
goto out_unpin;
|
|
|
|
if (read_domains & I915_GEM_DOMAIN_GTT)
|
|
err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
|
|
else
|
|
err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
|
|
|
|
/* And bump the LRU for this access */
|
|
i915_gem_object_bump_inactive_ggtt(obj);
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (write_domain != 0)
|
|
intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
|
|
|
|
out_unpin:
|
|
i915_gem_object_unpin_pages(obj);
|
|
out:
|
|
i915_gem_object_put(obj);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* Called when user space has done writes to this buffer
|
|
* @dev: drm device
|
|
* @data: ioctl data blob
|
|
* @file: drm file
|
|
*/
|
|
int
|
|
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_sw_finish *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int err = 0;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/* Pinned buffers may be scanout, so flush the cache */
|
|
if (READ_ONCE(obj->pin_display)) {
|
|
err = i915_mutex_lock_interruptible(dev);
|
|
if (!err) {
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
}
|
|
|
|
i915_gem_object_put(obj);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
|
|
* it is mapped to.
|
|
* @dev: drm device
|
|
* @data: ioctl data blob
|
|
* @file: drm file
|
|
*
|
|
* While the mapping holds a reference on the contents of the object, it doesn't
|
|
* imply a ref on the object itself.
|
|
*
|
|
* IMPORTANT:
|
|
*
|
|
* DRM driver writers who look a this function as an example for how to do GEM
|
|
* mmap support, please don't implement mmap support like here. The modern way
|
|
* to implement DRM mmap support is with an mmap offset ioctl (like
|
|
* i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
|
|
* That way debug tooling like valgrind will understand what's going on, hiding
|
|
* the mmap call in a driver private ioctl will break that. The i915 driver only
|
|
* does cpu mmaps this way because we didn't know better.
|
|
*/
|
|
int
|
|
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_mmap *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned long addr;
|
|
|
|
if (args->flags & ~(I915_MMAP_WC))
|
|
return -EINVAL;
|
|
|
|
if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
|
|
return -ENODEV;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/* prime objects have no backing filp to GEM mmap
|
|
* pages from.
|
|
*/
|
|
if (!obj->base.filp) {
|
|
i915_gem_object_put(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
addr = vm_mmap(obj->base.filp, 0, args->size,
|
|
PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
args->offset);
|
|
if (args->flags & I915_MMAP_WC) {
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
|
|
if (down_write_killable(&mm->mmap_sem)) {
|
|
i915_gem_object_put(obj);
|
|
return -EINTR;
|
|
}
|
|
vma = find_vma(mm, addr);
|
|
if (vma)
|
|
vma->vm_page_prot =
|
|
pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
|
|
else
|
|
addr = -ENOMEM;
|
|
up_write(&mm->mmap_sem);
|
|
|
|
/* This may race, but that's ok, it only gets set */
|
|
WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
|
|
}
|
|
i915_gem_object_put(obj);
|
|
if (IS_ERR((void *)addr))
|
|
return addr;
|
|
|
|
args->addr_ptr = (uint64_t) addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
|
|
*
|
|
* A history of the GTT mmap interface:
|
|
*
|
|
* 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
|
|
* aligned and suitable for fencing, and still fit into the available
|
|
* mappable space left by the pinned display objects. A classic problem
|
|
* we called the page-fault-of-doom where we would ping-pong between
|
|
* two objects that could not fit inside the GTT and so the memcpy
|
|
* would page one object in at the expense of the other between every
|
|
* single byte.
|
|
*
|
|
* 1 - Objects can be any size, and have any compatible fencing (X Y, or none
|
|
* as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
|
|
* object is too large for the available space (or simply too large
|
|
* for the mappable aperture!), a view is created instead and faulted
|
|
* into userspace. (This view is aligned and sized appropriately for
|
|
* fenced access.)
|
|
*
|
|
* Restrictions:
|
|
*
|
|
* * snoopable objects cannot be accessed via the GTT. It can cause machine
|
|
* hangs on some architectures, corruption on others. An attempt to service
|
|
* a GTT page fault from a snoopable object will generate a SIGBUS.
|
|
*
|
|
* * the object must be able to fit into RAM (physical memory, though no
|
|
* limited to the mappable aperture).
|
|
*
|
|
*
|
|
* Caveats:
|
|
*
|
|
* * a new GTT page fault will synchronize rendering from the GPU and flush
|
|
* all data to system memory. Subsequent access will not be synchronized.
|
|
*
|
|
* * all mappings are revoked on runtime device suspend.
|
|
*
|
|
* * there are only 8, 16 or 32 fence registers to share between all users
|
|
* (older machines require fence register for display and blitter access
|
|
* as well). Contention of the fence registers will cause the previous users
|
|
* to be unmapped and any new access will generate new page faults.
|
|
*
|
|
* * running out of memory while servicing a fault may generate a SIGBUS,
|
|
* rather than the expected SIGSEGV.
|
|
*/
|
|
int i915_gem_mmap_gtt_version(void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline struct i915_ggtt_view
|
|
compute_partial_view(struct drm_i915_gem_object *obj,
|
|
pgoff_t page_offset,
|
|
unsigned int chunk)
|
|
{
|
|
struct i915_ggtt_view view;
|
|
|
|
if (i915_gem_object_is_tiled(obj))
|
|
chunk = roundup(chunk, tile_row_pages(obj));
|
|
|
|
memset(&view, 0, sizeof(view));
|
|
view.type = I915_GGTT_VIEW_PARTIAL;
|
|
view.params.partial.offset = rounddown(page_offset, chunk);
|
|
view.params.partial.size =
|
|
min_t(unsigned int, chunk,
|
|
(obj->base.size >> PAGE_SHIFT) - view.params.partial.offset);
|
|
|
|
/* If the partial covers the entire object, just create a normal VMA. */
|
|
if (chunk >= obj->base.size >> PAGE_SHIFT)
|
|
view.type = I915_GGTT_VIEW_NORMAL;
|
|
|
|
return view;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_fault - fault a page into the GTT
|
|
* @area: CPU VMA in question
|
|
* @vmf: fault info
|
|
*
|
|
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
|
|
* from userspace. The fault handler takes care of binding the object to
|
|
* the GTT (if needed), allocating and programming a fence register (again,
|
|
* only if needed based on whether the old reg is still valid or the object
|
|
* is tiled) and inserting a new PTE into the faulting process.
|
|
*
|
|
* Note that the faulting process may involve evicting existing objects
|
|
* from the GTT and/or fence registers to make room. So performance may
|
|
* suffer if the GTT working set is large or there are few fence registers
|
|
* left.
|
|
*
|
|
* The current feature set supported by i915_gem_fault() and thus GTT mmaps
|
|
* is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
|
|
*/
|
|
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
|
|
{
|
|
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
|
|
struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_ggtt *ggtt = &dev_priv->ggtt;
|
|
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
|
|
struct i915_vma *vma;
|
|
pgoff_t page_offset;
|
|
unsigned int flags;
|
|
int ret;
|
|
|
|
/* We don't use vmf->pgoff since that has the fake offset */
|
|
page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
|
|
|
|
trace_i915_gem_object_fault(obj, page_offset, true, write);
|
|
|
|
/* Try to flush the object off the GPU first without holding the lock.
|
|
* Upon acquiring the lock, we will perform our sanity checks and then
|
|
* repeat the flush holding the lock in the normal manner to catch cases
|
|
* where we are gazumped.
|
|
*/
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE,
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
NULL);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
goto err;
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
goto err_rpm;
|
|
|
|
/* Access to snoopable pages through the GTT is incoherent. */
|
|
if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
|
|
ret = -EFAULT;
|
|
goto err_unlock;
|
|
}
|
|
|
|
/* If the object is smaller than a couple of partial vma, it is
|
|
* not worth only creating a single partial vma - we may as well
|
|
* clear enough space for the full object.
|
|
*/
|
|
flags = PIN_MAPPABLE;
|
|
if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
|
|
flags |= PIN_NONBLOCK | PIN_NONFAULT;
|
|
|
|
/* Now pin it into the GTT as needed */
|
|
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
|
|
if (IS_ERR(vma)) {
|
|
/* Use a partial view if it is bigger than available space */
|
|
struct i915_ggtt_view view =
|
|
compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
|
|
|
|
/* Userspace is now writing through an untracked VMA, abandon
|
|
* all hope that the hardware is able to track future writes.
|
|
*/
|
|
obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
|
|
|
|
vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
|
|
}
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto err_unlock;
|
|
}
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
ret = i915_vma_get_fence(vma);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
/* Mark as being mmapped into userspace for later revocation */
|
|
assert_rpm_wakelock_held(dev_priv);
|
|
if (list_empty(&obj->userfault_link))
|
|
list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
|
|
|
|
/* Finally, remap it using the new GTT offset */
|
|
ret = remap_io_mapping(area,
|
|
area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
|
|
(ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
|
|
min_t(u64, vma->size, area->vm_end - area->vm_start),
|
|
&ggtt->mappable);
|
|
|
|
err_unpin:
|
|
__i915_vma_unpin(vma);
|
|
err_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
err_rpm:
|
|
intel_runtime_pm_put(dev_priv);
|
|
i915_gem_object_unpin_pages(obj);
|
|
err:
|
|
switch (ret) {
|
|
case -EIO:
|
|
/*
|
|
* We eat errors when the gpu is terminally wedged to avoid
|
|
* userspace unduly crashing (gl has no provisions for mmaps to
|
|
* fail). But any other -EIO isn't ours (e.g. swap in failure)
|
|
* and so needs to be reported.
|
|
*/
|
|
if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
}
|
|
case -EAGAIN:
|
|
/*
|
|
* EAGAIN means the gpu is hung and we'll wait for the error
|
|
* handler to reset everything when re-faulting in
|
|
* i915_mutex_lock_interruptible.
|
|
*/
|
|
case 0:
|
|
case -ERESTARTSYS:
|
|
case -EINTR:
|
|
case -EBUSY:
|
|
/*
|
|
* EBUSY is ok: this just means that another thread
|
|
* already did the job.
|
|
*/
|
|
ret = VM_FAULT_NOPAGE;
|
|
break;
|
|
case -ENOMEM:
|
|
ret = VM_FAULT_OOM;
|
|
break;
|
|
case -ENOSPC:
|
|
case -EFAULT:
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
default:
|
|
WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_release_mmap - remove physical page mappings
|
|
* @obj: obj in question
|
|
*
|
|
* Preserve the reservation of the mmapping with the DRM core code, but
|
|
* relinquish ownership of the pages back to the system.
|
|
*
|
|
* It is vital that we remove the page mapping if we have mapped a tiled
|
|
* object through the GTT and then lose the fence register due to
|
|
* resource pressure. Similarly if the object has been moved out of the
|
|
* aperture, than pages mapped into userspace must be revoked. Removing the
|
|
* mapping will then trigger a page fault on the next user access, allowing
|
|
* fixup by i915_gem_fault().
|
|
*/
|
|
void
|
|
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
|
|
/* Serialisation between user GTT access and our code depends upon
|
|
* revoking the CPU's PTE whilst the mutex is held. The next user
|
|
* pagefault then has to wait until we release the mutex.
|
|
*
|
|
* Note that RPM complicates somewhat by adding an additional
|
|
* requirement that operations to the GGTT be made holding the RPM
|
|
* wakeref.
|
|
*/
|
|
lockdep_assert_held(&i915->drm.struct_mutex);
|
|
intel_runtime_pm_get(i915);
|
|
|
|
if (list_empty(&obj->userfault_link))
|
|
goto out;
|
|
|
|
list_del_init(&obj->userfault_link);
|
|
drm_vma_node_unmap(&obj->base.vma_node,
|
|
obj->base.dev->anon_inode->i_mapping);
|
|
|
|
/* Ensure that the CPU's PTE are revoked and there are not outstanding
|
|
* memory transactions from userspace before we return. The TLB
|
|
* flushing implied above by changing the PTE above *should* be
|
|
* sufficient, an extra barrier here just provides us with a bit
|
|
* of paranoid documentation about our requirement to serialise
|
|
* memory writes before touching registers / GSM.
|
|
*/
|
|
wmb();
|
|
|
|
out:
|
|
intel_runtime_pm_put(i915);
|
|
}
|
|
|
|
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj, *on;
|
|
int i;
|
|
|
|
/*
|
|
* Only called during RPM suspend. All users of the userfault_list
|
|
* must be holding an RPM wakeref to ensure that this can not
|
|
* run concurrently with themselves (and use the struct_mutex for
|
|
* protection between themselves).
|
|
*/
|
|
|
|
list_for_each_entry_safe(obj, on,
|
|
&dev_priv->mm.userfault_list, userfault_link) {
|
|
list_del_init(&obj->userfault_link);
|
|
drm_vma_node_unmap(&obj->base.vma_node,
|
|
obj->base.dev->anon_inode->i_mapping);
|
|
}
|
|
|
|
/* The fence will be lost when the device powers down. If any were
|
|
* in use by hardware (i.e. they are pinned), we should not be powering
|
|
* down! All other fences will be reacquired by the user upon waking.
|
|
*/
|
|
for (i = 0; i < dev_priv->num_fence_regs; i++) {
|
|
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
|
|
|
|
if (WARN_ON(reg->pin_count))
|
|
continue;
|
|
|
|
if (!reg->vma)
|
|
continue;
|
|
|
|
GEM_BUG_ON(!list_empty(®->vma->obj->userfault_link));
|
|
reg->dirty = true;
|
|
}
|
|
}
|
|
|
|
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
|
|
int err;
|
|
|
|
err = drm_gem_create_mmap_offset(&obj->base);
|
|
if (likely(!err))
|
|
return 0;
|
|
|
|
/* Attempt to reap some mmap space from dead objects */
|
|
do {
|
|
err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
|
|
if (err)
|
|
break;
|
|
|
|
i915_gem_drain_freed_objects(dev_priv);
|
|
err = drm_gem_create_mmap_offset(&obj->base);
|
|
if (!err)
|
|
break;
|
|
|
|
} while (flush_delayed_work(&dev_priv->gt.retire_work));
|
|
|
|
return err;
|
|
}
|
|
|
|
static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
|
|
{
|
|
drm_gem_free_mmap_offset(&obj->base);
|
|
}
|
|
|
|
int
|
|
i915_gem_mmap_gtt(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
uint32_t handle,
|
|
uint64_t *offset)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
obj = i915_gem_object_lookup(file, handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
ret = i915_gem_object_create_mmap_offset(obj);
|
|
if (ret == 0)
|
|
*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
|
|
|
|
i915_gem_object_put(obj);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
|
|
* @dev: DRM device
|
|
* @data: GTT mapping ioctl data
|
|
* @file: GEM object info
|
|
*
|
|
* Simply returns the fake offset to userspace so it can mmap it.
|
|
* The mmap call will end up in drm_gem_mmap(), which will set things
|
|
* up so we can get faults in the handler above.
|
|
*
|
|
* The fault handler will take care of binding the object into the GTT
|
|
* (since it may have been evicted to make room for something), allocating
|
|
* a fence register, and mapping the appropriate aperture address into
|
|
* userspace.
|
|
*/
|
|
int
|
|
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_mmap_gtt *args = data;
|
|
|
|
return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
|
|
}
|
|
|
|
/* Immediately discard the backing storage */
|
|
static void
|
|
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
|
|
{
|
|
i915_gem_object_free_mmap_offset(obj);
|
|
|
|
if (obj->base.filp == NULL)
|
|
return;
|
|
|
|
/* Our goal here is to return as much of the memory as
|
|
* is possible back to the system as we are called from OOM.
|
|
* To do this we must instruct the shmfs to drop all of its
|
|
* backing pages, *now*.
|
|
*/
|
|
shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
|
|
obj->mm.madv = __I915_MADV_PURGED;
|
|
}
|
|
|
|
/* Try to discard unwanted pages */
|
|
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct address_space *mapping;
|
|
|
|
lockdep_assert_held(&obj->mm.lock);
|
|
GEM_BUG_ON(obj->mm.pages);
|
|
|
|
switch (obj->mm.madv) {
|
|
case I915_MADV_DONTNEED:
|
|
i915_gem_object_truncate(obj);
|
|
case __I915_MADV_PURGED:
|
|
return;
|
|
}
|
|
|
|
if (obj->base.filp == NULL)
|
|
return;
|
|
|
|
mapping = obj->base.filp->f_mapping,
|
|
invalidate_mapping_pages(mapping, 0, (loff_t)-1);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
|
|
struct sg_table *pages)
|
|
{
|
|
struct sgt_iter sgt_iter;
|
|
struct page *page;
|
|
|
|
__i915_gem_object_release_shmem(obj, pages, true);
|
|
|
|
i915_gem_gtt_finish_pages(obj, pages);
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj))
|
|
i915_gem_object_save_bit_17_swizzle(obj, pages);
|
|
|
|
for_each_sgt_page(page, sgt_iter, pages) {
|
|
if (obj->mm.dirty)
|
|
set_page_dirty(page);
|
|
|
|
if (obj->mm.madv == I915_MADV_WILLNEED)
|
|
mark_page_accessed(page);
|
|
|
|
put_page(page);
|
|
}
|
|
obj->mm.dirty = false;
|
|
|
|
sg_free_table(pages);
|
|
kfree(pages);
|
|
}
|
|
|
|
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct radix_tree_iter iter;
|
|
void **slot;
|
|
|
|
radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
|
|
radix_tree_delete(&obj->mm.get_page.radix, iter.index);
|
|
}
|
|
|
|
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
|
|
enum i915_mm_subclass subclass)
|
|
{
|
|
struct sg_table *pages;
|
|
|
|
if (i915_gem_object_has_pinned_pages(obj))
|
|
return;
|
|
|
|
GEM_BUG_ON(obj->bind_count);
|
|
if (!READ_ONCE(obj->mm.pages))
|
|
return;
|
|
|
|
/* May be called by shrinker from within get_pages() (on another bo) */
|
|
mutex_lock_nested(&obj->mm.lock, subclass);
|
|
if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
|
|
goto unlock;
|
|
|
|
/* ->put_pages might need to allocate memory for the bit17 swizzle
|
|
* array, hence protect them from being reaped by removing them from gtt
|
|
* lists early. */
|
|
pages = fetch_and_zero(&obj->mm.pages);
|
|
GEM_BUG_ON(!pages);
|
|
|
|
if (obj->mm.mapping) {
|
|
void *ptr;
|
|
|
|
ptr = ptr_mask_bits(obj->mm.mapping);
|
|
if (is_vmalloc_addr(ptr))
|
|
vunmap(ptr);
|
|
else
|
|
kunmap(kmap_to_page(ptr));
|
|
|
|
obj->mm.mapping = NULL;
|
|
}
|
|
|
|
__i915_gem_object_reset_page_iter(obj);
|
|
|
|
obj->ops->put_pages(obj, pages);
|
|
unlock:
|
|
mutex_unlock(&obj->mm.lock);
|
|
}
|
|
|
|
static void i915_sg_trim(struct sg_table *orig_st)
|
|
{
|
|
struct sg_table new_st;
|
|
struct scatterlist *sg, *new_sg;
|
|
unsigned int i;
|
|
|
|
if (orig_st->nents == orig_st->orig_nents)
|
|
return;
|
|
|
|
if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
|
|
return;
|
|
|
|
new_sg = new_st.sgl;
|
|
for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
|
|
sg_set_page(new_sg, sg_page(sg), sg->length, 0);
|
|
/* called before being DMA mapped, no need to copy sg->dma_* */
|
|
new_sg = sg_next(new_sg);
|
|
}
|
|
GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
|
|
|
|
sg_free_table(orig_st);
|
|
|
|
*orig_st = new_st;
|
|
}
|
|
|
|
static struct sg_table *
|
|
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
|
|
const unsigned long page_count = obj->base.size / PAGE_SIZE;
|
|
unsigned long i;
|
|
struct address_space *mapping;
|
|
struct sg_table *st;
|
|
struct scatterlist *sg;
|
|
struct sgt_iter sgt_iter;
|
|
struct page *page;
|
|
unsigned long last_pfn = 0; /* suppress gcc warning */
|
|
unsigned int max_segment;
|
|
int ret;
|
|
gfp_t gfp;
|
|
|
|
/* Assert that the object is not currently in any GPU domain. As it
|
|
* wasn't in the GTT, there shouldn't be any way it could have been in
|
|
* a GPU cache
|
|
*/
|
|
GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
|
|
GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
|
|
|
|
max_segment = swiotlb_max_segment();
|
|
if (!max_segment)
|
|
max_segment = rounddown(UINT_MAX, PAGE_SIZE);
|
|
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (st == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
rebuild_st:
|
|
if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
|
|
kfree(st);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/* Get the list of pages out of our struct file. They'll be pinned
|
|
* at this point until we release them.
|
|
*
|
|
* Fail silently without starting the shrinker
|
|
*/
|
|
mapping = obj->base.filp->f_mapping;
|
|
gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
|
|
gfp |= __GFP_NORETRY | __GFP_NOWARN;
|
|
sg = st->sgl;
|
|
st->nents = 0;
|
|
for (i = 0; i < page_count; i++) {
|
|
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
|
|
if (IS_ERR(page)) {
|
|
i915_gem_shrink(dev_priv,
|
|
page_count,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND |
|
|
I915_SHRINK_PURGEABLE);
|
|
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
|
|
}
|
|
if (IS_ERR(page)) {
|
|
/* We've tried hard to allocate the memory by reaping
|
|
* our own buffer, now let the real VM do its job and
|
|
* go down in flames if truly OOM.
|
|
*/
|
|
page = shmem_read_mapping_page(mapping, i);
|
|
if (IS_ERR(page)) {
|
|
ret = PTR_ERR(page);
|
|
goto err_sg;
|
|
}
|
|
}
|
|
if (!i ||
|
|
sg->length >= max_segment ||
|
|
page_to_pfn(page) != last_pfn + 1) {
|
|
if (i)
|
|
sg = sg_next(sg);
|
|
st->nents++;
|
|
sg_set_page(sg, page, PAGE_SIZE, 0);
|
|
} else {
|
|
sg->length += PAGE_SIZE;
|
|
}
|
|
last_pfn = page_to_pfn(page);
|
|
|
|
/* Check that the i965g/gm workaround works. */
|
|
WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
|
|
}
|
|
if (sg) /* loop terminated early; short sg table */
|
|
sg_mark_end(sg);
|
|
|
|
/* Trim unused sg entries to avoid wasting memory. */
|
|
i915_sg_trim(st);
|
|
|
|
ret = i915_gem_gtt_prepare_pages(obj, st);
|
|
if (ret) {
|
|
/* DMA remapping failed? One possible cause is that
|
|
* it could not reserve enough large entries, asking
|
|
* for PAGE_SIZE chunks instead may be helpful.
|
|
*/
|
|
if (max_segment > PAGE_SIZE) {
|
|
for_each_sgt_page(page, sgt_iter, st)
|
|
put_page(page);
|
|
sg_free_table(st);
|
|
|
|
max_segment = PAGE_SIZE;
|
|
goto rebuild_st;
|
|
} else {
|
|
dev_warn(&dev_priv->drm.pdev->dev,
|
|
"Failed to DMA remap %lu pages\n",
|
|
page_count);
|
|
goto err_pages;
|
|
}
|
|
}
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj))
|
|
i915_gem_object_do_bit_17_swizzle(obj, st);
|
|
|
|
return st;
|
|
|
|
err_sg:
|
|
sg_mark_end(sg);
|
|
err_pages:
|
|
for_each_sgt_page(page, sgt_iter, st)
|
|
put_page(page);
|
|
sg_free_table(st);
|
|
kfree(st);
|
|
|
|
/* shmemfs first checks if there is enough memory to allocate the page
|
|
* and reports ENOSPC should there be insufficient, along with the usual
|
|
* ENOMEM for a genuine allocation failure.
|
|
*
|
|
* We use ENOSPC in our driver to mean that we have run out of aperture
|
|
* space and so want to translate the error from shmemfs back to our
|
|
* usual understanding of ENOMEM.
|
|
*/
|
|
if (ret == -ENOSPC)
|
|
ret = -ENOMEM;
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
|
|
struct sg_table *pages)
|
|
{
|
|
lockdep_assert_held(&obj->mm.lock);
|
|
|
|
obj->mm.get_page.sg_pos = pages->sgl;
|
|
obj->mm.get_page.sg_idx = 0;
|
|
|
|
obj->mm.pages = pages;
|
|
|
|
if (i915_gem_object_is_tiled(obj) &&
|
|
to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
|
|
GEM_BUG_ON(obj->mm.quirked);
|
|
__i915_gem_object_pin_pages(obj);
|
|
obj->mm.quirked = true;
|
|
}
|
|
}
|
|
|
|
static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct sg_table *pages;
|
|
|
|
GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
|
|
|
|
if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
|
|
DRM_DEBUG("Attempting to obtain a purgeable object\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
pages = obj->ops->get_pages(obj);
|
|
if (unlikely(IS_ERR(pages)))
|
|
return PTR_ERR(pages);
|
|
|
|
__i915_gem_object_set_pages(obj, pages);
|
|
return 0;
|
|
}
|
|
|
|
/* Ensure that the associated pages are gathered from the backing storage
|
|
* and pinned into our object. i915_gem_object_pin_pages() may be called
|
|
* multiple times before they are released by a single call to
|
|
* i915_gem_object_unpin_pages() - once the pages are no longer referenced
|
|
* either as a result of memory pressure (reaping pages under the shrinker)
|
|
* or as the object is itself released.
|
|
*/
|
|
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
int err;
|
|
|
|
err = mutex_lock_interruptible(&obj->mm.lock);
|
|
if (err)
|
|
return err;
|
|
|
|
if (unlikely(!obj->mm.pages)) {
|
|
err = ____i915_gem_object_get_pages(obj);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
smp_mb__before_atomic();
|
|
}
|
|
atomic_inc(&obj->mm.pages_pin_count);
|
|
|
|
unlock:
|
|
mutex_unlock(&obj->mm.lock);
|
|
return err;
|
|
}
|
|
|
|
/* The 'mapping' part of i915_gem_object_pin_map() below */
|
|
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
|
|
enum i915_map_type type)
|
|
{
|
|
unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
|
|
struct sg_table *sgt = obj->mm.pages;
|
|
struct sgt_iter sgt_iter;
|
|
struct page *page;
|
|
struct page *stack_pages[32];
|
|
struct page **pages = stack_pages;
|
|
unsigned long i = 0;
|
|
pgprot_t pgprot;
|
|
void *addr;
|
|
|
|
/* A single page can always be kmapped */
|
|
if (n_pages == 1 && type == I915_MAP_WB)
|
|
return kmap(sg_page(sgt->sgl));
|
|
|
|
if (n_pages > ARRAY_SIZE(stack_pages)) {
|
|
/* Too big for stack -- allocate temporary array instead */
|
|
pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
|
|
if (!pages)
|
|
return NULL;
|
|
}
|
|
|
|
for_each_sgt_page(page, sgt_iter, sgt)
|
|
pages[i++] = page;
|
|
|
|
/* Check that we have the expected number of pages */
|
|
GEM_BUG_ON(i != n_pages);
|
|
|
|
switch (type) {
|
|
case I915_MAP_WB:
|
|
pgprot = PAGE_KERNEL;
|
|
break;
|
|
case I915_MAP_WC:
|
|
pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
|
|
break;
|
|
}
|
|
addr = vmap(pages, n_pages, 0, pgprot);
|
|
|
|
if (pages != stack_pages)
|
|
drm_free_large(pages);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* get, pin, and map the pages of the object into kernel space */
|
|
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
|
|
enum i915_map_type type)
|
|
{
|
|
enum i915_map_type has_type;
|
|
bool pinned;
|
|
void *ptr;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
|
|
|
|
ret = mutex_lock_interruptible(&obj->mm.lock);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
pinned = true;
|
|
if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
|
|
if (unlikely(!obj->mm.pages)) {
|
|
ret = ____i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
goto err_unlock;
|
|
|
|
smp_mb__before_atomic();
|
|
}
|
|
atomic_inc(&obj->mm.pages_pin_count);
|
|
pinned = false;
|
|
}
|
|
GEM_BUG_ON(!obj->mm.pages);
|
|
|
|
ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
|
|
if (ptr && has_type != type) {
|
|
if (pinned) {
|
|
ret = -EBUSY;
|
|
goto err_unpin;
|
|
}
|
|
|
|
if (is_vmalloc_addr(ptr))
|
|
vunmap(ptr);
|
|
else
|
|
kunmap(kmap_to_page(ptr));
|
|
|
|
ptr = obj->mm.mapping = NULL;
|
|
}
|
|
|
|
if (!ptr) {
|
|
ptr = i915_gem_object_map(obj, type);
|
|
if (!ptr) {
|
|
ret = -ENOMEM;
|
|
goto err_unpin;
|
|
}
|
|
|
|
obj->mm.mapping = ptr_pack_bits(ptr, type);
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&obj->mm.lock);
|
|
return ptr;
|
|
|
|
err_unpin:
|
|
atomic_dec(&obj->mm.pages_pin_count);
|
|
err_unlock:
|
|
ptr = ERR_PTR(ret);
|
|
goto out_unlock;
|
|
}
|
|
|
|
static bool ban_context(const struct i915_gem_context *ctx)
|
|
{
|
|
return (i915_gem_context_is_bannable(ctx) &&
|
|
ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
|
|
}
|
|
|
|
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
|
|
{
|
|
ctx->guilty_count++;
|
|
ctx->ban_score += CONTEXT_SCORE_GUILTY;
|
|
if (ban_context(ctx))
|
|
i915_gem_context_set_banned(ctx);
|
|
|
|
DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
|
|
ctx->name, ctx->ban_score,
|
|
yesno(i915_gem_context_is_banned(ctx)));
|
|
|
|
if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
|
|
return;
|
|
|
|
ctx->file_priv->context_bans++;
|
|
DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
|
|
ctx->name, ctx->file_priv->context_bans);
|
|
}
|
|
|
|
static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
|
|
{
|
|
ctx->active_count++;
|
|
}
|
|
|
|
struct drm_i915_gem_request *
|
|
i915_gem_find_active_request(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
|
|
/* We are called by the error capture and reset at a random
|
|
* point in time. In particular, note that neither is crucially
|
|
* ordered with an interrupt. After a hang, the GPU is dead and we
|
|
* assume that no more writes can happen (we waited long enough for
|
|
* all writes that were in transaction to be flushed) - adding an
|
|
* extra delay for a recent interrupt is pointless. Hence, we do
|
|
* not need an engine->irq_seqno_barrier() before the seqno reads.
|
|
*/
|
|
list_for_each_entry(request, &engine->timeline->requests, link) {
|
|
if (__i915_gem_request_completed(request))
|
|
continue;
|
|
|
|
return request;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void reset_request(struct drm_i915_gem_request *request)
|
|
{
|
|
void *vaddr = request->ring->vaddr;
|
|
u32 head;
|
|
|
|
/* As this request likely depends on state from the lost
|
|
* context, clear out all the user operations leaving the
|
|
* breadcrumb at the end (so we get the fence notifications).
|
|
*/
|
|
head = request->head;
|
|
if (request->postfix < head) {
|
|
memset(vaddr + head, 0, request->ring->size - head);
|
|
head = 0;
|
|
}
|
|
memset(vaddr + head, 0, request->postfix - head);
|
|
|
|
dma_fence_set_error(&request->fence, -EIO);
|
|
}
|
|
|
|
void i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
|
|
{
|
|
i915_gem_revoke_fences(dev_priv);
|
|
}
|
|
|
|
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
struct i915_gem_context *hung_ctx;
|
|
struct intel_timeline *timeline;
|
|
unsigned long flags;
|
|
bool ring_hung;
|
|
|
|
if (engine->irq_seqno_barrier)
|
|
engine->irq_seqno_barrier(engine);
|
|
|
|
request = i915_gem_find_active_request(engine);
|
|
if (!request)
|
|
return;
|
|
|
|
hung_ctx = request->ctx;
|
|
|
|
ring_hung = engine->hangcheck.stalled;
|
|
if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
|
|
DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n",
|
|
engine->name,
|
|
yesno(ring_hung));
|
|
ring_hung = false;
|
|
}
|
|
|
|
if (ring_hung) {
|
|
i915_gem_context_mark_guilty(hung_ctx);
|
|
reset_request(request);
|
|
} else {
|
|
i915_gem_context_mark_innocent(hung_ctx);
|
|
dma_fence_set_error(&request->fence, -EAGAIN);
|
|
return;
|
|
}
|
|
|
|
DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
|
|
engine->name, request->global_seqno);
|
|
|
|
/* Setup the CS to resume from the breadcrumb of the hung request */
|
|
engine->reset_hw(engine, request);
|
|
|
|
/* If this context is now banned, skip all of its pending requests. */
|
|
if (!i915_gem_context_is_banned(hung_ctx))
|
|
return;
|
|
|
|
/* Users of the default context do not rely on logical state
|
|
* preserved between batches. They have to emit full state on
|
|
* every batch and so it is safe to execute queued requests following
|
|
* the hang.
|
|
*
|
|
* Other contexts preserve state, now corrupt. We want to skip all
|
|
* queued requests that reference the corrupt context.
|
|
*/
|
|
if (i915_gem_context_is_default(hung_ctx))
|
|
return;
|
|
|
|
timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
|
|
|
|
spin_lock_irqsave(&engine->timeline->lock, flags);
|
|
spin_lock(&timeline->lock);
|
|
|
|
list_for_each_entry_continue(request, &engine->timeline->requests, link)
|
|
if (request->ctx == hung_ctx)
|
|
reset_request(request);
|
|
|
|
list_for_each_entry(request, &timeline->requests, link)
|
|
reset_request(request);
|
|
|
|
spin_unlock(&timeline->lock);
|
|
spin_unlock_irqrestore(&engine->timeline->lock, flags);
|
|
}
|
|
|
|
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
lockdep_assert_held(&dev_priv->drm.struct_mutex);
|
|
|
|
i915_gem_retire_requests(dev_priv);
|
|
|
|
for_each_engine(engine, dev_priv, id)
|
|
i915_gem_reset_engine(engine);
|
|
|
|
i915_gem_restore_fences(dev_priv);
|
|
|
|
if (dev_priv->gt.awake) {
|
|
intel_sanitize_gt_powersave(dev_priv);
|
|
intel_enable_gt_powersave(dev_priv);
|
|
if (INTEL_GEN(dev_priv) >= 6)
|
|
gen6_rps_busy(dev_priv);
|
|
}
|
|
}
|
|
|
|
static void nop_submit_request(struct drm_i915_gem_request *request)
|
|
{
|
|
dma_fence_set_error(&request->fence, -EIO);
|
|
i915_gem_request_submit(request);
|
|
intel_engine_init_global_seqno(request->engine, request->global_seqno);
|
|
}
|
|
|
|
static void engine_set_wedged(struct intel_engine_cs *engine)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
unsigned long flags;
|
|
|
|
/* We need to be sure that no thread is running the old callback as
|
|
* we install the nop handler (otherwise we would submit a request
|
|
* to hardware that will never complete). In order to prevent this
|
|
* race, we wait until the machine is idle before making the swap
|
|
* (using stop_machine()).
|
|
*/
|
|
engine->submit_request = nop_submit_request;
|
|
|
|
/* Mark all executing requests as skipped */
|
|
spin_lock_irqsave(&engine->timeline->lock, flags);
|
|
list_for_each_entry(request, &engine->timeline->requests, link)
|
|
dma_fence_set_error(&request->fence, -EIO);
|
|
spin_unlock_irqrestore(&engine->timeline->lock, flags);
|
|
|
|
/* Mark all pending requests as complete so that any concurrent
|
|
* (lockless) lookup doesn't try and wait upon the request as we
|
|
* reset it.
|
|
*/
|
|
intel_engine_init_global_seqno(engine,
|
|
intel_engine_last_submit(engine));
|
|
|
|
/*
|
|
* Clear the execlists queue up before freeing the requests, as those
|
|
* are the ones that keep the context and ringbuffer backing objects
|
|
* pinned in place.
|
|
*/
|
|
|
|
if (i915.enable_execlists) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&engine->timeline->lock, flags);
|
|
|
|
i915_gem_request_put(engine->execlist_port[0].request);
|
|
i915_gem_request_put(engine->execlist_port[1].request);
|
|
memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
|
|
engine->execlist_queue = RB_ROOT;
|
|
engine->execlist_first = NULL;
|
|
|
|
spin_unlock_irqrestore(&engine->timeline->lock, flags);
|
|
}
|
|
}
|
|
|
|
static int __i915_gem_set_wedged_BKL(void *data)
|
|
{
|
|
struct drm_i915_private *i915 = data;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine(engine, i915, id)
|
|
engine_set_wedged(engine);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
|
|
{
|
|
lockdep_assert_held(&dev_priv->drm.struct_mutex);
|
|
set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
|
|
|
|
stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
|
|
|
|
i915_gem_context_lost(dev_priv);
|
|
i915_gem_retire_requests(dev_priv);
|
|
|
|
mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
|
|
}
|
|
|
|
static void
|
|
i915_gem_retire_work_handler(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), gt.retire_work.work);
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
|
|
/* Come back later if the device is busy... */
|
|
if (mutex_trylock(&dev->struct_mutex)) {
|
|
i915_gem_retire_requests(dev_priv);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
/* Keep the retire handler running until we are finally idle.
|
|
* We do not need to do this test under locking as in the worst-case
|
|
* we queue the retire worker once too often.
|
|
*/
|
|
if (READ_ONCE(dev_priv->gt.awake)) {
|
|
i915_queue_hangcheck(dev_priv);
|
|
queue_delayed_work(dev_priv->wq,
|
|
&dev_priv->gt.retire_work,
|
|
round_jiffies_up_relative(HZ));
|
|
}
|
|
}
|
|
|
|
static void
|
|
i915_gem_idle_work_handler(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), gt.idle_work.work);
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
bool rearm_hangcheck;
|
|
|
|
if (!READ_ONCE(dev_priv->gt.awake))
|
|
return;
|
|
|
|
/*
|
|
* Wait for last execlists context complete, but bail out in case a
|
|
* new request is submitted.
|
|
*/
|
|
wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
|
|
intel_execlists_idle(dev_priv), 10);
|
|
|
|
if (READ_ONCE(dev_priv->gt.active_requests))
|
|
return;
|
|
|
|
rearm_hangcheck =
|
|
cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
|
|
|
|
if (!mutex_trylock(&dev->struct_mutex)) {
|
|
/* Currently busy, come back later */
|
|
mod_delayed_work(dev_priv->wq,
|
|
&dev_priv->gt.idle_work,
|
|
msecs_to_jiffies(50));
|
|
goto out_rearm;
|
|
}
|
|
|
|
/*
|
|
* New request retired after this work handler started, extend active
|
|
* period until next instance of the work.
|
|
*/
|
|
if (work_pending(work))
|
|
goto out_unlock;
|
|
|
|
if (dev_priv->gt.active_requests)
|
|
goto out_unlock;
|
|
|
|
if (wait_for(intel_execlists_idle(dev_priv), 10))
|
|
DRM_ERROR("Timeout waiting for engines to idle\n");
|
|
|
|
for_each_engine(engine, dev_priv, id)
|
|
i915_gem_batch_pool_fini(&engine->batch_pool);
|
|
|
|
GEM_BUG_ON(!dev_priv->gt.awake);
|
|
dev_priv->gt.awake = false;
|
|
rearm_hangcheck = false;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 6)
|
|
gen6_rps_idle(dev_priv);
|
|
intel_runtime_pm_put(dev_priv);
|
|
out_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
out_rearm:
|
|
if (rearm_hangcheck) {
|
|
GEM_BUG_ON(!dev_priv->gt.awake);
|
|
i915_queue_hangcheck(dev_priv);
|
|
}
|
|
}
|
|
|
|
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_bo(gem);
|
|
struct drm_i915_file_private *fpriv = file->driver_priv;
|
|
struct i915_vma *vma, *vn;
|
|
|
|
mutex_lock(&obj->base.dev->struct_mutex);
|
|
list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
|
|
if (vma->vm->file == fpriv)
|
|
i915_vma_close(vma);
|
|
|
|
if (i915_gem_object_is_active(obj) &&
|
|
!i915_gem_object_has_active_reference(obj)) {
|
|
i915_gem_object_set_active_reference(obj);
|
|
i915_gem_object_get(obj);
|
|
}
|
|
mutex_unlock(&obj->base.dev->struct_mutex);
|
|
}
|
|
|
|
static unsigned long to_wait_timeout(s64 timeout_ns)
|
|
{
|
|
if (timeout_ns < 0)
|
|
return MAX_SCHEDULE_TIMEOUT;
|
|
|
|
if (timeout_ns == 0)
|
|
return 0;
|
|
|
|
return nsecs_to_jiffies_timeout(timeout_ns);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
|
|
* @dev: drm device pointer
|
|
* @data: ioctl data blob
|
|
* @file: drm file pointer
|
|
*
|
|
* Returns 0 if successful, else an error is returned with the remaining time in
|
|
* the timeout parameter.
|
|
* -ETIME: object is still busy after timeout
|
|
* -ERESTARTSYS: signal interrupted the wait
|
|
* -ENONENT: object doesn't exist
|
|
* Also possible, but rare:
|
|
* -EAGAIN: GPU wedged
|
|
* -ENOMEM: damn
|
|
* -ENODEV: Internal IRQ fail
|
|
* -E?: The add request failed
|
|
*
|
|
* The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
|
|
* non-zero timeout parameter the wait ioctl will wait for the given number of
|
|
* nanoseconds on an object becoming unbusy. Since the wait itself does so
|
|
* without holding struct_mutex the object may become re-busied before this
|
|
* function completes. A similar but shorter * race condition exists in the busy
|
|
* ioctl
|
|
*/
|
|
int
|
|
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_wait *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
ktime_t start;
|
|
long ret;
|
|
|
|
if (args->flags != 0)
|
|
return -EINVAL;
|
|
|
|
obj = i915_gem_object_lookup(file, args->bo_handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
start = ktime_get();
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
|
|
to_wait_timeout(args->timeout_ns),
|
|
to_rps_client(file));
|
|
|
|
if (args->timeout_ns > 0) {
|
|
args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
|
|
if (args->timeout_ns < 0)
|
|
args->timeout_ns = 0;
|
|
}
|
|
|
|
i915_gem_object_put(obj);
|
|
return ret;
|
|
}
|
|
|
|
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
|
|
{
|
|
int ret, i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
|
|
ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
|
|
{
|
|
int ret;
|
|
|
|
if (flags & I915_WAIT_LOCKED) {
|
|
struct i915_gem_timeline *tl;
|
|
|
|
lockdep_assert_held(&i915->drm.struct_mutex);
|
|
|
|
list_for_each_entry(tl, &i915->gt.timelines, link) {
|
|
ret = wait_for_timeline(tl, flags);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
} else {
|
|
ret = wait_for_timeline(&i915->gt.global_timeline, flags);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
|
|
bool force)
|
|
{
|
|
/* If we don't have a page list set up, then we're not pinned
|
|
* to GPU, and we can ignore the cache flush because it'll happen
|
|
* again at bind time.
|
|
*/
|
|
if (!obj->mm.pages)
|
|
return;
|
|
|
|
/*
|
|
* Stolen memory is always coherent with the GPU as it is explicitly
|
|
* marked as wc by the system, or the system is cache-coherent.
|
|
*/
|
|
if (obj->stolen || obj->phys_handle)
|
|
return;
|
|
|
|
/* If the GPU is snooping the contents of the CPU cache,
|
|
* we do not need to manually clear the CPU cache lines. However,
|
|
* the caches are only snooped when the render cache is
|
|
* flushed/invalidated. As we always have to emit invalidations
|
|
* and flushes when moving into and out of the RENDER domain, correct
|
|
* snooping behaviour occurs naturally as the result of our domain
|
|
* tracking.
|
|
*/
|
|
if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
|
|
obj->cache_dirty = true;
|
|
return;
|
|
}
|
|
|
|
trace_i915_gem_object_clflush(obj);
|
|
drm_clflush_sg(obj->mm.pages);
|
|
obj->cache_dirty = false;
|
|
}
|
|
|
|
/** Flushes the GTT write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
|
|
return;
|
|
|
|
/* No actual flushing is required for the GTT write domain. Writes
|
|
* to it "immediately" go to main memory as far as we know, so there's
|
|
* no chipset flush. It also doesn't land in render cache.
|
|
*
|
|
* However, we do have to enforce the order so that all writes through
|
|
* the GTT land before any writes to the device, such as updates to
|
|
* the GATT itself.
|
|
*
|
|
* We also have to wait a bit for the writes to land from the GTT.
|
|
* An uncached read (i.e. mmio) seems to be ideal for the round-trip
|
|
* timing. This issue has only been observed when switching quickly
|
|
* between GTT writes and CPU reads from inside the kernel on recent hw,
|
|
* and it appears to only affect discrete GTT blocks (i.e. on LLC
|
|
* system agents we cannot reproduce this behaviour).
|
|
*/
|
|
wmb();
|
|
if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
|
|
POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
|
|
|
|
intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
|
|
|
|
obj->base.write_domain = 0;
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
I915_GEM_DOMAIN_GTT);
|
|
}
|
|
|
|
/** Flushes the CPU write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
|
|
return;
|
|
|
|
i915_gem_clflush_object(obj, obj->pin_display);
|
|
intel_fb_obj_flush(obj, false, ORIGIN_CPU);
|
|
|
|
obj->base.write_domain = 0;
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
I915_GEM_DOMAIN_CPU);
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the GTT read, and possibly write domain.
|
|
* @obj: object to act on
|
|
* @write: ask for write access or read only
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
|
|
{
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&obj->base.dev->struct_mutex);
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
I915_WAIT_LOCKED |
|
|
(write ? I915_WAIT_ALL : 0),
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
|
|
return 0;
|
|
|
|
/* Flush and acquire obj->pages so that we are coherent through
|
|
* direct access in memory with previous cached writes through
|
|
* shmemfs and that our cache domain tracking remains valid.
|
|
* For example, if the obj->filp was moved to swap without us
|
|
* being notified and releasing the pages, we would mistakenly
|
|
* continue to assume that the obj remained out of the CPU cached
|
|
* domain.
|
|
*/
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
/* Serialise direct access to this object with the barriers for
|
|
* coherent writes from the GPU, by effectively invalidating the
|
|
* GTT domain upon first access.
|
|
*/
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
|
|
mb();
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
|
|
if (write) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
|
|
obj->mm.dirty = true;
|
|
}
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
i915_gem_object_unpin_pages(obj);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Changes the cache-level of an object across all VMA.
|
|
* @obj: object to act on
|
|
* @cache_level: new cache level to set for the object
|
|
*
|
|
* After this function returns, the object will be in the new cache-level
|
|
* across all GTT and the contents of the backing storage will be coherent,
|
|
* with respect to the new cache-level. In order to keep the backing storage
|
|
* coherent for all users, we only allow a single cache level to be set
|
|
* globally on the object and prevent it from being changed whilst the
|
|
* hardware is reading from the object. That is if the object is currently
|
|
* on the scanout it will be set to uncached (or equivalent display
|
|
* cache coherency) and all non-MOCS GPU access will also be uncached so
|
|
* that all direct access to the scanout remains coherent.
|
|
*/
|
|
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
|
|
enum i915_cache_level cache_level)
|
|
{
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&obj->base.dev->struct_mutex);
|
|
|
|
if (obj->cache_level == cache_level)
|
|
return 0;
|
|
|
|
/* Inspect the list of currently bound VMA and unbind any that would
|
|
* be invalid given the new cache-level. This is principally to
|
|
* catch the issue of the CS prefetch crossing page boundaries and
|
|
* reading an invalid PTE on older architectures.
|
|
*/
|
|
restart:
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link) {
|
|
if (!drm_mm_node_allocated(&vma->node))
|
|
continue;
|
|
|
|
if (i915_vma_is_pinned(vma)) {
|
|
DRM_DEBUG("can not change the cache level of pinned objects\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (i915_gem_valid_gtt_space(vma, cache_level))
|
|
continue;
|
|
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* As unbinding may affect other elements in the
|
|
* obj->vma_list (due to side-effects from retiring
|
|
* an active vma), play safe and restart the iterator.
|
|
*/
|
|
goto restart;
|
|
}
|
|
|
|
/* We can reuse the existing drm_mm nodes but need to change the
|
|
* cache-level on the PTE. We could simply unbind them all and
|
|
* rebind with the correct cache-level on next use. However since
|
|
* we already have a valid slot, dma mapping, pages etc, we may as
|
|
* rewrite the PTE in the belief that doing so tramples upon less
|
|
* state and so involves less work.
|
|
*/
|
|
if (obj->bind_count) {
|
|
/* Before we change the PTE, the GPU must not be accessing it.
|
|
* If we wait upon the object, we know that all the bound
|
|
* VMA are no longer active.
|
|
*/
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
I915_WAIT_LOCKED |
|
|
I915_WAIT_ALL,
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!HAS_LLC(to_i915(obj->base.dev)) &&
|
|
cache_level != I915_CACHE_NONE) {
|
|
/* Access to snoopable pages through the GTT is
|
|
* incoherent and on some machines causes a hard
|
|
* lockup. Relinquish the CPU mmaping to force
|
|
* userspace to refault in the pages and we can
|
|
* then double check if the GTT mapping is still
|
|
* valid for that pointer access.
|
|
*/
|
|
i915_gem_release_mmap(obj);
|
|
|
|
/* As we no longer need a fence for GTT access,
|
|
* we can relinquish it now (and so prevent having
|
|
* to steal a fence from someone else on the next
|
|
* fence request). Note GPU activity would have
|
|
* dropped the fence as all snoopable access is
|
|
* supposed to be linear.
|
|
*/
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link) {
|
|
ret = i915_vma_put_fence(vma);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
} else {
|
|
/* We either have incoherent backing store and
|
|
* so no GTT access or the architecture is fully
|
|
* coherent. In such cases, existing GTT mmaps
|
|
* ignore the cache bit in the PTE and we can
|
|
* rewrite it without confusing the GPU or having
|
|
* to force userspace to fault back in its mmaps.
|
|
*/
|
|
}
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link) {
|
|
if (!drm_mm_node_allocated(&vma->node))
|
|
continue;
|
|
|
|
ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
|
|
cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
|
|
obj->cache_dirty = true;
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, obj_link)
|
|
vma->node.color = cache_level;
|
|
obj->cache_level = cache_level;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_caching *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int err = 0;
|
|
|
|
rcu_read_lock();
|
|
obj = i915_gem_object_lookup_rcu(file, args->handle);
|
|
if (!obj) {
|
|
err = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
switch (obj->cache_level) {
|
|
case I915_CACHE_LLC:
|
|
case I915_CACHE_L3_LLC:
|
|
args->caching = I915_CACHING_CACHED;
|
|
break;
|
|
|
|
case I915_CACHE_WT:
|
|
args->caching = I915_CACHING_DISPLAY;
|
|
break;
|
|
|
|
default:
|
|
args->caching = I915_CACHING_NONE;
|
|
break;
|
|
}
|
|
out:
|
|
rcu_read_unlock();
|
|
return err;
|
|
}
|
|
|
|
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dev);
|
|
struct drm_i915_gem_caching *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
enum i915_cache_level level;
|
|
int ret;
|
|
|
|
switch (args->caching) {
|
|
case I915_CACHING_NONE:
|
|
level = I915_CACHE_NONE;
|
|
break;
|
|
case I915_CACHING_CACHED:
|
|
/*
|
|
* Due to a HW issue on BXT A stepping, GPU stores via a
|
|
* snooped mapping may leave stale data in a corresponding CPU
|
|
* cacheline, whereas normally such cachelines would get
|
|
* invalidated.
|
|
*/
|
|
if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
|
|
return -ENODEV;
|
|
|
|
level = I915_CACHE_LLC;
|
|
break;
|
|
case I915_CACHING_DISPLAY:
|
|
level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = i915_gem_object_set_cache_level(obj, level);
|
|
i915_gem_object_put(obj);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Prepare buffer for display plane (scanout, cursors, etc).
|
|
* Can be called from an uninterruptible phase (modesetting) and allows
|
|
* any flushes to be pipelined (for pageflips).
|
|
*/
|
|
struct i915_vma *
|
|
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
|
|
u32 alignment,
|
|
const struct i915_ggtt_view *view)
|
|
{
|
|
struct i915_vma *vma;
|
|
u32 old_read_domains, old_write_domain;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&obj->base.dev->struct_mutex);
|
|
|
|
/* Mark the pin_display early so that we account for the
|
|
* display coherency whilst setting up the cache domains.
|
|
*/
|
|
obj->pin_display++;
|
|
|
|
/* The display engine is not coherent with the LLC cache on gen6. As
|
|
* a result, we make sure that the pinning that is about to occur is
|
|
* done with uncached PTEs. This is lowest common denominator for all
|
|
* chipsets.
|
|
*
|
|
* However for gen6+, we could do better by using the GFDT bit instead
|
|
* of uncaching, which would allow us to flush all the LLC-cached data
|
|
* with that bit in the PTE to main memory with just one PIPE_CONTROL.
|
|
*/
|
|
ret = i915_gem_object_set_cache_level(obj,
|
|
HAS_WT(to_i915(obj->base.dev)) ?
|
|
I915_CACHE_WT : I915_CACHE_NONE);
|
|
if (ret) {
|
|
vma = ERR_PTR(ret);
|
|
goto err_unpin_display;
|
|
}
|
|
|
|
/* As the user may map the buffer once pinned in the display plane
|
|
* (e.g. libkms for the bootup splash), we have to ensure that we
|
|
* always use map_and_fenceable for all scanout buffers. However,
|
|
* it may simply be too big to fit into mappable, in which case
|
|
* put it anyway and hope that userspace can cope (but always first
|
|
* try to preserve the existing ABI).
|
|
*/
|
|
vma = ERR_PTR(-ENOSPC);
|
|
if (view->type == I915_GGTT_VIEW_NORMAL)
|
|
vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
|
|
PIN_MAPPABLE | PIN_NONBLOCK);
|
|
if (IS_ERR(vma)) {
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
unsigned int flags;
|
|
|
|
/* Valleyview is definitely limited to scanning out the first
|
|
* 512MiB. Lets presume this behaviour was inherited from the
|
|
* g4x display engine and that all earlier gen are similarly
|
|
* limited. Testing suggests that it is a little more
|
|
* complicated than this. For example, Cherryview appears quite
|
|
* happy to scanout from anywhere within its global aperture.
|
|
*/
|
|
flags = 0;
|
|
if (HAS_GMCH_DISPLAY(i915))
|
|
flags = PIN_MAPPABLE;
|
|
vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
|
|
}
|
|
if (IS_ERR(vma))
|
|
goto err_unpin_display;
|
|
|
|
vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
|
|
|
|
/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
|
|
if (obj->cache_dirty) {
|
|
i915_gem_clflush_object(obj, true);
|
|
intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
|
|
}
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
obj->base.write_domain = 0;
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return vma;
|
|
|
|
err_unpin_display:
|
|
obj->pin_display--;
|
|
return vma;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
|
|
{
|
|
lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
|
|
|
|
if (WARN_ON(vma->obj->pin_display == 0))
|
|
return;
|
|
|
|
if (--vma->obj->pin_display == 0)
|
|
vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
|
|
|
|
/* Bump the LRU to try and avoid premature eviction whilst flipping */
|
|
if (!i915_vma_is_active(vma))
|
|
list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
|
|
|
|
i915_vma_unpin(vma);
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the CPU read, and possibly write domain.
|
|
* @obj: object to act on
|
|
* @write: requesting write or read-only access
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
|
|
{
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&obj->base.dev->struct_mutex);
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
I915_WAIT_LOCKED |
|
|
(write ? I915_WAIT_ALL : 0),
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
|
|
return 0;
|
|
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* Flush the CPU cache if it's still invalid. */
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
|
|
i915_gem_clflush_object(obj, false);
|
|
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
|
|
|
|
/* If we're writing through the CPU, then the GPU read domains will
|
|
* need to be invalidated at next use.
|
|
*/
|
|
if (write) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Throttle our rendering by waiting until the ring has completed our requests
|
|
* emitted over 20 msec ago.
|
|
*
|
|
* Note that if we were to use the current jiffies each time around the loop,
|
|
* we wouldn't escape the function with any frames outstanding if the time to
|
|
* render a frame was over 20ms.
|
|
*
|
|
* This should get us reasonable parallelism between CPU and GPU but also
|
|
* relatively low latency when blocking on a particular request to finish.
|
|
*/
|
|
static int
|
|
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
|
|
struct drm_i915_gem_request *request, *target = NULL;
|
|
long ret;
|
|
|
|
/* ABI: return -EIO if already wedged */
|
|
if (i915_terminally_wedged(&dev_priv->gpu_error))
|
|
return -EIO;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
|
|
if (time_after_eq(request->emitted_jiffies, recent_enough))
|
|
break;
|
|
|
|
/*
|
|
* Note that the request might not have been submitted yet.
|
|
* In which case emitted_jiffies will be zero.
|
|
*/
|
|
if (!request->emitted_jiffies)
|
|
continue;
|
|
|
|
target = request;
|
|
}
|
|
if (target)
|
|
i915_gem_request_get(target);
|
|
spin_unlock(&file_priv->mm.lock);
|
|
|
|
if (target == NULL)
|
|
return 0;
|
|
|
|
ret = i915_wait_request(target,
|
|
I915_WAIT_INTERRUPTIBLE,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
i915_gem_request_put(target);
|
|
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
struct i915_vma *
|
|
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
|
|
const struct i915_ggtt_view *view,
|
|
u64 size,
|
|
u64 alignment,
|
|
u64 flags)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
|
|
struct i915_address_space *vm = &dev_priv->ggtt.base;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&obj->base.dev->struct_mutex);
|
|
|
|
vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
|
|
if (IS_ERR(vma))
|
|
return vma;
|
|
|
|
if (i915_vma_misplaced(vma, size, alignment, flags)) {
|
|
if (flags & PIN_NONBLOCK &&
|
|
(i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
|
|
return ERR_PTR(-ENOSPC);
|
|
|
|
if (flags & PIN_MAPPABLE) {
|
|
/* If the required space is larger than the available
|
|
* aperture, we will not able to find a slot for the
|
|
* object and unbinding the object now will be in
|
|
* vain. Worse, doing so may cause us to ping-pong
|
|
* the object in and out of the Global GTT and
|
|
* waste a lot of cycles under the mutex.
|
|
*/
|
|
if (vma->fence_size > dev_priv->ggtt.mappable_end)
|
|
return ERR_PTR(-E2BIG);
|
|
|
|
/* If NONBLOCK is set the caller is optimistically
|
|
* trying to cache the full object within the mappable
|
|
* aperture, and *must* have a fallback in place for
|
|
* situations where we cannot bind the object. We
|
|
* can be a little more lax here and use the fallback
|
|
* more often to avoid costly migrations of ourselves
|
|
* and other objects within the aperture.
|
|
*
|
|
* Half-the-aperture is used as a simple heuristic.
|
|
* More interesting would to do search for a free
|
|
* block prior to making the commitment to unbind.
|
|
* That caters for the self-harm case, and with a
|
|
* little more heuristics (e.g. NOFAULT, NOEVICT)
|
|
* we could try to minimise harm to others.
|
|
*/
|
|
if (flags & PIN_NONBLOCK &&
|
|
vma->fence_size > dev_priv->ggtt.mappable_end / 2)
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
WARN(i915_vma_is_pinned(vma),
|
|
"bo is already pinned in ggtt with incorrect alignment:"
|
|
" offset=%08x, req.alignment=%llx,"
|
|
" req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
|
|
i915_ggtt_offset(vma), alignment,
|
|
!!(flags & PIN_MAPPABLE),
|
|
i915_vma_is_map_and_fenceable(vma));
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return vma;
|
|
}
|
|
|
|
static __always_inline unsigned int __busy_read_flag(unsigned int id)
|
|
{
|
|
/* Note that we could alias engines in the execbuf API, but
|
|
* that would be very unwise as it prevents userspace from
|
|
* fine control over engine selection. Ahem.
|
|
*
|
|
* This should be something like EXEC_MAX_ENGINE instead of
|
|
* I915_NUM_ENGINES.
|
|
*/
|
|
BUILD_BUG_ON(I915_NUM_ENGINES > 16);
|
|
return 0x10000 << id;
|
|
}
|
|
|
|
static __always_inline unsigned int __busy_write_id(unsigned int id)
|
|
{
|
|
/* The uABI guarantees an active writer is also amongst the read
|
|
* engines. This would be true if we accessed the activity tracking
|
|
* under the lock, but as we perform the lookup of the object and
|
|
* its activity locklessly we can not guarantee that the last_write
|
|
* being active implies that we have set the same engine flag from
|
|
* last_read - hence we always set both read and write busy for
|
|
* last_write.
|
|
*/
|
|
return id | __busy_read_flag(id);
|
|
}
|
|
|
|
static __always_inline unsigned int
|
|
__busy_set_if_active(const struct dma_fence *fence,
|
|
unsigned int (*flag)(unsigned int id))
|
|
{
|
|
struct drm_i915_gem_request *rq;
|
|
|
|
/* We have to check the current hw status of the fence as the uABI
|
|
* guarantees forward progress. We could rely on the idle worker
|
|
* to eventually flush us, but to minimise latency just ask the
|
|
* hardware.
|
|
*
|
|
* Note we only report on the status of native fences.
|
|
*/
|
|
if (!dma_fence_is_i915(fence))
|
|
return 0;
|
|
|
|
/* opencode to_request() in order to avoid const warnings */
|
|
rq = container_of(fence, struct drm_i915_gem_request, fence);
|
|
if (i915_gem_request_completed(rq))
|
|
return 0;
|
|
|
|
return flag(rq->engine->exec_id);
|
|
}
|
|
|
|
static __always_inline unsigned int
|
|
busy_check_reader(const struct dma_fence *fence)
|
|
{
|
|
return __busy_set_if_active(fence, __busy_read_flag);
|
|
}
|
|
|
|
static __always_inline unsigned int
|
|
busy_check_writer(const struct dma_fence *fence)
|
|
{
|
|
if (!fence)
|
|
return 0;
|
|
|
|
return __busy_set_if_active(fence, __busy_write_id);
|
|
}
|
|
|
|
int
|
|
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_busy *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
struct reservation_object_list *list;
|
|
unsigned int seq;
|
|
int err;
|
|
|
|
err = -ENOENT;
|
|
rcu_read_lock();
|
|
obj = i915_gem_object_lookup_rcu(file, args->handle);
|
|
if (!obj)
|
|
goto out;
|
|
|
|
/* A discrepancy here is that we do not report the status of
|
|
* non-i915 fences, i.e. even though we may report the object as idle,
|
|
* a call to set-domain may still stall waiting for foreign rendering.
|
|
* This also means that wait-ioctl may report an object as busy,
|
|
* where busy-ioctl considers it idle.
|
|
*
|
|
* We trade the ability to warn of foreign fences to report on which
|
|
* i915 engines are active for the object.
|
|
*
|
|
* Alternatively, we can trade that extra information on read/write
|
|
* activity with
|
|
* args->busy =
|
|
* !reservation_object_test_signaled_rcu(obj->resv, true);
|
|
* to report the overall busyness. This is what the wait-ioctl does.
|
|
*
|
|
*/
|
|
retry:
|
|
seq = raw_read_seqcount(&obj->resv->seq);
|
|
|
|
/* Translate the exclusive fence to the READ *and* WRITE engine */
|
|
args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
|
|
|
|
/* Translate shared fences to READ set of engines */
|
|
list = rcu_dereference(obj->resv->fence);
|
|
if (list) {
|
|
unsigned int shared_count = list->shared_count, i;
|
|
|
|
for (i = 0; i < shared_count; ++i) {
|
|
struct dma_fence *fence =
|
|
rcu_dereference(list->shared[i]);
|
|
|
|
args->busy |= busy_check_reader(fence);
|
|
}
|
|
}
|
|
|
|
if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
|
|
goto retry;
|
|
|
|
err = 0;
|
|
out:
|
|
rcu_read_unlock();
|
|
return err;
|
|
}
|
|
|
|
int
|
|
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
return i915_gem_ring_throttle(dev, file_priv);
|
|
}
|
|
|
|
int
|
|
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_i915_gem_madvise *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int err;
|
|
|
|
switch (args->madv) {
|
|
case I915_MADV_DONTNEED:
|
|
case I915_MADV_WILLNEED:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
obj = i915_gem_object_lookup(file_priv, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
err = mutex_lock_interruptible(&obj->mm.lock);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (obj->mm.pages &&
|
|
i915_gem_object_is_tiled(obj) &&
|
|
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
|
|
if (obj->mm.madv == I915_MADV_WILLNEED) {
|
|
GEM_BUG_ON(!obj->mm.quirked);
|
|
__i915_gem_object_unpin_pages(obj);
|
|
obj->mm.quirked = false;
|
|
}
|
|
if (args->madv == I915_MADV_WILLNEED) {
|
|
GEM_BUG_ON(obj->mm.quirked);
|
|
__i915_gem_object_pin_pages(obj);
|
|
obj->mm.quirked = true;
|
|
}
|
|
}
|
|
|
|
if (obj->mm.madv != __I915_MADV_PURGED)
|
|
obj->mm.madv = args->madv;
|
|
|
|
/* if the object is no longer attached, discard its backing storage */
|
|
if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
|
|
i915_gem_object_truncate(obj);
|
|
|
|
args->retained = obj->mm.madv != __I915_MADV_PURGED;
|
|
mutex_unlock(&obj->mm.lock);
|
|
|
|
out:
|
|
i915_gem_object_put(obj);
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
frontbuffer_retire(struct i915_gem_active *active,
|
|
struct drm_i915_gem_request *request)
|
|
{
|
|
struct drm_i915_gem_object *obj =
|
|
container_of(active, typeof(*obj), frontbuffer_write);
|
|
|
|
intel_fb_obj_flush(obj, true, ORIGIN_CS);
|
|
}
|
|
|
|
void i915_gem_object_init(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_object_ops *ops)
|
|
{
|
|
mutex_init(&obj->mm.lock);
|
|
|
|
INIT_LIST_HEAD(&obj->global_link);
|
|
INIT_LIST_HEAD(&obj->userfault_link);
|
|
INIT_LIST_HEAD(&obj->obj_exec_link);
|
|
INIT_LIST_HEAD(&obj->vma_list);
|
|
INIT_LIST_HEAD(&obj->batch_pool_link);
|
|
|
|
obj->ops = ops;
|
|
|
|
reservation_object_init(&obj->__builtin_resv);
|
|
obj->resv = &obj->__builtin_resv;
|
|
|
|
obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
|
|
init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
|
|
|
|
obj->mm.madv = I915_MADV_WILLNEED;
|
|
INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
|
|
mutex_init(&obj->mm.get_page.lock);
|
|
|
|
i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
|
|
}
|
|
|
|
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
|
|
.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
|
|
I915_GEM_OBJECT_IS_SHRINKABLE,
|
|
.get_pages = i915_gem_object_get_pages_gtt,
|
|
.put_pages = i915_gem_object_put_pages_gtt,
|
|
};
|
|
|
|
struct drm_i915_gem_object *
|
|
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct address_space *mapping;
|
|
gfp_t mask;
|
|
int ret;
|
|
|
|
/* There is a prevalence of the assumption that we fit the object's
|
|
* page count inside a 32bit _signed_ variable. Let's document this and
|
|
* catch if we ever need to fix it. In the meantime, if you do spot
|
|
* such a local variable, please consider fixing!
|
|
*/
|
|
if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
|
|
return ERR_PTR(-E2BIG);
|
|
|
|
if (overflows_type(size, obj->base.size))
|
|
return ERR_PTR(-E2BIG);
|
|
|
|
obj = i915_gem_object_alloc(dev_priv);
|
|
if (obj == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
|
|
if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
|
|
/* 965gm cannot relocate objects above 4GiB. */
|
|
mask &= ~__GFP_HIGHMEM;
|
|
mask |= __GFP_DMA32;
|
|
}
|
|
|
|
mapping = obj->base.filp->f_mapping;
|
|
mapping_set_gfp_mask(mapping, mask);
|
|
|
|
i915_gem_object_init(obj, &i915_gem_object_ops);
|
|
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
|
|
if (HAS_LLC(dev_priv)) {
|
|
/* On some devices, we can have the GPU use the LLC (the CPU
|
|
* cache) for about a 10% performance improvement
|
|
* compared to uncached. Graphics requests other than
|
|
* display scanout are coherent with the CPU in
|
|
* accessing this cache. This means in this mode we
|
|
* don't need to clflush on the CPU side, and on the
|
|
* GPU side we only need to flush internal caches to
|
|
* get data visible to the CPU.
|
|
*
|
|
* However, we maintain the display planes as UC, and so
|
|
* need to rebind when first used as such.
|
|
*/
|
|
obj->cache_level = I915_CACHE_LLC;
|
|
} else
|
|
obj->cache_level = I915_CACHE_NONE;
|
|
|
|
trace_i915_gem_object_create(obj);
|
|
|
|
return obj;
|
|
|
|
fail:
|
|
i915_gem_object_free(obj);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
|
|
{
|
|
/* If we are the last user of the backing storage (be it shmemfs
|
|
* pages or stolen etc), we know that the pages are going to be
|
|
* immediately released. In this case, we can then skip copying
|
|
* back the contents from the GPU.
|
|
*/
|
|
|
|
if (obj->mm.madv != I915_MADV_WILLNEED)
|
|
return false;
|
|
|
|
if (obj->base.filp == NULL)
|
|
return true;
|
|
|
|
/* At first glance, this looks racy, but then again so would be
|
|
* userspace racing mmap against close. However, the first external
|
|
* reference to the filp can only be obtained through the
|
|
* i915_gem_mmap_ioctl() which safeguards us against the user
|
|
* acquiring such a reference whilst we are in the middle of
|
|
* freeing the object.
|
|
*/
|
|
return atomic_long_read(&obj->base.filp->f_count) == 1;
|
|
}
|
|
|
|
static void __i915_gem_free_objects(struct drm_i915_private *i915,
|
|
struct llist_node *freed)
|
|
{
|
|
struct drm_i915_gem_object *obj, *on;
|
|
|
|
mutex_lock(&i915->drm.struct_mutex);
|
|
intel_runtime_pm_get(i915);
|
|
llist_for_each_entry(obj, freed, freed) {
|
|
struct i915_vma *vma, *vn;
|
|
|
|
trace_i915_gem_object_destroy(obj);
|
|
|
|
GEM_BUG_ON(i915_gem_object_is_active(obj));
|
|
list_for_each_entry_safe(vma, vn,
|
|
&obj->vma_list, obj_link) {
|
|
GEM_BUG_ON(!i915_vma_is_ggtt(vma));
|
|
GEM_BUG_ON(i915_vma_is_active(vma));
|
|
vma->flags &= ~I915_VMA_PIN_MASK;
|
|
i915_vma_close(vma);
|
|
}
|
|
GEM_BUG_ON(!list_empty(&obj->vma_list));
|
|
GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
|
|
|
|
list_del(&obj->global_link);
|
|
}
|
|
intel_runtime_pm_put(i915);
|
|
mutex_unlock(&i915->drm.struct_mutex);
|
|
|
|
llist_for_each_entry_safe(obj, on, freed, freed) {
|
|
GEM_BUG_ON(obj->bind_count);
|
|
GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
|
|
|
|
if (obj->ops->release)
|
|
obj->ops->release(obj);
|
|
|
|
if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
|
|
atomic_set(&obj->mm.pages_pin_count, 0);
|
|
__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
|
|
GEM_BUG_ON(obj->mm.pages);
|
|
|
|
if (obj->base.import_attach)
|
|
drm_prime_gem_destroy(&obj->base, NULL);
|
|
|
|
reservation_object_fini(&obj->__builtin_resv);
|
|
drm_gem_object_release(&obj->base);
|
|
i915_gem_info_remove_obj(i915, obj->base.size);
|
|
|
|
kfree(obj->bit_17);
|
|
i915_gem_object_free(obj);
|
|
}
|
|
}
|
|
|
|
static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
|
|
{
|
|
struct llist_node *freed;
|
|
|
|
freed = llist_del_all(&i915->mm.free_list);
|
|
if (unlikely(freed))
|
|
__i915_gem_free_objects(i915, freed);
|
|
}
|
|
|
|
static void __i915_gem_free_work(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *i915 =
|
|
container_of(work, struct drm_i915_private, mm.free_work);
|
|
struct llist_node *freed;
|
|
|
|
/* All file-owned VMA should have been released by this point through
|
|
* i915_gem_close_object(), or earlier by i915_gem_context_close().
|
|
* However, the object may also be bound into the global GTT (e.g.
|
|
* older GPUs without per-process support, or for direct access through
|
|
* the GTT either for the user or for scanout). Those VMA still need to
|
|
* unbound now.
|
|
*/
|
|
|
|
while ((freed = llist_del_all(&i915->mm.free_list)))
|
|
__i915_gem_free_objects(i915, freed);
|
|
}
|
|
|
|
static void __i915_gem_free_object_rcu(struct rcu_head *head)
|
|
{
|
|
struct drm_i915_gem_object *obj =
|
|
container_of(head, typeof(*obj), rcu);
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
|
|
/* We can't simply use call_rcu() from i915_gem_free_object()
|
|
* as we need to block whilst unbinding, and the call_rcu
|
|
* task may be called from softirq context. So we take a
|
|
* detour through a worker.
|
|
*/
|
|
if (llist_add(&obj->freed, &i915->mm.free_list))
|
|
schedule_work(&i915->mm.free_work);
|
|
}
|
|
|
|
void i915_gem_free_object(struct drm_gem_object *gem_obj)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
|
|
|
|
if (obj->mm.quirked)
|
|
__i915_gem_object_unpin_pages(obj);
|
|
|
|
if (discard_backing_storage(obj))
|
|
obj->mm.madv = I915_MADV_DONTNEED;
|
|
|
|
/* Before we free the object, make sure any pure RCU-only
|
|
* read-side critical sections are complete, e.g.
|
|
* i915_gem_busy_ioctl(). For the corresponding synchronized
|
|
* lookup see i915_gem_object_lookup_rcu().
|
|
*/
|
|
call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
|
|
}
|
|
|
|
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
|
|
{
|
|
lockdep_assert_held(&obj->base.dev->struct_mutex);
|
|
|
|
GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
|
|
if (i915_gem_object_is_active(obj))
|
|
i915_gem_object_set_active_reference(obj);
|
|
else
|
|
i915_gem_object_put(obj);
|
|
}
|
|
|
|
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine(engine, dev_priv, id)
|
|
GEM_BUG_ON(!i915_gem_context_is_kernel(engine->last_retired_context));
|
|
}
|
|
|
|
int i915_gem_suspend(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
int ret;
|
|
|
|
intel_suspend_gt_powersave(dev_priv);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
/* We have to flush all the executing contexts to main memory so
|
|
* that they can saved in the hibernation image. To ensure the last
|
|
* context image is coherent, we have to switch away from it. That
|
|
* leaves the dev_priv->kernel_context still active when
|
|
* we actually suspend, and its image in memory may not match the GPU
|
|
* state. Fortunately, the kernel_context is disposable and we do
|
|
* not rely on its state.
|
|
*/
|
|
ret = i915_gem_switch_to_kernel_context(dev_priv);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = i915_gem_wait_for_idle(dev_priv,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
I915_WAIT_LOCKED);
|
|
if (ret)
|
|
goto err;
|
|
|
|
i915_gem_retire_requests(dev_priv);
|
|
GEM_BUG_ON(dev_priv->gt.active_requests);
|
|
|
|
assert_kernel_context_is_current(dev_priv);
|
|
i915_gem_context_lost(dev_priv);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
|
|
cancel_delayed_work_sync(&dev_priv->gt.retire_work);
|
|
|
|
/* As the idle_work is rearming if it detects a race, play safe and
|
|
* repeat the flush until it is definitely idle.
|
|
*/
|
|
while (flush_delayed_work(&dev_priv->gt.idle_work))
|
|
;
|
|
|
|
i915_gem_drain_freed_objects(dev_priv);
|
|
|
|
/* Assert that we sucessfully flushed all the work and
|
|
* reset the GPU back to its idle, low power state.
|
|
*/
|
|
WARN_ON(dev_priv->gt.awake);
|
|
WARN_ON(!intel_execlists_idle(dev_priv));
|
|
|
|
/*
|
|
* Neither the BIOS, ourselves or any other kernel
|
|
* expects the system to be in execlists mode on startup,
|
|
* so we need to reset the GPU back to legacy mode. And the only
|
|
* known way to disable logical contexts is through a GPU reset.
|
|
*
|
|
* So in order to leave the system in a known default configuration,
|
|
* always reset the GPU upon unload and suspend. Afterwards we then
|
|
* clean up the GEM state tracking, flushing off the requests and
|
|
* leaving the system in a known idle state.
|
|
*
|
|
* Note that is of the upmost importance that the GPU is idle and
|
|
* all stray writes are flushed *before* we dismantle the backing
|
|
* storage for the pinned objects.
|
|
*
|
|
* However, since we are uncertain that resetting the GPU on older
|
|
* machines is a good idea, we don't - just in case it leaves the
|
|
* machine in an unusable condition.
|
|
*/
|
|
if (HAS_HW_CONTEXTS(dev_priv)) {
|
|
int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
|
|
WARN_ON(reset && reset != -ENODEV);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_resume(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
|
|
WARN_ON(dev_priv->gt.awake);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
i915_gem_restore_gtt_mappings(dev_priv);
|
|
|
|
/* As we didn't flush the kernel context before suspend, we cannot
|
|
* guarantee that the context image is complete. So let's just reset
|
|
* it and start again.
|
|
*/
|
|
dev_priv->gt.resume(dev_priv);
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (INTEL_GEN(dev_priv) < 5 ||
|
|
dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
|
|
return;
|
|
|
|
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
|
|
DISP_TILE_SURFACE_SWIZZLING);
|
|
|
|
if (IS_GEN5(dev_priv))
|
|
return;
|
|
|
|
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
|
|
if (IS_GEN6(dev_priv))
|
|
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
|
|
else if (IS_GEN7(dev_priv))
|
|
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
|
|
else if (IS_GEN8(dev_priv))
|
|
I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
|
|
{
|
|
I915_WRITE(RING_CTL(base), 0);
|
|
I915_WRITE(RING_HEAD(base), 0);
|
|
I915_WRITE(RING_TAIL(base), 0);
|
|
I915_WRITE(RING_START(base), 0);
|
|
}
|
|
|
|
static void init_unused_rings(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (IS_I830(dev_priv)) {
|
|
init_unused_ring(dev_priv, PRB1_BASE);
|
|
init_unused_ring(dev_priv, SRB0_BASE);
|
|
init_unused_ring(dev_priv, SRB1_BASE);
|
|
init_unused_ring(dev_priv, SRB2_BASE);
|
|
init_unused_ring(dev_priv, SRB3_BASE);
|
|
} else if (IS_GEN2(dev_priv)) {
|
|
init_unused_ring(dev_priv, SRB0_BASE);
|
|
init_unused_ring(dev_priv, SRB1_BASE);
|
|
} else if (IS_GEN3(dev_priv)) {
|
|
init_unused_ring(dev_priv, PRB1_BASE);
|
|
init_unused_ring(dev_priv, PRB2_BASE);
|
|
}
|
|
}
|
|
|
|
int
|
|
i915_gem_init_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int ret;
|
|
|
|
dev_priv->gt.last_init_time = ktime_get();
|
|
|
|
/* Double layer security blanket, see i915_gem_init() */
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
|
|
I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
|
|
|
|
if (IS_HASWELL(dev_priv))
|
|
I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
|
|
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
|
|
|
|
if (HAS_PCH_NOP(dev_priv)) {
|
|
if (IS_IVYBRIDGE(dev_priv)) {
|
|
u32 temp = I915_READ(GEN7_MSG_CTL);
|
|
temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
|
|
I915_WRITE(GEN7_MSG_CTL, temp);
|
|
} else if (INTEL_GEN(dev_priv) >= 7) {
|
|
u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
|
|
temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
|
|
I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
|
|
}
|
|
}
|
|
|
|
i915_gem_init_swizzling(dev_priv);
|
|
|
|
/*
|
|
* At least 830 can leave some of the unused rings
|
|
* "active" (ie. head != tail) after resume which
|
|
* will prevent c3 entry. Makes sure all unused rings
|
|
* are totally idle.
|
|
*/
|
|
init_unused_rings(dev_priv);
|
|
|
|
BUG_ON(!dev_priv->kernel_context);
|
|
|
|
ret = i915_ppgtt_init_hw(dev_priv);
|
|
if (ret) {
|
|
DRM_ERROR("PPGTT enable HW failed %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
/* Need to do basic initialisation of all rings first: */
|
|
for_each_engine(engine, dev_priv, id) {
|
|
ret = engine->init_hw(engine);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
intel_mocs_init_l3cc_table(dev_priv);
|
|
|
|
/* We can't enable contexts until all firmware is loaded */
|
|
ret = intel_guc_setup(dev_priv);
|
|
if (ret)
|
|
goto out;
|
|
|
|
out:
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
return ret;
|
|
}
|
|
|
|
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
|
|
{
|
|
if (INTEL_INFO(dev_priv)->gen < 6)
|
|
return false;
|
|
|
|
/* TODO: make semaphores and Execlists play nicely together */
|
|
if (i915.enable_execlists)
|
|
return false;
|
|
|
|
if (value >= 0)
|
|
return value;
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
/* Enable semaphores on SNB when IO remapping is off */
|
|
if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
|
|
return false;
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
int i915_gem_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
|
|
if (!i915.enable_execlists) {
|
|
dev_priv->gt.resume = intel_legacy_submission_resume;
|
|
dev_priv->gt.cleanup_engine = intel_engine_cleanup;
|
|
} else {
|
|
dev_priv->gt.resume = intel_lr_context_resume;
|
|
dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
|
|
}
|
|
|
|
/* This is just a security blanket to placate dragons.
|
|
* On some systems, we very sporadically observe that the first TLBs
|
|
* used by the CS may be stale, despite us poking the TLB reset. If
|
|
* we hold the forcewake during initialisation these problems
|
|
* just magically go away.
|
|
*/
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
i915_gem_init_userptr(dev_priv);
|
|
|
|
ret = i915_gem_init_ggtt(dev_priv);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = i915_gem_context_init(dev_priv);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = intel_engines_init(dev_priv);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = i915_gem_init_hw(dev_priv);
|
|
if (ret == -EIO) {
|
|
/* Allow engine initialisation to fail by marking the GPU as
|
|
* wedged. But we only want to do this where the GPU is angry,
|
|
* for all other failure, such as an allocation failure, bail.
|
|
*/
|
|
DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
|
|
i915_gem_set_wedged(dev_priv);
|
|
ret = 0;
|
|
}
|
|
|
|
out_unlock:
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine(engine, dev_priv, id)
|
|
dev_priv->gt.cleanup_engine(engine);
|
|
}
|
|
|
|
void
|
|
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
|
|
{
|
|
int i;
|
|
|
|
if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
|
|
!IS_CHERRYVIEW(dev_priv))
|
|
dev_priv->num_fence_regs = 32;
|
|
else if (INTEL_INFO(dev_priv)->gen >= 4 ||
|
|
IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
|
|
IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
|
|
dev_priv->num_fence_regs = 16;
|
|
else
|
|
dev_priv->num_fence_regs = 8;
|
|
|
|
if (intel_vgpu_active(dev_priv))
|
|
dev_priv->num_fence_regs =
|
|
I915_READ(vgtif_reg(avail_rs.fence_num));
|
|
|
|
/* Initialize fence registers to zero */
|
|
for (i = 0; i < dev_priv->num_fence_regs; i++) {
|
|
struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
|
|
|
|
fence->i915 = dev_priv;
|
|
fence->id = i;
|
|
list_add_tail(&fence->link, &dev_priv->mm.fence_list);
|
|
}
|
|
i915_gem_restore_fences(dev_priv);
|
|
|
|
i915_gem_detect_bit_6_swizzle(dev_priv);
|
|
}
|
|
|
|
int
|
|
i915_gem_load_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
int err = -ENOMEM;
|
|
|
|
dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
|
|
if (!dev_priv->objects)
|
|
goto err_out;
|
|
|
|
dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
|
|
if (!dev_priv->vmas)
|
|
goto err_objects;
|
|
|
|
dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
|
|
SLAB_HWCACHE_ALIGN |
|
|
SLAB_RECLAIM_ACCOUNT |
|
|
SLAB_DESTROY_BY_RCU);
|
|
if (!dev_priv->requests)
|
|
goto err_vmas;
|
|
|
|
dev_priv->dependencies = KMEM_CACHE(i915_dependency,
|
|
SLAB_HWCACHE_ALIGN |
|
|
SLAB_RECLAIM_ACCOUNT);
|
|
if (!dev_priv->dependencies)
|
|
goto err_requests;
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
INIT_LIST_HEAD(&dev_priv->gt.timelines);
|
|
err = i915_gem_timeline_init__global(dev_priv);
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
if (err)
|
|
goto err_dependencies;
|
|
|
|
INIT_LIST_HEAD(&dev_priv->context_list);
|
|
INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
|
|
init_llist_head(&dev_priv->mm.free_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.bound_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
|
|
INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
|
|
i915_gem_retire_work_handler);
|
|
INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
|
|
i915_gem_idle_work_handler);
|
|
init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
|
|
init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
|
|
|
|
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
|
|
|
|
init_waitqueue_head(&dev_priv->pending_flip_queue);
|
|
|
|
dev_priv->mm.interruptible = true;
|
|
|
|
atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
|
|
|
|
spin_lock_init(&dev_priv->fb_tracking.lock);
|
|
|
|
return 0;
|
|
|
|
err_dependencies:
|
|
kmem_cache_destroy(dev_priv->dependencies);
|
|
err_requests:
|
|
kmem_cache_destroy(dev_priv->requests);
|
|
err_vmas:
|
|
kmem_cache_destroy(dev_priv->vmas);
|
|
err_objects:
|
|
kmem_cache_destroy(dev_priv->objects);
|
|
err_out:
|
|
return err;
|
|
}
|
|
|
|
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
|
|
{
|
|
WARN_ON(!llist_empty(&dev_priv->mm.free_list));
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
|
|
WARN_ON(!list_empty(&dev_priv->gt.timelines));
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
|
|
kmem_cache_destroy(dev_priv->dependencies);
|
|
kmem_cache_destroy(dev_priv->requests);
|
|
kmem_cache_destroy(dev_priv->vmas);
|
|
kmem_cache_destroy(dev_priv->objects);
|
|
|
|
/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
|
|
rcu_barrier();
|
|
}
|
|
|
|
int i915_gem_freeze(struct drm_i915_private *dev_priv)
|
|
{
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
i915_gem_shrink_all(dev_priv);
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
|
|
intel_runtime_pm_put(dev_priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct list_head *phases[] = {
|
|
&dev_priv->mm.unbound_list,
|
|
&dev_priv->mm.bound_list,
|
|
NULL
|
|
}, **p;
|
|
|
|
/* Called just before we write the hibernation image.
|
|
*
|
|
* We need to update the domain tracking to reflect that the CPU
|
|
* will be accessing all the pages to create and restore from the
|
|
* hibernation, and so upon restoration those pages will be in the
|
|
* CPU domain.
|
|
*
|
|
* To make sure the hibernation image contains the latest state,
|
|
* we update that state just before writing out the image.
|
|
*
|
|
* To try and reduce the hibernation image, we manually shrink
|
|
* the objects as well.
|
|
*/
|
|
|
|
mutex_lock(&dev_priv->drm.struct_mutex);
|
|
i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
|
|
|
|
for (p = phases; *p; p++) {
|
|
list_for_each_entry(obj, *p, global_link) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
}
|
|
mutex_unlock(&dev_priv->drm.struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
struct drm_i915_gem_request *request;
|
|
|
|
/* Clean up our request list when the client is going away, so that
|
|
* later retire_requests won't dereference our soon-to-be-gone
|
|
* file_priv.
|
|
*/
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_for_each_entry(request, &file_priv->mm.request_list, client_list)
|
|
request->file_priv = NULL;
|
|
spin_unlock(&file_priv->mm.lock);
|
|
|
|
if (!list_empty(&file_priv->rps.link)) {
|
|
spin_lock(&to_i915(dev)->rps.client_lock);
|
|
list_del(&file_priv->rps.link);
|
|
spin_unlock(&to_i915(dev)->rps.client_lock);
|
|
}
|
|
}
|
|
|
|
int i915_gem_open(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv;
|
|
int ret;
|
|
|
|
DRM_DEBUG("\n");
|
|
|
|
file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
|
|
if (!file_priv)
|
|
return -ENOMEM;
|
|
|
|
file->driver_priv = file_priv;
|
|
file_priv->dev_priv = to_i915(dev);
|
|
file_priv->file = file;
|
|
INIT_LIST_HEAD(&file_priv->rps.link);
|
|
|
|
spin_lock_init(&file_priv->mm.lock);
|
|
INIT_LIST_HEAD(&file_priv->mm.request_list);
|
|
|
|
file_priv->bsd_engine = -1;
|
|
|
|
ret = i915_gem_context_open(dev, file);
|
|
if (ret)
|
|
kfree(file_priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_track_fb - update frontbuffer tracking
|
|
* @old: current GEM buffer for the frontbuffer slots
|
|
* @new: new GEM buffer for the frontbuffer slots
|
|
* @frontbuffer_bits: bitmask of frontbuffer slots
|
|
*
|
|
* This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
|
|
* from @old and setting them in @new. Both @old and @new can be NULL.
|
|
*/
|
|
void i915_gem_track_fb(struct drm_i915_gem_object *old,
|
|
struct drm_i915_gem_object *new,
|
|
unsigned frontbuffer_bits)
|
|
{
|
|
/* Control of individual bits within the mask are guarded by
|
|
* the owning plane->mutex, i.e. we can never see concurrent
|
|
* manipulation of individual bits. But since the bitfield as a whole
|
|
* is updated using RMW, we need to use atomics in order to update
|
|
* the bits.
|
|
*/
|
|
BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
|
|
sizeof(atomic_t) * BITS_PER_BYTE);
|
|
|
|
if (old) {
|
|
WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
|
|
atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
|
|
}
|
|
|
|
if (new) {
|
|
WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
|
|
atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
|
|
}
|
|
}
|
|
|
|
/* Allocate a new GEM object and fill it with the supplied data */
|
|
struct drm_i915_gem_object *
|
|
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
|
|
const void *data, size_t size)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct sg_table *sg;
|
|
size_t bytes;
|
|
int ret;
|
|
|
|
obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
|
|
if (IS_ERR(obj))
|
|
return obj;
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, true);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
sg = obj->mm.pages;
|
|
bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
|
|
obj->mm.dirty = true; /* Backing store is now out of date */
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
if (WARN_ON(bytes != size)) {
|
|
DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
|
|
ret = -EFAULT;
|
|
goto fail;
|
|
}
|
|
|
|
return obj;
|
|
|
|
fail:
|
|
i915_gem_object_put(obj);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
struct scatterlist *
|
|
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
|
|
unsigned int n,
|
|
unsigned int *offset)
|
|
{
|
|
struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
|
|
struct scatterlist *sg;
|
|
unsigned int idx, count;
|
|
|
|
might_sleep();
|
|
GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
|
|
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
|
|
|
|
/* As we iterate forward through the sg, we record each entry in a
|
|
* radixtree for quick repeated (backwards) lookups. If we have seen
|
|
* this index previously, we will have an entry for it.
|
|
*
|
|
* Initial lookup is O(N), but this is amortized to O(1) for
|
|
* sequential page access (where each new request is consecutive
|
|
* to the previous one). Repeated lookups are O(lg(obj->base.size)),
|
|
* i.e. O(1) with a large constant!
|
|
*/
|
|
if (n < READ_ONCE(iter->sg_idx))
|
|
goto lookup;
|
|
|
|
mutex_lock(&iter->lock);
|
|
|
|
/* We prefer to reuse the last sg so that repeated lookup of this
|
|
* (or the subsequent) sg are fast - comparing against the last
|
|
* sg is faster than going through the radixtree.
|
|
*/
|
|
|
|
sg = iter->sg_pos;
|
|
idx = iter->sg_idx;
|
|
count = __sg_page_count(sg);
|
|
|
|
while (idx + count <= n) {
|
|
unsigned long exception, i;
|
|
int ret;
|
|
|
|
/* If we cannot allocate and insert this entry, or the
|
|
* individual pages from this range, cancel updating the
|
|
* sg_idx so that on this lookup we are forced to linearly
|
|
* scan onwards, but on future lookups we will try the
|
|
* insertion again (in which case we need to be careful of
|
|
* the error return reporting that we have already inserted
|
|
* this index).
|
|
*/
|
|
ret = radix_tree_insert(&iter->radix, idx, sg);
|
|
if (ret && ret != -EEXIST)
|
|
goto scan;
|
|
|
|
exception =
|
|
RADIX_TREE_EXCEPTIONAL_ENTRY |
|
|
idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
|
|
for (i = 1; i < count; i++) {
|
|
ret = radix_tree_insert(&iter->radix, idx + i,
|
|
(void *)exception);
|
|
if (ret && ret != -EEXIST)
|
|
goto scan;
|
|
}
|
|
|
|
idx += count;
|
|
sg = ____sg_next(sg);
|
|
count = __sg_page_count(sg);
|
|
}
|
|
|
|
scan:
|
|
iter->sg_pos = sg;
|
|
iter->sg_idx = idx;
|
|
|
|
mutex_unlock(&iter->lock);
|
|
|
|
if (unlikely(n < idx)) /* insertion completed by another thread */
|
|
goto lookup;
|
|
|
|
/* In case we failed to insert the entry into the radixtree, we need
|
|
* to look beyond the current sg.
|
|
*/
|
|
while (idx + count <= n) {
|
|
idx += count;
|
|
sg = ____sg_next(sg);
|
|
count = __sg_page_count(sg);
|
|
}
|
|
|
|
*offset = n - idx;
|
|
return sg;
|
|
|
|
lookup:
|
|
rcu_read_lock();
|
|
|
|
sg = radix_tree_lookup(&iter->radix, n);
|
|
GEM_BUG_ON(!sg);
|
|
|
|
/* If this index is in the middle of multi-page sg entry,
|
|
* the radixtree will contain an exceptional entry that points
|
|
* to the start of that range. We will return the pointer to
|
|
* the base page and the offset of this page within the
|
|
* sg entry's range.
|
|
*/
|
|
*offset = 0;
|
|
if (unlikely(radix_tree_exception(sg))) {
|
|
unsigned long base =
|
|
(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
|
|
|
|
sg = radix_tree_lookup(&iter->radix, base);
|
|
GEM_BUG_ON(!sg);
|
|
|
|
*offset = n - base;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
return sg;
|
|
}
|
|
|
|
struct page *
|
|
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
|
|
{
|
|
struct scatterlist *sg;
|
|
unsigned int offset;
|
|
|
|
GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
|
|
|
|
sg = i915_gem_object_get_sg(obj, n, &offset);
|
|
return nth_page(sg_page(sg), offset);
|
|
}
|
|
|
|
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
|
|
struct page *
|
|
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
|
|
unsigned int n)
|
|
{
|
|
struct page *page;
|
|
|
|
page = i915_gem_object_get_page(obj, n);
|
|
if (!obj->mm.dirty)
|
|
set_page_dirty(page);
|
|
|
|
return page;
|
|
}
|
|
|
|
dma_addr_t
|
|
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
|
|
unsigned long n)
|
|
{
|
|
struct scatterlist *sg;
|
|
unsigned int offset;
|
|
|
|
sg = i915_gem_object_get_sg(obj, n, &offset);
|
|
return sg_dma_address(sg) + (offset << PAGE_SHIFT);
|
|
}
|