linux/fs/nfsd/nfs4state.c

7372 lines
186 KiB
C

/*
* Copyright (c) 2001 The Regents of the University of Michigan.
* All rights reserved.
*
* Kendrick Smith <kmsmith@umich.edu>
* Andy Adamson <kandros@umich.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/namei.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/ratelimit.h>
#include <linux/sunrpc/svcauth_gss.h>
#include <linux/sunrpc/addr.h>
#include <linux/jhash.h>
#include "xdr4.h"
#include "xdr4cb.h"
#include "vfs.h"
#include "current_stateid.h"
#include "netns.h"
#include "pnfs.h"
#define NFSDDBG_FACILITY NFSDDBG_PROC
#define all_ones {{~0,~0},~0}
static const stateid_t one_stateid = {
.si_generation = ~0,
.si_opaque = all_ones,
};
static const stateid_t zero_stateid = {
/* all fields zero */
};
static const stateid_t currentstateid = {
.si_generation = 1,
};
static const stateid_t close_stateid = {
.si_generation = 0xffffffffU,
};
static u64 current_sessionid = 1;
#define ZERO_STATEID(stateid) (!memcmp((stateid), &zero_stateid, sizeof(stateid_t)))
#define ONE_STATEID(stateid) (!memcmp((stateid), &one_stateid, sizeof(stateid_t)))
#define CURRENT_STATEID(stateid) (!memcmp((stateid), &currentstateid, sizeof(stateid_t)))
#define CLOSE_STATEID(stateid) (!memcmp((stateid), &close_stateid, sizeof(stateid_t)))
/* forward declarations */
static bool check_for_locks(struct nfs4_file *fp, struct nfs4_lockowner *lowner);
static void nfs4_free_ol_stateid(struct nfs4_stid *stid);
/* Locking: */
/*
* Currently used for the del_recall_lru and file hash table. In an
* effort to decrease the scope of the client_mutex, this spinlock may
* eventually cover more:
*/
static DEFINE_SPINLOCK(state_lock);
enum nfsd4_st_mutex_lock_subclass {
OPEN_STATEID_MUTEX = 0,
LOCK_STATEID_MUTEX = 1,
};
/*
* A waitqueue for all in-progress 4.0 CLOSE operations that are waiting for
* the refcount on the open stateid to drop.
*/
static DECLARE_WAIT_QUEUE_HEAD(close_wq);
static struct kmem_cache *openowner_slab;
static struct kmem_cache *lockowner_slab;
static struct kmem_cache *file_slab;
static struct kmem_cache *stateid_slab;
static struct kmem_cache *deleg_slab;
static struct kmem_cache *odstate_slab;
static void free_session(struct nfsd4_session *);
static const struct nfsd4_callback_ops nfsd4_cb_recall_ops;
static const struct nfsd4_callback_ops nfsd4_cb_notify_lock_ops;
static bool is_session_dead(struct nfsd4_session *ses)
{
return ses->se_flags & NFS4_SESSION_DEAD;
}
static __be32 mark_session_dead_locked(struct nfsd4_session *ses, int ref_held_by_me)
{
if (atomic_read(&ses->se_ref) > ref_held_by_me)
return nfserr_jukebox;
ses->se_flags |= NFS4_SESSION_DEAD;
return nfs_ok;
}
static bool is_client_expired(struct nfs4_client *clp)
{
return clp->cl_time == 0;
}
static __be32 get_client_locked(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
if (is_client_expired(clp))
return nfserr_expired;
atomic_inc(&clp->cl_refcount);
return nfs_ok;
}
/* must be called under the client_lock */
static inline void
renew_client_locked(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
if (is_client_expired(clp)) {
WARN_ON(1);
printk("%s: client (clientid %08x/%08x) already expired\n",
__func__,
clp->cl_clientid.cl_boot,
clp->cl_clientid.cl_id);
return;
}
dprintk("renewing client (clientid %08x/%08x)\n",
clp->cl_clientid.cl_boot,
clp->cl_clientid.cl_id);
list_move_tail(&clp->cl_lru, &nn->client_lru);
clp->cl_time = get_seconds();
}
static void put_client_renew_locked(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
if (!atomic_dec_and_test(&clp->cl_refcount))
return;
if (!is_client_expired(clp))
renew_client_locked(clp);
}
static void put_client_renew(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
if (!atomic_dec_and_lock(&clp->cl_refcount, &nn->client_lock))
return;
if (!is_client_expired(clp))
renew_client_locked(clp);
spin_unlock(&nn->client_lock);
}
static __be32 nfsd4_get_session_locked(struct nfsd4_session *ses)
{
__be32 status;
if (is_session_dead(ses))
return nfserr_badsession;
status = get_client_locked(ses->se_client);
if (status)
return status;
atomic_inc(&ses->se_ref);
return nfs_ok;
}
static void nfsd4_put_session_locked(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
if (atomic_dec_and_test(&ses->se_ref) && is_session_dead(ses))
free_session(ses);
put_client_renew_locked(clp);
}
static void nfsd4_put_session(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
spin_lock(&nn->client_lock);
nfsd4_put_session_locked(ses);
spin_unlock(&nn->client_lock);
}
static struct nfsd4_blocked_lock *
find_blocked_lock(struct nfs4_lockowner *lo, struct knfsd_fh *fh,
struct nfsd_net *nn)
{
struct nfsd4_blocked_lock *cur, *found = NULL;
spin_lock(&nn->blocked_locks_lock);
list_for_each_entry(cur, &lo->lo_blocked, nbl_list) {
if (fh_match(fh, &cur->nbl_fh)) {
list_del_init(&cur->nbl_list);
list_del_init(&cur->nbl_lru);
found = cur;
break;
}
}
spin_unlock(&nn->blocked_locks_lock);
if (found)
posix_unblock_lock(&found->nbl_lock);
return found;
}
static struct nfsd4_blocked_lock *
find_or_allocate_block(struct nfs4_lockowner *lo, struct knfsd_fh *fh,
struct nfsd_net *nn)
{
struct nfsd4_blocked_lock *nbl;
nbl = find_blocked_lock(lo, fh, nn);
if (!nbl) {
nbl= kmalloc(sizeof(*nbl), GFP_KERNEL);
if (nbl) {
fh_copy_shallow(&nbl->nbl_fh, fh);
locks_init_lock(&nbl->nbl_lock);
nfsd4_init_cb(&nbl->nbl_cb, lo->lo_owner.so_client,
&nfsd4_cb_notify_lock_ops,
NFSPROC4_CLNT_CB_NOTIFY_LOCK);
}
}
return nbl;
}
static void
free_blocked_lock(struct nfsd4_blocked_lock *nbl)
{
locks_release_private(&nbl->nbl_lock);
kfree(nbl);
}
static int
nfsd4_cb_notify_lock_done(struct nfsd4_callback *cb, struct rpc_task *task)
{
/*
* Since this is just an optimization, we don't try very hard if it
* turns out not to succeed. We'll requeue it on NFS4ERR_DELAY, and
* just quit trying on anything else.
*/
switch (task->tk_status) {
case -NFS4ERR_DELAY:
rpc_delay(task, 1 * HZ);
return 0;
default:
return 1;
}
}
static void
nfsd4_cb_notify_lock_release(struct nfsd4_callback *cb)
{
struct nfsd4_blocked_lock *nbl = container_of(cb,
struct nfsd4_blocked_lock, nbl_cb);
free_blocked_lock(nbl);
}
static const struct nfsd4_callback_ops nfsd4_cb_notify_lock_ops = {
.done = nfsd4_cb_notify_lock_done,
.release = nfsd4_cb_notify_lock_release,
};
static inline struct nfs4_stateowner *
nfs4_get_stateowner(struct nfs4_stateowner *sop)
{
atomic_inc(&sop->so_count);
return sop;
}
static int
same_owner_str(struct nfs4_stateowner *sop, struct xdr_netobj *owner)
{
return (sop->so_owner.len == owner->len) &&
0 == memcmp(sop->so_owner.data, owner->data, owner->len);
}
static struct nfs4_openowner *
find_openstateowner_str_locked(unsigned int hashval, struct nfsd4_open *open,
struct nfs4_client *clp)
{
struct nfs4_stateowner *so;
lockdep_assert_held(&clp->cl_lock);
list_for_each_entry(so, &clp->cl_ownerstr_hashtbl[hashval],
so_strhash) {
if (!so->so_is_open_owner)
continue;
if (same_owner_str(so, &open->op_owner))
return openowner(nfs4_get_stateowner(so));
}
return NULL;
}
static struct nfs4_openowner *
find_openstateowner_str(unsigned int hashval, struct nfsd4_open *open,
struct nfs4_client *clp)
{
struct nfs4_openowner *oo;
spin_lock(&clp->cl_lock);
oo = find_openstateowner_str_locked(hashval, open, clp);
spin_unlock(&clp->cl_lock);
return oo;
}
static inline u32
opaque_hashval(const void *ptr, int nbytes)
{
unsigned char *cptr = (unsigned char *) ptr;
u32 x = 0;
while (nbytes--) {
x *= 37;
x += *cptr++;
}
return x;
}
static void nfsd4_free_file_rcu(struct rcu_head *rcu)
{
struct nfs4_file *fp = container_of(rcu, struct nfs4_file, fi_rcu);
kmem_cache_free(file_slab, fp);
}
void
put_nfs4_file(struct nfs4_file *fi)
{
might_lock(&state_lock);
if (refcount_dec_and_lock(&fi->fi_ref, &state_lock)) {
hlist_del_rcu(&fi->fi_hash);
spin_unlock(&state_lock);
WARN_ON_ONCE(!list_empty(&fi->fi_clnt_odstate));
WARN_ON_ONCE(!list_empty(&fi->fi_delegations));
call_rcu(&fi->fi_rcu, nfsd4_free_file_rcu);
}
}
static struct file *
__nfs4_get_fd(struct nfs4_file *f, int oflag)
{
if (f->fi_fds[oflag])
return get_file(f->fi_fds[oflag]);
return NULL;
}
static struct file *
find_writeable_file_locked(struct nfs4_file *f)
{
struct file *ret;
lockdep_assert_held(&f->fi_lock);
ret = __nfs4_get_fd(f, O_WRONLY);
if (!ret)
ret = __nfs4_get_fd(f, O_RDWR);
return ret;
}
static struct file *
find_writeable_file(struct nfs4_file *f)
{
struct file *ret;
spin_lock(&f->fi_lock);
ret = find_writeable_file_locked(f);
spin_unlock(&f->fi_lock);
return ret;
}
static struct file *find_readable_file_locked(struct nfs4_file *f)
{
struct file *ret;
lockdep_assert_held(&f->fi_lock);
ret = __nfs4_get_fd(f, O_RDONLY);
if (!ret)
ret = __nfs4_get_fd(f, O_RDWR);
return ret;
}
static struct file *
find_readable_file(struct nfs4_file *f)
{
struct file *ret;
spin_lock(&f->fi_lock);
ret = find_readable_file_locked(f);
spin_unlock(&f->fi_lock);
return ret;
}
struct file *
find_any_file(struct nfs4_file *f)
{
struct file *ret;
spin_lock(&f->fi_lock);
ret = __nfs4_get_fd(f, O_RDWR);
if (!ret) {
ret = __nfs4_get_fd(f, O_WRONLY);
if (!ret)
ret = __nfs4_get_fd(f, O_RDONLY);
}
spin_unlock(&f->fi_lock);
return ret;
}
static atomic_long_t num_delegations;
unsigned long max_delegations;
/*
* Open owner state (share locks)
*/
/* hash tables for lock and open owners */
#define OWNER_HASH_BITS 8
#define OWNER_HASH_SIZE (1 << OWNER_HASH_BITS)
#define OWNER_HASH_MASK (OWNER_HASH_SIZE - 1)
static unsigned int ownerstr_hashval(struct xdr_netobj *ownername)
{
unsigned int ret;
ret = opaque_hashval(ownername->data, ownername->len);
return ret & OWNER_HASH_MASK;
}
/* hash table for nfs4_file */
#define FILE_HASH_BITS 8
#define FILE_HASH_SIZE (1 << FILE_HASH_BITS)
static unsigned int nfsd_fh_hashval(struct knfsd_fh *fh)
{
return jhash2(fh->fh_base.fh_pad, XDR_QUADLEN(fh->fh_size), 0);
}
static unsigned int file_hashval(struct knfsd_fh *fh)
{
return nfsd_fh_hashval(fh) & (FILE_HASH_SIZE - 1);
}
static struct hlist_head file_hashtbl[FILE_HASH_SIZE];
static void
__nfs4_file_get_access(struct nfs4_file *fp, u32 access)
{
lockdep_assert_held(&fp->fi_lock);
if (access & NFS4_SHARE_ACCESS_WRITE)
atomic_inc(&fp->fi_access[O_WRONLY]);
if (access & NFS4_SHARE_ACCESS_READ)
atomic_inc(&fp->fi_access[O_RDONLY]);
}
static __be32
nfs4_file_get_access(struct nfs4_file *fp, u32 access)
{
lockdep_assert_held(&fp->fi_lock);
/* Does this access mode make sense? */
if (access & ~NFS4_SHARE_ACCESS_BOTH)
return nfserr_inval;
/* Does it conflict with a deny mode already set? */
if ((access & fp->fi_share_deny) != 0)
return nfserr_share_denied;
__nfs4_file_get_access(fp, access);
return nfs_ok;
}
static __be32 nfs4_file_check_deny(struct nfs4_file *fp, u32 deny)
{
/* Common case is that there is no deny mode. */
if (deny) {
/* Does this deny mode make sense? */
if (deny & ~NFS4_SHARE_DENY_BOTH)
return nfserr_inval;
if ((deny & NFS4_SHARE_DENY_READ) &&
atomic_read(&fp->fi_access[O_RDONLY]))
return nfserr_share_denied;
if ((deny & NFS4_SHARE_DENY_WRITE) &&
atomic_read(&fp->fi_access[O_WRONLY]))
return nfserr_share_denied;
}
return nfs_ok;
}
static void __nfs4_file_put_access(struct nfs4_file *fp, int oflag)
{
might_lock(&fp->fi_lock);
if (atomic_dec_and_lock(&fp->fi_access[oflag], &fp->fi_lock)) {
struct file *f1 = NULL;
struct file *f2 = NULL;
swap(f1, fp->fi_fds[oflag]);
if (atomic_read(&fp->fi_access[1 - oflag]) == 0)
swap(f2, fp->fi_fds[O_RDWR]);
spin_unlock(&fp->fi_lock);
if (f1)
fput(f1);
if (f2)
fput(f2);
}
}
static void nfs4_file_put_access(struct nfs4_file *fp, u32 access)
{
WARN_ON_ONCE(access & ~NFS4_SHARE_ACCESS_BOTH);
if (access & NFS4_SHARE_ACCESS_WRITE)
__nfs4_file_put_access(fp, O_WRONLY);
if (access & NFS4_SHARE_ACCESS_READ)
__nfs4_file_put_access(fp, O_RDONLY);
}
/*
* Allocate a new open/delegation state counter. This is needed for
* pNFS for proper return on close semantics.
*
* Note that we only allocate it for pNFS-enabled exports, otherwise
* all pointers to struct nfs4_clnt_odstate are always NULL.
*/
static struct nfs4_clnt_odstate *
alloc_clnt_odstate(struct nfs4_client *clp)
{
struct nfs4_clnt_odstate *co;
co = kmem_cache_zalloc(odstate_slab, GFP_KERNEL);
if (co) {
co->co_client = clp;
refcount_set(&co->co_odcount, 1);
}
return co;
}
static void
hash_clnt_odstate_locked(struct nfs4_clnt_odstate *co)
{
struct nfs4_file *fp = co->co_file;
lockdep_assert_held(&fp->fi_lock);
list_add(&co->co_perfile, &fp->fi_clnt_odstate);
}
static inline void
get_clnt_odstate(struct nfs4_clnt_odstate *co)
{
if (co)
refcount_inc(&co->co_odcount);
}
static void
put_clnt_odstate(struct nfs4_clnt_odstate *co)
{
struct nfs4_file *fp;
if (!co)
return;
fp = co->co_file;
if (refcount_dec_and_lock(&co->co_odcount, &fp->fi_lock)) {
list_del(&co->co_perfile);
spin_unlock(&fp->fi_lock);
nfsd4_return_all_file_layouts(co->co_client, fp);
kmem_cache_free(odstate_slab, co);
}
}
static struct nfs4_clnt_odstate *
find_or_hash_clnt_odstate(struct nfs4_file *fp, struct nfs4_clnt_odstate *new)
{
struct nfs4_clnt_odstate *co;
struct nfs4_client *cl;
if (!new)
return NULL;
cl = new->co_client;
spin_lock(&fp->fi_lock);
list_for_each_entry(co, &fp->fi_clnt_odstate, co_perfile) {
if (co->co_client == cl) {
get_clnt_odstate(co);
goto out;
}
}
co = new;
co->co_file = fp;
hash_clnt_odstate_locked(new);
out:
spin_unlock(&fp->fi_lock);
return co;
}
struct nfs4_stid *nfs4_alloc_stid(struct nfs4_client *cl, struct kmem_cache *slab,
void (*sc_free)(struct nfs4_stid *))
{
struct nfs4_stid *stid;
int new_id;
stid = kmem_cache_zalloc(slab, GFP_KERNEL);
if (!stid)
return NULL;
idr_preload(GFP_KERNEL);
spin_lock(&cl->cl_lock);
new_id = idr_alloc_cyclic(&cl->cl_stateids, stid, 0, 0, GFP_NOWAIT);
spin_unlock(&cl->cl_lock);
idr_preload_end();
if (new_id < 0)
goto out_free;
stid->sc_free = sc_free;
stid->sc_client = cl;
stid->sc_stateid.si_opaque.so_id = new_id;
stid->sc_stateid.si_opaque.so_clid = cl->cl_clientid;
/* Will be incremented before return to client: */
refcount_set(&stid->sc_count, 1);
spin_lock_init(&stid->sc_lock);
/*
* It shouldn't be a problem to reuse an opaque stateid value.
* I don't think it is for 4.1. But with 4.0 I worry that, for
* example, a stray write retransmission could be accepted by
* the server when it should have been rejected. Therefore,
* adopt a trick from the sctp code to attempt to maximize the
* amount of time until an id is reused, by ensuring they always
* "increase" (mod INT_MAX):
*/
return stid;
out_free:
kmem_cache_free(slab, stid);
return NULL;
}
static struct nfs4_ol_stateid * nfs4_alloc_open_stateid(struct nfs4_client *clp)
{
struct nfs4_stid *stid;
stid = nfs4_alloc_stid(clp, stateid_slab, nfs4_free_ol_stateid);
if (!stid)
return NULL;
return openlockstateid(stid);
}
static void nfs4_free_deleg(struct nfs4_stid *stid)
{
kmem_cache_free(deleg_slab, stid);
atomic_long_dec(&num_delegations);
}
/*
* When we recall a delegation, we should be careful not to hand it
* out again straight away.
* To ensure this we keep a pair of bloom filters ('new' and 'old')
* in which the filehandles of recalled delegations are "stored".
* If a filehandle appear in either filter, a delegation is blocked.
* When a delegation is recalled, the filehandle is stored in the "new"
* filter.
* Every 30 seconds we swap the filters and clear the "new" one,
* unless both are empty of course.
*
* Each filter is 256 bits. We hash the filehandle to 32bit and use the
* low 3 bytes as hash-table indices.
*
* 'blocked_delegations_lock', which is always taken in block_delegations(),
* is used to manage concurrent access. Testing does not need the lock
* except when swapping the two filters.
*/
static DEFINE_SPINLOCK(blocked_delegations_lock);
static struct bloom_pair {
int entries, old_entries;
time_t swap_time;
int new; /* index into 'set' */
DECLARE_BITMAP(set[2], 256);
} blocked_delegations;
static int delegation_blocked(struct knfsd_fh *fh)
{
u32 hash;
struct bloom_pair *bd = &blocked_delegations;
if (bd->entries == 0)
return 0;
if (seconds_since_boot() - bd->swap_time > 30) {
spin_lock(&blocked_delegations_lock);
if (seconds_since_boot() - bd->swap_time > 30) {
bd->entries -= bd->old_entries;
bd->old_entries = bd->entries;
memset(bd->set[bd->new], 0,
sizeof(bd->set[0]));
bd->new = 1-bd->new;
bd->swap_time = seconds_since_boot();
}
spin_unlock(&blocked_delegations_lock);
}
hash = jhash(&fh->fh_base, fh->fh_size, 0);
if (test_bit(hash&255, bd->set[0]) &&
test_bit((hash>>8)&255, bd->set[0]) &&
test_bit((hash>>16)&255, bd->set[0]))
return 1;
if (test_bit(hash&255, bd->set[1]) &&
test_bit((hash>>8)&255, bd->set[1]) &&
test_bit((hash>>16)&255, bd->set[1]))
return 1;
return 0;
}
static void block_delegations(struct knfsd_fh *fh)
{
u32 hash;
struct bloom_pair *bd = &blocked_delegations;
hash = jhash(&fh->fh_base, fh->fh_size, 0);
spin_lock(&blocked_delegations_lock);
__set_bit(hash&255, bd->set[bd->new]);
__set_bit((hash>>8)&255, bd->set[bd->new]);
__set_bit((hash>>16)&255, bd->set[bd->new]);
if (bd->entries == 0)
bd->swap_time = seconds_since_boot();
bd->entries += 1;
spin_unlock(&blocked_delegations_lock);
}
static struct nfs4_delegation *
alloc_init_deleg(struct nfs4_client *clp, struct svc_fh *current_fh,
struct nfs4_clnt_odstate *odstate)
{
struct nfs4_delegation *dp;
long n;
dprintk("NFSD alloc_init_deleg\n");
n = atomic_long_inc_return(&num_delegations);
if (n < 0 || n > max_delegations)
goto out_dec;
if (delegation_blocked(&current_fh->fh_handle))
goto out_dec;
dp = delegstateid(nfs4_alloc_stid(clp, deleg_slab, nfs4_free_deleg));
if (dp == NULL)
goto out_dec;
/*
* delegation seqid's are never incremented. The 4.1 special
* meaning of seqid 0 isn't meaningful, really, but let's avoid
* 0 anyway just for consistency and use 1:
*/
dp->dl_stid.sc_stateid.si_generation = 1;
INIT_LIST_HEAD(&dp->dl_perfile);
INIT_LIST_HEAD(&dp->dl_perclnt);
INIT_LIST_HEAD(&dp->dl_recall_lru);
dp->dl_clnt_odstate = odstate;
get_clnt_odstate(odstate);
dp->dl_type = NFS4_OPEN_DELEGATE_READ;
dp->dl_retries = 1;
nfsd4_init_cb(&dp->dl_recall, dp->dl_stid.sc_client,
&nfsd4_cb_recall_ops, NFSPROC4_CLNT_CB_RECALL);
return dp;
out_dec:
atomic_long_dec(&num_delegations);
return NULL;
}
void
nfs4_put_stid(struct nfs4_stid *s)
{
struct nfs4_file *fp = s->sc_file;
struct nfs4_client *clp = s->sc_client;
might_lock(&clp->cl_lock);
if (!refcount_dec_and_lock(&s->sc_count, &clp->cl_lock)) {
wake_up_all(&close_wq);
return;
}
idr_remove(&clp->cl_stateids, s->sc_stateid.si_opaque.so_id);
spin_unlock(&clp->cl_lock);
s->sc_free(s);
if (fp)
put_nfs4_file(fp);
}
void
nfs4_inc_and_copy_stateid(stateid_t *dst, struct nfs4_stid *stid)
{
stateid_t *src = &stid->sc_stateid;
spin_lock(&stid->sc_lock);
if (unlikely(++src->si_generation == 0))
src->si_generation = 1;
memcpy(dst, src, sizeof(*dst));
spin_unlock(&stid->sc_lock);
}
static void nfs4_put_deleg_lease(struct nfs4_file *fp)
{
struct file *filp = NULL;
spin_lock(&fp->fi_lock);
if (fp->fi_deleg_file && --fp->fi_delegees == 0)
swap(filp, fp->fi_deleg_file);
spin_unlock(&fp->fi_lock);
if (filp) {
vfs_setlease(filp, F_UNLCK, NULL, (void **)&fp);
fput(filp);
}
}
void nfs4_unhash_stid(struct nfs4_stid *s)
{
s->sc_type = 0;
}
/**
* nfs4_get_existing_delegation - Discover if this delegation already exists
* @clp: a pointer to the nfs4_client we're granting a delegation to
* @fp: a pointer to the nfs4_file we're granting a delegation on
*
* Return:
* On success: NULL if an existing delegation was not found.
*
* On error: -EAGAIN if one was previously granted to this nfs4_client
* for this nfs4_file.
*
*/
static int
nfs4_get_existing_delegation(struct nfs4_client *clp, struct nfs4_file *fp)
{
struct nfs4_delegation *searchdp = NULL;
struct nfs4_client *searchclp = NULL;
lockdep_assert_held(&state_lock);
lockdep_assert_held(&fp->fi_lock);
list_for_each_entry(searchdp, &fp->fi_delegations, dl_perfile) {
searchclp = searchdp->dl_stid.sc_client;
if (clp == searchclp) {
return -EAGAIN;
}
}
return 0;
}
/**
* hash_delegation_locked - Add a delegation to the appropriate lists
* @dp: a pointer to the nfs4_delegation we are adding.
* @fp: a pointer to the nfs4_file we're granting a delegation on
*
* Return:
* On success: NULL if the delegation was successfully hashed.
*
* On error: -EAGAIN if one was previously granted to this
* nfs4_client for this nfs4_file. Delegation is not hashed.
*
*/
static int
hash_delegation_locked(struct nfs4_delegation *dp, struct nfs4_file *fp)
{
int status;
struct nfs4_client *clp = dp->dl_stid.sc_client;
lockdep_assert_held(&state_lock);
lockdep_assert_held(&fp->fi_lock);
status = nfs4_get_existing_delegation(clp, fp);
if (status)
return status;
++fp->fi_delegees;
refcount_inc(&dp->dl_stid.sc_count);
dp->dl_stid.sc_type = NFS4_DELEG_STID;
list_add(&dp->dl_perfile, &fp->fi_delegations);
list_add(&dp->dl_perclnt, &clp->cl_delegations);
return 0;
}
static bool
unhash_delegation_locked(struct nfs4_delegation *dp)
{
struct nfs4_file *fp = dp->dl_stid.sc_file;
lockdep_assert_held(&state_lock);
if (list_empty(&dp->dl_perfile))
return false;
dp->dl_stid.sc_type = NFS4_CLOSED_DELEG_STID;
/* Ensure that deleg break won't try to requeue it */
++dp->dl_time;
spin_lock(&fp->fi_lock);
list_del_init(&dp->dl_perclnt);
list_del_init(&dp->dl_recall_lru);
list_del_init(&dp->dl_perfile);
spin_unlock(&fp->fi_lock);
return true;
}
static void destroy_delegation(struct nfs4_delegation *dp)
{
bool unhashed;
spin_lock(&state_lock);
unhashed = unhash_delegation_locked(dp);
spin_unlock(&state_lock);
if (unhashed) {
put_clnt_odstate(dp->dl_clnt_odstate);
nfs4_put_deleg_lease(dp->dl_stid.sc_file);
nfs4_put_stid(&dp->dl_stid);
}
}
static void revoke_delegation(struct nfs4_delegation *dp)
{
struct nfs4_client *clp = dp->dl_stid.sc_client;
WARN_ON(!list_empty(&dp->dl_recall_lru));
put_clnt_odstate(dp->dl_clnt_odstate);
nfs4_put_deleg_lease(dp->dl_stid.sc_file);
if (clp->cl_minorversion == 0)
nfs4_put_stid(&dp->dl_stid);
else {
dp->dl_stid.sc_type = NFS4_REVOKED_DELEG_STID;
spin_lock(&clp->cl_lock);
list_add(&dp->dl_recall_lru, &clp->cl_revoked);
spin_unlock(&clp->cl_lock);
}
}
/*
* SETCLIENTID state
*/
static unsigned int clientid_hashval(u32 id)
{
return id & CLIENT_HASH_MASK;
}
static unsigned int clientstr_hashval(const char *name)
{
return opaque_hashval(name, 8) & CLIENT_HASH_MASK;
}
/*
* We store the NONE, READ, WRITE, and BOTH bits separately in the
* st_{access,deny}_bmap field of the stateid, in order to track not
* only what share bits are currently in force, but also what
* combinations of share bits previous opens have used. This allows us
* to enforce the recommendation of rfc 3530 14.2.19 that the server
* return an error if the client attempt to downgrade to a combination
* of share bits not explicable by closing some of its previous opens.
*
* XXX: This enforcement is actually incomplete, since we don't keep
* track of access/deny bit combinations; so, e.g., we allow:
*
* OPEN allow read, deny write
* OPEN allow both, deny none
* DOWNGRADE allow read, deny none
*
* which we should reject.
*/
static unsigned int
bmap_to_share_mode(unsigned long bmap) {
int i;
unsigned int access = 0;
for (i = 1; i < 4; i++) {
if (test_bit(i, &bmap))
access |= i;
}
return access;
}
/* set share access for a given stateid */
static inline void
set_access(u32 access, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << access;
WARN_ON_ONCE(access > NFS4_SHARE_ACCESS_BOTH);
stp->st_access_bmap |= mask;
}
/* clear share access for a given stateid */
static inline void
clear_access(u32 access, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << access;
WARN_ON_ONCE(access > NFS4_SHARE_ACCESS_BOTH);
stp->st_access_bmap &= ~mask;
}
/* test whether a given stateid has access */
static inline bool
test_access(u32 access, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << access;
return (bool)(stp->st_access_bmap & mask);
}
/* set share deny for a given stateid */
static inline void
set_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << deny;
WARN_ON_ONCE(deny > NFS4_SHARE_DENY_BOTH);
stp->st_deny_bmap |= mask;
}
/* clear share deny for a given stateid */
static inline void
clear_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << deny;
WARN_ON_ONCE(deny > NFS4_SHARE_DENY_BOTH);
stp->st_deny_bmap &= ~mask;
}
/* test whether a given stateid is denying specific access */
static inline bool
test_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
unsigned char mask = 1 << deny;
return (bool)(stp->st_deny_bmap & mask);
}
static int nfs4_access_to_omode(u32 access)
{
switch (access & NFS4_SHARE_ACCESS_BOTH) {
case NFS4_SHARE_ACCESS_READ:
return O_RDONLY;
case NFS4_SHARE_ACCESS_WRITE:
return O_WRONLY;
case NFS4_SHARE_ACCESS_BOTH:
return O_RDWR;
}
WARN_ON_ONCE(1);
return O_RDONLY;
}
/*
* A stateid that had a deny mode associated with it is being released
* or downgraded. Recalculate the deny mode on the file.
*/
static void
recalculate_deny_mode(struct nfs4_file *fp)
{
struct nfs4_ol_stateid *stp;
spin_lock(&fp->fi_lock);
fp->fi_share_deny = 0;
list_for_each_entry(stp, &fp->fi_stateids, st_perfile)
fp->fi_share_deny |= bmap_to_share_mode(stp->st_deny_bmap);
spin_unlock(&fp->fi_lock);
}
static void
reset_union_bmap_deny(u32 deny, struct nfs4_ol_stateid *stp)
{
int i;
bool change = false;
for (i = 1; i < 4; i++) {
if ((i & deny) != i) {
change = true;
clear_deny(i, stp);
}
}
/* Recalculate per-file deny mode if there was a change */
if (change)
recalculate_deny_mode(stp->st_stid.sc_file);
}
/* release all access and file references for a given stateid */
static void
release_all_access(struct nfs4_ol_stateid *stp)
{
int i;
struct nfs4_file *fp = stp->st_stid.sc_file;
if (fp && stp->st_deny_bmap != 0)
recalculate_deny_mode(fp);
for (i = 1; i < 4; i++) {
if (test_access(i, stp))
nfs4_file_put_access(stp->st_stid.sc_file, i);
clear_access(i, stp);
}
}
static inline void nfs4_free_stateowner(struct nfs4_stateowner *sop)
{
kfree(sop->so_owner.data);
sop->so_ops->so_free(sop);
}
static void nfs4_put_stateowner(struct nfs4_stateowner *sop)
{
struct nfs4_client *clp = sop->so_client;
might_lock(&clp->cl_lock);
if (!atomic_dec_and_lock(&sop->so_count, &clp->cl_lock))
return;
sop->so_ops->so_unhash(sop);
spin_unlock(&clp->cl_lock);
nfs4_free_stateowner(sop);
}
static bool unhash_ol_stateid(struct nfs4_ol_stateid *stp)
{
struct nfs4_file *fp = stp->st_stid.sc_file;
lockdep_assert_held(&stp->st_stateowner->so_client->cl_lock);
if (list_empty(&stp->st_perfile))
return false;
spin_lock(&fp->fi_lock);
list_del_init(&stp->st_perfile);
spin_unlock(&fp->fi_lock);
list_del(&stp->st_perstateowner);
return true;
}
static void nfs4_free_ol_stateid(struct nfs4_stid *stid)
{
struct nfs4_ol_stateid *stp = openlockstateid(stid);
put_clnt_odstate(stp->st_clnt_odstate);
release_all_access(stp);
if (stp->st_stateowner)
nfs4_put_stateowner(stp->st_stateowner);
kmem_cache_free(stateid_slab, stid);
}
static void nfs4_free_lock_stateid(struct nfs4_stid *stid)
{
struct nfs4_ol_stateid *stp = openlockstateid(stid);
struct nfs4_lockowner *lo = lockowner(stp->st_stateowner);
struct file *file;
file = find_any_file(stp->st_stid.sc_file);
if (file)
filp_close(file, (fl_owner_t)lo);
nfs4_free_ol_stateid(stid);
}
/*
* Put the persistent reference to an already unhashed generic stateid, while
* holding the cl_lock. If it's the last reference, then put it onto the
* reaplist for later destruction.
*/
static void put_ol_stateid_locked(struct nfs4_ol_stateid *stp,
struct list_head *reaplist)
{
struct nfs4_stid *s = &stp->st_stid;
struct nfs4_client *clp = s->sc_client;
lockdep_assert_held(&clp->cl_lock);
WARN_ON_ONCE(!list_empty(&stp->st_locks));
if (!refcount_dec_and_test(&s->sc_count)) {
wake_up_all(&close_wq);
return;
}
idr_remove(&clp->cl_stateids, s->sc_stateid.si_opaque.so_id);
list_add(&stp->st_locks, reaplist);
}
static bool unhash_lock_stateid(struct nfs4_ol_stateid *stp)
{
lockdep_assert_held(&stp->st_stid.sc_client->cl_lock);
list_del_init(&stp->st_locks);
nfs4_unhash_stid(&stp->st_stid);
return unhash_ol_stateid(stp);
}
static void release_lock_stateid(struct nfs4_ol_stateid *stp)
{
struct nfs4_client *clp = stp->st_stid.sc_client;
bool unhashed;
spin_lock(&clp->cl_lock);
unhashed = unhash_lock_stateid(stp);
spin_unlock(&clp->cl_lock);
if (unhashed)
nfs4_put_stid(&stp->st_stid);
}
static void unhash_lockowner_locked(struct nfs4_lockowner *lo)
{
struct nfs4_client *clp = lo->lo_owner.so_client;
lockdep_assert_held(&clp->cl_lock);
list_del_init(&lo->lo_owner.so_strhash);
}
/*
* Free a list of generic stateids that were collected earlier after being
* fully unhashed.
*/
static void
free_ol_stateid_reaplist(struct list_head *reaplist)
{
struct nfs4_ol_stateid *stp;
struct nfs4_file *fp;
might_sleep();
while (!list_empty(reaplist)) {
stp = list_first_entry(reaplist, struct nfs4_ol_stateid,
st_locks);
list_del(&stp->st_locks);
fp = stp->st_stid.sc_file;
stp->st_stid.sc_free(&stp->st_stid);
if (fp)
put_nfs4_file(fp);
}
}
static void release_open_stateid_locks(struct nfs4_ol_stateid *open_stp,
struct list_head *reaplist)
{
struct nfs4_ol_stateid *stp;
lockdep_assert_held(&open_stp->st_stid.sc_client->cl_lock);
while (!list_empty(&open_stp->st_locks)) {
stp = list_entry(open_stp->st_locks.next,
struct nfs4_ol_stateid, st_locks);
WARN_ON(!unhash_lock_stateid(stp));
put_ol_stateid_locked(stp, reaplist);
}
}
static bool unhash_open_stateid(struct nfs4_ol_stateid *stp,
struct list_head *reaplist)
{
bool unhashed;
lockdep_assert_held(&stp->st_stid.sc_client->cl_lock);
unhashed = unhash_ol_stateid(stp);
release_open_stateid_locks(stp, reaplist);
return unhashed;
}
static void release_open_stateid(struct nfs4_ol_stateid *stp)
{
LIST_HEAD(reaplist);
spin_lock(&stp->st_stid.sc_client->cl_lock);
if (unhash_open_stateid(stp, &reaplist))
put_ol_stateid_locked(stp, &reaplist);
spin_unlock(&stp->st_stid.sc_client->cl_lock);
free_ol_stateid_reaplist(&reaplist);
}
static void unhash_openowner_locked(struct nfs4_openowner *oo)
{
struct nfs4_client *clp = oo->oo_owner.so_client;
lockdep_assert_held(&clp->cl_lock);
list_del_init(&oo->oo_owner.so_strhash);
list_del_init(&oo->oo_perclient);
}
static void release_last_closed_stateid(struct nfs4_openowner *oo)
{
struct nfsd_net *nn = net_generic(oo->oo_owner.so_client->net,
nfsd_net_id);
struct nfs4_ol_stateid *s;
spin_lock(&nn->client_lock);
s = oo->oo_last_closed_stid;
if (s) {
list_del_init(&oo->oo_close_lru);
oo->oo_last_closed_stid = NULL;
}
spin_unlock(&nn->client_lock);
if (s)
nfs4_put_stid(&s->st_stid);
}
static void release_openowner(struct nfs4_openowner *oo)
{
struct nfs4_ol_stateid *stp;
struct nfs4_client *clp = oo->oo_owner.so_client;
struct list_head reaplist;
INIT_LIST_HEAD(&reaplist);
spin_lock(&clp->cl_lock);
unhash_openowner_locked(oo);
while (!list_empty(&oo->oo_owner.so_stateids)) {
stp = list_first_entry(&oo->oo_owner.so_stateids,
struct nfs4_ol_stateid, st_perstateowner);
if (unhash_open_stateid(stp, &reaplist))
put_ol_stateid_locked(stp, &reaplist);
}
spin_unlock(&clp->cl_lock);
free_ol_stateid_reaplist(&reaplist);
release_last_closed_stateid(oo);
nfs4_put_stateowner(&oo->oo_owner);
}
static inline int
hash_sessionid(struct nfs4_sessionid *sessionid)
{
struct nfsd4_sessionid *sid = (struct nfsd4_sessionid *)sessionid;
return sid->sequence % SESSION_HASH_SIZE;
}
#ifdef CONFIG_SUNRPC_DEBUG
static inline void
dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid)
{
u32 *ptr = (u32 *)(&sessionid->data[0]);
dprintk("%s: %u:%u:%u:%u\n", fn, ptr[0], ptr[1], ptr[2], ptr[3]);
}
#else
static inline void
dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid)
{
}
#endif
/*
* Bump the seqid on cstate->replay_owner, and clear replay_owner if it
* won't be used for replay.
*/
void nfsd4_bump_seqid(struct nfsd4_compound_state *cstate, __be32 nfserr)
{
struct nfs4_stateowner *so = cstate->replay_owner;
if (nfserr == nfserr_replay_me)
return;
if (!seqid_mutating_err(ntohl(nfserr))) {
nfsd4_cstate_clear_replay(cstate);
return;
}
if (!so)
return;
if (so->so_is_open_owner)
release_last_closed_stateid(openowner(so));
so->so_seqid++;
return;
}
static void
gen_sessionid(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd4_sessionid *sid;
sid = (struct nfsd4_sessionid *)ses->se_sessionid.data;
sid->clientid = clp->cl_clientid;
sid->sequence = current_sessionid++;
sid->reserved = 0;
}
/*
* The protocol defines ca_maxresponssize_cached to include the size of
* the rpc header, but all we need to cache is the data starting after
* the end of the initial SEQUENCE operation--the rest we regenerate
* each time. Therefore we can advertise a ca_maxresponssize_cached
* value that is the number of bytes in our cache plus a few additional
* bytes. In order to stay on the safe side, and not promise more than
* we can cache, those additional bytes must be the minimum possible: 24
* bytes of rpc header (xid through accept state, with AUTH_NULL
* verifier), 12 for the compound header (with zero-length tag), and 44
* for the SEQUENCE op response:
*/
#define NFSD_MIN_HDR_SEQ_SZ (24 + 12 + 44)
static void
free_session_slots(struct nfsd4_session *ses)
{
int i;
for (i = 0; i < ses->se_fchannel.maxreqs; i++) {
free_svc_cred(&ses->se_slots[i]->sl_cred);
kfree(ses->se_slots[i]);
}
}
/*
* We don't actually need to cache the rpc and session headers, so we
* can allocate a little less for each slot:
*/
static inline u32 slot_bytes(struct nfsd4_channel_attrs *ca)
{
u32 size;
if (ca->maxresp_cached < NFSD_MIN_HDR_SEQ_SZ)
size = 0;
else
size = ca->maxresp_cached - NFSD_MIN_HDR_SEQ_SZ;
return size + sizeof(struct nfsd4_slot);
}
/*
* XXX: If we run out of reserved DRC memory we could (up to a point)
* re-negotiate active sessions and reduce their slot usage to make
* room for new connections. For now we just fail the create session.
*/
static u32 nfsd4_get_drc_mem(struct nfsd4_channel_attrs *ca)
{
u32 slotsize = slot_bytes(ca);
u32 num = ca->maxreqs;
int avail;
spin_lock(&nfsd_drc_lock);
avail = min((unsigned long)NFSD_MAX_MEM_PER_SESSION,
nfsd_drc_max_mem - nfsd_drc_mem_used);
/*
* Never use more than a third of the remaining memory,
* unless it's the only way to give this client a slot:
*/
avail = clamp_t(int, avail, slotsize, avail/3);
num = min_t(int, num, avail / slotsize);
nfsd_drc_mem_used += num * slotsize;
spin_unlock(&nfsd_drc_lock);
return num;
}
static void nfsd4_put_drc_mem(struct nfsd4_channel_attrs *ca)
{
int slotsize = slot_bytes(ca);
spin_lock(&nfsd_drc_lock);
nfsd_drc_mem_used -= slotsize * ca->maxreqs;
spin_unlock(&nfsd_drc_lock);
}
static struct nfsd4_session *alloc_session(struct nfsd4_channel_attrs *fattrs,
struct nfsd4_channel_attrs *battrs)
{
int numslots = fattrs->maxreqs;
int slotsize = slot_bytes(fattrs);
struct nfsd4_session *new;
int mem, i;
BUILD_BUG_ON(NFSD_MAX_SLOTS_PER_SESSION * sizeof(struct nfsd4_slot *)
+ sizeof(struct nfsd4_session) > PAGE_SIZE);
mem = numslots * sizeof(struct nfsd4_slot *);
new = kzalloc(sizeof(*new) + mem, GFP_KERNEL);
if (!new)
return NULL;
/* allocate each struct nfsd4_slot and data cache in one piece */
for (i = 0; i < numslots; i++) {
new->se_slots[i] = kzalloc(slotsize, GFP_KERNEL);
if (!new->se_slots[i])
goto out_free;
}
memcpy(&new->se_fchannel, fattrs, sizeof(struct nfsd4_channel_attrs));
memcpy(&new->se_bchannel, battrs, sizeof(struct nfsd4_channel_attrs));
return new;
out_free:
while (i--)
kfree(new->se_slots[i]);
kfree(new);
return NULL;
}
static void free_conn(struct nfsd4_conn *c)
{
svc_xprt_put(c->cn_xprt);
kfree(c);
}
static void nfsd4_conn_lost(struct svc_xpt_user *u)
{
struct nfsd4_conn *c = container_of(u, struct nfsd4_conn, cn_xpt_user);
struct nfs4_client *clp = c->cn_session->se_client;
spin_lock(&clp->cl_lock);
if (!list_empty(&c->cn_persession)) {
list_del(&c->cn_persession);
free_conn(c);
}
nfsd4_probe_callback(clp);
spin_unlock(&clp->cl_lock);
}
static struct nfsd4_conn *alloc_conn(struct svc_rqst *rqstp, u32 flags)
{
struct nfsd4_conn *conn;
conn = kmalloc(sizeof(struct nfsd4_conn), GFP_KERNEL);
if (!conn)
return NULL;
svc_xprt_get(rqstp->rq_xprt);
conn->cn_xprt = rqstp->rq_xprt;
conn->cn_flags = flags;
INIT_LIST_HEAD(&conn->cn_xpt_user.list);
return conn;
}
static void __nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses)
{
conn->cn_session = ses;
list_add(&conn->cn_persession, &ses->se_conns);
}
static void nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
spin_lock(&clp->cl_lock);
__nfsd4_hash_conn(conn, ses);
spin_unlock(&clp->cl_lock);
}
static int nfsd4_register_conn(struct nfsd4_conn *conn)
{
conn->cn_xpt_user.callback = nfsd4_conn_lost;
return register_xpt_user(conn->cn_xprt, &conn->cn_xpt_user);
}
static void nfsd4_init_conn(struct svc_rqst *rqstp, struct nfsd4_conn *conn, struct nfsd4_session *ses)
{
int ret;
nfsd4_hash_conn(conn, ses);
ret = nfsd4_register_conn(conn);
if (ret)
/* oops; xprt is already down: */
nfsd4_conn_lost(&conn->cn_xpt_user);
/* We may have gained or lost a callback channel: */
nfsd4_probe_callback_sync(ses->se_client);
}
static struct nfsd4_conn *alloc_conn_from_crses(struct svc_rqst *rqstp, struct nfsd4_create_session *cses)
{
u32 dir = NFS4_CDFC4_FORE;
if (cses->flags & SESSION4_BACK_CHAN)
dir |= NFS4_CDFC4_BACK;
return alloc_conn(rqstp, dir);
}
/* must be called under client_lock */
static void nfsd4_del_conns(struct nfsd4_session *s)
{
struct nfs4_client *clp = s->se_client;
struct nfsd4_conn *c;
spin_lock(&clp->cl_lock);
while (!list_empty(&s->se_conns)) {
c = list_first_entry(&s->se_conns, struct nfsd4_conn, cn_persession);
list_del_init(&c->cn_persession);
spin_unlock(&clp->cl_lock);
unregister_xpt_user(c->cn_xprt, &c->cn_xpt_user);
free_conn(c);
spin_lock(&clp->cl_lock);
}
spin_unlock(&clp->cl_lock);
}
static void __free_session(struct nfsd4_session *ses)
{
free_session_slots(ses);
kfree(ses);
}
static void free_session(struct nfsd4_session *ses)
{
nfsd4_del_conns(ses);
nfsd4_put_drc_mem(&ses->se_fchannel);
__free_session(ses);
}
static void init_session(struct svc_rqst *rqstp, struct nfsd4_session *new, struct nfs4_client *clp, struct nfsd4_create_session *cses)
{
int idx;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
new->se_client = clp;
gen_sessionid(new);
INIT_LIST_HEAD(&new->se_conns);
new->se_cb_seq_nr = 1;
new->se_flags = cses->flags;
new->se_cb_prog = cses->callback_prog;
new->se_cb_sec = cses->cb_sec;
atomic_set(&new->se_ref, 0);
idx = hash_sessionid(&new->se_sessionid);
list_add(&new->se_hash, &nn->sessionid_hashtbl[idx]);
spin_lock(&clp->cl_lock);
list_add(&new->se_perclnt, &clp->cl_sessions);
spin_unlock(&clp->cl_lock);
{
struct sockaddr *sa = svc_addr(rqstp);
/*
* This is a little silly; with sessions there's no real
* use for the callback address. Use the peer address
* as a reasonable default for now, but consider fixing
* the rpc client not to require an address in the
* future:
*/
rpc_copy_addr((struct sockaddr *)&clp->cl_cb_conn.cb_addr, sa);
clp->cl_cb_conn.cb_addrlen = svc_addr_len(sa);
}
}
/* caller must hold client_lock */
static struct nfsd4_session *
__find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid, struct net *net)
{
struct nfsd4_session *elem;
int idx;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
dump_sessionid(__func__, sessionid);
idx = hash_sessionid(sessionid);
/* Search in the appropriate list */
list_for_each_entry(elem, &nn->sessionid_hashtbl[idx], se_hash) {
if (!memcmp(elem->se_sessionid.data, sessionid->data,
NFS4_MAX_SESSIONID_LEN)) {
return elem;
}
}
dprintk("%s: session not found\n", __func__);
return NULL;
}
static struct nfsd4_session *
find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid, struct net *net,
__be32 *ret)
{
struct nfsd4_session *session;
__be32 status = nfserr_badsession;
session = __find_in_sessionid_hashtbl(sessionid, net);
if (!session)
goto out;
status = nfsd4_get_session_locked(session);
if (status)
session = NULL;
out:
*ret = status;
return session;
}
/* caller must hold client_lock */
static void
unhash_session(struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
list_del(&ses->se_hash);
spin_lock(&ses->se_client->cl_lock);
list_del(&ses->se_perclnt);
spin_unlock(&ses->se_client->cl_lock);
}
/* SETCLIENTID and SETCLIENTID_CONFIRM Helper functions */
static int
STALE_CLIENTID(clientid_t *clid, struct nfsd_net *nn)
{
/*
* We're assuming the clid was not given out from a boot
* precisely 2^32 (about 136 years) before this one. That seems
* a safe assumption:
*/
if (clid->cl_boot == (u32)nn->boot_time)
return 0;
dprintk("NFSD stale clientid (%08x/%08x) boot_time %08lx\n",
clid->cl_boot, clid->cl_id, nn->boot_time);
return 1;
}
/*
* XXX Should we use a slab cache ?
* This type of memory management is somewhat inefficient, but we use it
* anyway since SETCLIENTID is not a common operation.
*/
static struct nfs4_client *alloc_client(struct xdr_netobj name)
{
struct nfs4_client *clp;
int i;
clp = kzalloc(sizeof(struct nfs4_client), GFP_KERNEL);
if (clp == NULL)
return NULL;
clp->cl_name.data = kmemdup(name.data, name.len, GFP_KERNEL);
if (clp->cl_name.data == NULL)
goto err_no_name;
clp->cl_ownerstr_hashtbl = kmalloc(sizeof(struct list_head) *
OWNER_HASH_SIZE, GFP_KERNEL);
if (!clp->cl_ownerstr_hashtbl)
goto err_no_hashtbl;
for (i = 0; i < OWNER_HASH_SIZE; i++)
INIT_LIST_HEAD(&clp->cl_ownerstr_hashtbl[i]);
clp->cl_name.len = name.len;
INIT_LIST_HEAD(&clp->cl_sessions);
idr_init(&clp->cl_stateids);
atomic_set(&clp->cl_refcount, 0);
clp->cl_cb_state = NFSD4_CB_UNKNOWN;
INIT_LIST_HEAD(&clp->cl_idhash);
INIT_LIST_HEAD(&clp->cl_openowners);
INIT_LIST_HEAD(&clp->cl_delegations);
INIT_LIST_HEAD(&clp->cl_lru);
INIT_LIST_HEAD(&clp->cl_revoked);
#ifdef CONFIG_NFSD_PNFS
INIT_LIST_HEAD(&clp->cl_lo_states);
#endif
spin_lock_init(&clp->cl_lock);
rpc_init_wait_queue(&clp->cl_cb_waitq, "Backchannel slot table");
return clp;
err_no_hashtbl:
kfree(clp->cl_name.data);
err_no_name:
kfree(clp);
return NULL;
}
static void
free_client(struct nfs4_client *clp)
{
while (!list_empty(&clp->cl_sessions)) {
struct nfsd4_session *ses;
ses = list_entry(clp->cl_sessions.next, struct nfsd4_session,
se_perclnt);
list_del(&ses->se_perclnt);
WARN_ON_ONCE(atomic_read(&ses->se_ref));
free_session(ses);
}
rpc_destroy_wait_queue(&clp->cl_cb_waitq);
free_svc_cred(&clp->cl_cred);
kfree(clp->cl_ownerstr_hashtbl);
kfree(clp->cl_name.data);
idr_destroy(&clp->cl_stateids);
kfree(clp);
}
/* must be called under the client_lock */
static void
unhash_client_locked(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
struct nfsd4_session *ses;
lockdep_assert_held(&nn->client_lock);
/* Mark the client as expired! */
clp->cl_time = 0;
/* Make it invisible */
if (!list_empty(&clp->cl_idhash)) {
list_del_init(&clp->cl_idhash);
if (test_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags))
rb_erase(&clp->cl_namenode, &nn->conf_name_tree);
else
rb_erase(&clp->cl_namenode, &nn->unconf_name_tree);
}
list_del_init(&clp->cl_lru);
spin_lock(&clp->cl_lock);
list_for_each_entry(ses, &clp->cl_sessions, se_perclnt)
list_del_init(&ses->se_hash);
spin_unlock(&clp->cl_lock);
}
static void
unhash_client(struct nfs4_client *clp)
{
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
spin_lock(&nn->client_lock);
unhash_client_locked(clp);
spin_unlock(&nn->client_lock);
}
static __be32 mark_client_expired_locked(struct nfs4_client *clp)
{
if (atomic_read(&clp->cl_refcount))
return nfserr_jukebox;
unhash_client_locked(clp);
return nfs_ok;
}
static void
__destroy_client(struct nfs4_client *clp)
{
struct nfs4_openowner *oo;
struct nfs4_delegation *dp;
struct list_head reaplist;
INIT_LIST_HEAD(&reaplist);
spin_lock(&state_lock);
while (!list_empty(&clp->cl_delegations)) {
dp = list_entry(clp->cl_delegations.next, struct nfs4_delegation, dl_perclnt);
WARN_ON(!unhash_delegation_locked(dp));
list_add(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&state_lock);
while (!list_empty(&reaplist)) {
dp = list_entry(reaplist.next, struct nfs4_delegation, dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
put_clnt_odstate(dp->dl_clnt_odstate);
nfs4_put_deleg_lease(dp->dl_stid.sc_file);
nfs4_put_stid(&dp->dl_stid);
}
while (!list_empty(&clp->cl_revoked)) {
dp = list_entry(clp->cl_revoked.next, struct nfs4_delegation, dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
nfs4_put_stid(&dp->dl_stid);
}
while (!list_empty(&clp->cl_openowners)) {
oo = list_entry(clp->cl_openowners.next, struct nfs4_openowner, oo_perclient);
nfs4_get_stateowner(&oo->oo_owner);
release_openowner(oo);
}
nfsd4_return_all_client_layouts(clp);
nfsd4_shutdown_callback(clp);
if (clp->cl_cb_conn.cb_xprt)
svc_xprt_put(clp->cl_cb_conn.cb_xprt);
free_client(clp);
}
static void
destroy_client(struct nfs4_client *clp)
{
unhash_client(clp);
__destroy_client(clp);
}
static void expire_client(struct nfs4_client *clp)
{
unhash_client(clp);
nfsd4_client_record_remove(clp);
__destroy_client(clp);
}
static void copy_verf(struct nfs4_client *target, nfs4_verifier *source)
{
memcpy(target->cl_verifier.data, source->data,
sizeof(target->cl_verifier.data));
}
static void copy_clid(struct nfs4_client *target, struct nfs4_client *source)
{
target->cl_clientid.cl_boot = source->cl_clientid.cl_boot;
target->cl_clientid.cl_id = source->cl_clientid.cl_id;
}
static int copy_cred(struct svc_cred *target, struct svc_cred *source)
{
target->cr_principal = kstrdup(source->cr_principal, GFP_KERNEL);
target->cr_raw_principal = kstrdup(source->cr_raw_principal,
GFP_KERNEL);
if ((source->cr_principal && ! target->cr_principal) ||
(source->cr_raw_principal && ! target->cr_raw_principal))
return -ENOMEM;
target->cr_flavor = source->cr_flavor;
target->cr_uid = source->cr_uid;
target->cr_gid = source->cr_gid;
target->cr_group_info = source->cr_group_info;
get_group_info(target->cr_group_info);
target->cr_gss_mech = source->cr_gss_mech;
if (source->cr_gss_mech)
gss_mech_get(source->cr_gss_mech);
return 0;
}
static int
compare_blob(const struct xdr_netobj *o1, const struct xdr_netobj *o2)
{
if (o1->len < o2->len)
return -1;
if (o1->len > o2->len)
return 1;
return memcmp(o1->data, o2->data, o1->len);
}
static int same_name(const char *n1, const char *n2)
{
return 0 == memcmp(n1, n2, HEXDIR_LEN);
}
static int
same_verf(nfs4_verifier *v1, nfs4_verifier *v2)
{
return 0 == memcmp(v1->data, v2->data, sizeof(v1->data));
}
static int
same_clid(clientid_t *cl1, clientid_t *cl2)
{
return (cl1->cl_boot == cl2->cl_boot) && (cl1->cl_id == cl2->cl_id);
}
static bool groups_equal(struct group_info *g1, struct group_info *g2)
{
int i;
if (g1->ngroups != g2->ngroups)
return false;
for (i=0; i<g1->ngroups; i++)
if (!gid_eq(g1->gid[i], g2->gid[i]))
return false;
return true;
}
/*
* RFC 3530 language requires clid_inuse be returned when the
* "principal" associated with a requests differs from that previously
* used. We use uid, gid's, and gss principal string as our best
* approximation. We also don't want to allow non-gss use of a client
* established using gss: in theory cr_principal should catch that
* change, but in practice cr_principal can be null even in the gss case
* since gssd doesn't always pass down a principal string.
*/
static bool is_gss_cred(struct svc_cred *cr)
{
/* Is cr_flavor one of the gss "pseudoflavors"?: */
return (cr->cr_flavor > RPC_AUTH_MAXFLAVOR);
}
static bool
same_creds(struct svc_cred *cr1, struct svc_cred *cr2)
{
if ((is_gss_cred(cr1) != is_gss_cred(cr2))
|| (!uid_eq(cr1->cr_uid, cr2->cr_uid))
|| (!gid_eq(cr1->cr_gid, cr2->cr_gid))
|| !groups_equal(cr1->cr_group_info, cr2->cr_group_info))
return false;
if (cr1->cr_principal == cr2->cr_principal)
return true;
if (!cr1->cr_principal || !cr2->cr_principal)
return false;
return 0 == strcmp(cr1->cr_principal, cr2->cr_principal);
}
static bool svc_rqst_integrity_protected(struct svc_rqst *rqstp)
{
struct svc_cred *cr = &rqstp->rq_cred;
u32 service;
if (!cr->cr_gss_mech)
return false;
service = gss_pseudoflavor_to_service(cr->cr_gss_mech, cr->cr_flavor);
return service == RPC_GSS_SVC_INTEGRITY ||
service == RPC_GSS_SVC_PRIVACY;
}
bool nfsd4_mach_creds_match(struct nfs4_client *cl, struct svc_rqst *rqstp)
{
struct svc_cred *cr = &rqstp->rq_cred;
if (!cl->cl_mach_cred)
return true;
if (cl->cl_cred.cr_gss_mech != cr->cr_gss_mech)
return false;
if (!svc_rqst_integrity_protected(rqstp))
return false;
if (cl->cl_cred.cr_raw_principal)
return 0 == strcmp(cl->cl_cred.cr_raw_principal,
cr->cr_raw_principal);
if (!cr->cr_principal)
return false;
return 0 == strcmp(cl->cl_cred.cr_principal, cr->cr_principal);
}
static void gen_confirm(struct nfs4_client *clp, struct nfsd_net *nn)
{
__be32 verf[2];
/*
* This is opaque to client, so no need to byte-swap. Use
* __force to keep sparse happy
*/
verf[0] = (__force __be32)get_seconds();
verf[1] = (__force __be32)nn->clverifier_counter++;
memcpy(clp->cl_confirm.data, verf, sizeof(clp->cl_confirm.data));
}
static void gen_clid(struct nfs4_client *clp, struct nfsd_net *nn)
{
clp->cl_clientid.cl_boot = nn->boot_time;
clp->cl_clientid.cl_id = nn->clientid_counter++;
gen_confirm(clp, nn);
}
static struct nfs4_stid *
find_stateid_locked(struct nfs4_client *cl, stateid_t *t)
{
struct nfs4_stid *ret;
ret = idr_find(&cl->cl_stateids, t->si_opaque.so_id);
if (!ret || !ret->sc_type)
return NULL;
return ret;
}
static struct nfs4_stid *
find_stateid_by_type(struct nfs4_client *cl, stateid_t *t, char typemask)
{
struct nfs4_stid *s;
spin_lock(&cl->cl_lock);
s = find_stateid_locked(cl, t);
if (s != NULL) {
if (typemask & s->sc_type)
refcount_inc(&s->sc_count);
else
s = NULL;
}
spin_unlock(&cl->cl_lock);
return s;
}
static struct nfs4_client *create_client(struct xdr_netobj name,
struct svc_rqst *rqstp, nfs4_verifier *verf)
{
struct nfs4_client *clp;
struct sockaddr *sa = svc_addr(rqstp);
int ret;
struct net *net = SVC_NET(rqstp);
clp = alloc_client(name);
if (clp == NULL)
return NULL;
ret = copy_cred(&clp->cl_cred, &rqstp->rq_cred);
if (ret) {
free_client(clp);
return NULL;
}
nfsd4_init_cb(&clp->cl_cb_null, clp, NULL, NFSPROC4_CLNT_CB_NULL);
clp->cl_time = get_seconds();
clear_bit(0, &clp->cl_cb_slot_busy);
copy_verf(clp, verf);
rpc_copy_addr((struct sockaddr *) &clp->cl_addr, sa);
clp->cl_cb_session = NULL;
clp->net = net;
return clp;
}
static void
add_clp_to_name_tree(struct nfs4_client *new_clp, struct rb_root *root)
{
struct rb_node **new = &(root->rb_node), *parent = NULL;
struct nfs4_client *clp;
while (*new) {
clp = rb_entry(*new, struct nfs4_client, cl_namenode);
parent = *new;
if (compare_blob(&clp->cl_name, &new_clp->cl_name) > 0)
new = &((*new)->rb_left);
else
new = &((*new)->rb_right);
}
rb_link_node(&new_clp->cl_namenode, parent, new);
rb_insert_color(&new_clp->cl_namenode, root);
}
static struct nfs4_client *
find_clp_in_name_tree(struct xdr_netobj *name, struct rb_root *root)
{
int cmp;
struct rb_node *node = root->rb_node;
struct nfs4_client *clp;
while (node) {
clp = rb_entry(node, struct nfs4_client, cl_namenode);
cmp = compare_blob(&clp->cl_name, name);
if (cmp > 0)
node = node->rb_left;
else if (cmp < 0)
node = node->rb_right;
else
return clp;
}
return NULL;
}
static void
add_to_unconfirmed(struct nfs4_client *clp)
{
unsigned int idhashval;
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
clear_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags);
add_clp_to_name_tree(clp, &nn->unconf_name_tree);
idhashval = clientid_hashval(clp->cl_clientid.cl_id);
list_add(&clp->cl_idhash, &nn->unconf_id_hashtbl[idhashval]);
renew_client_locked(clp);
}
static void
move_to_confirmed(struct nfs4_client *clp)
{
unsigned int idhashval = clientid_hashval(clp->cl_clientid.cl_id);
struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id);
lockdep_assert_held(&nn->client_lock);
dprintk("NFSD: move_to_confirm nfs4_client %p\n", clp);
list_move(&clp->cl_idhash, &nn->conf_id_hashtbl[idhashval]);
rb_erase(&clp->cl_namenode, &nn->unconf_name_tree);
add_clp_to_name_tree(clp, &nn->conf_name_tree);
set_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags);
renew_client_locked(clp);
}
static struct nfs4_client *
find_client_in_id_table(struct list_head *tbl, clientid_t *clid, bool sessions)
{
struct nfs4_client *clp;
unsigned int idhashval = clientid_hashval(clid->cl_id);
list_for_each_entry(clp, &tbl[idhashval], cl_idhash) {
if (same_clid(&clp->cl_clientid, clid)) {
if ((bool)clp->cl_minorversion != sessions)
return NULL;
renew_client_locked(clp);
return clp;
}
}
return NULL;
}
static struct nfs4_client *
find_confirmed_client(clientid_t *clid, bool sessions, struct nfsd_net *nn)
{
struct list_head *tbl = nn->conf_id_hashtbl;
lockdep_assert_held(&nn->client_lock);
return find_client_in_id_table(tbl, clid, sessions);
}
static struct nfs4_client *
find_unconfirmed_client(clientid_t *clid, bool sessions, struct nfsd_net *nn)
{
struct list_head *tbl = nn->unconf_id_hashtbl;
lockdep_assert_held(&nn->client_lock);
return find_client_in_id_table(tbl, clid, sessions);
}
static bool clp_used_exchangeid(struct nfs4_client *clp)
{
return clp->cl_exchange_flags != 0;
}
static struct nfs4_client *
find_confirmed_client_by_name(struct xdr_netobj *name, struct nfsd_net *nn)
{
lockdep_assert_held(&nn->client_lock);
return find_clp_in_name_tree(name, &nn->conf_name_tree);
}
static struct nfs4_client *
find_unconfirmed_client_by_name(struct xdr_netobj *name, struct nfsd_net *nn)
{
lockdep_assert_held(&nn->client_lock);
return find_clp_in_name_tree(name, &nn->unconf_name_tree);
}
static void
gen_callback(struct nfs4_client *clp, struct nfsd4_setclientid *se, struct svc_rqst *rqstp)
{
struct nfs4_cb_conn *conn = &clp->cl_cb_conn;
struct sockaddr *sa = svc_addr(rqstp);
u32 scopeid = rpc_get_scope_id(sa);
unsigned short expected_family;
/* Currently, we only support tcp and tcp6 for the callback channel */
if (se->se_callback_netid_len == 3 &&
!memcmp(se->se_callback_netid_val, "tcp", 3))
expected_family = AF_INET;
else if (se->se_callback_netid_len == 4 &&
!memcmp(se->se_callback_netid_val, "tcp6", 4))
expected_family = AF_INET6;
else
goto out_err;
conn->cb_addrlen = rpc_uaddr2sockaddr(clp->net, se->se_callback_addr_val,
se->se_callback_addr_len,
(struct sockaddr *)&conn->cb_addr,
sizeof(conn->cb_addr));
if (!conn->cb_addrlen || conn->cb_addr.ss_family != expected_family)
goto out_err;
if (conn->cb_addr.ss_family == AF_INET6)
((struct sockaddr_in6 *)&conn->cb_addr)->sin6_scope_id = scopeid;
conn->cb_prog = se->se_callback_prog;
conn->cb_ident = se->se_callback_ident;
memcpy(&conn->cb_saddr, &rqstp->rq_daddr, rqstp->rq_daddrlen);
return;
out_err:
conn->cb_addr.ss_family = AF_UNSPEC;
conn->cb_addrlen = 0;
dprintk("NFSD: this client (clientid %08x/%08x) "
"will not receive delegations\n",
clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id);
return;
}
/*
* Cache a reply. nfsd4_check_resp_size() has bounded the cache size.
*/
static void
nfsd4_store_cache_entry(struct nfsd4_compoundres *resp)
{
struct xdr_buf *buf = resp->xdr.buf;
struct nfsd4_slot *slot = resp->cstate.slot;
unsigned int base;
dprintk("--> %s slot %p\n", __func__, slot);
slot->sl_flags |= NFSD4_SLOT_INITIALIZED;
slot->sl_opcnt = resp->opcnt;
slot->sl_status = resp->cstate.status;
free_svc_cred(&slot->sl_cred);
copy_cred(&slot->sl_cred, &resp->rqstp->rq_cred);
if (!nfsd4_cache_this(resp)) {
slot->sl_flags &= ~NFSD4_SLOT_CACHED;
return;
}
slot->sl_flags |= NFSD4_SLOT_CACHED;
base = resp->cstate.data_offset;
slot->sl_datalen = buf->len - base;
if (read_bytes_from_xdr_buf(buf, base, slot->sl_data, slot->sl_datalen))
WARN(1, "%s: sessions DRC could not cache compound\n",
__func__);
return;
}
/*
* Encode the replay sequence operation from the slot values.
* If cachethis is FALSE encode the uncached rep error on the next
* operation which sets resp->p and increments resp->opcnt for
* nfs4svc_encode_compoundres.
*
*/
static __be32
nfsd4_enc_sequence_replay(struct nfsd4_compoundargs *args,
struct nfsd4_compoundres *resp)
{
struct nfsd4_op *op;
struct nfsd4_slot *slot = resp->cstate.slot;
/* Encode the replayed sequence operation */
op = &args->ops[resp->opcnt - 1];
nfsd4_encode_operation(resp, op);
if (slot->sl_flags & NFSD4_SLOT_CACHED)
return op->status;
if (args->opcnt == 1) {
/*
* The original operation wasn't a solo sequence--we
* always cache those--so this retry must not match the
* original:
*/
op->status = nfserr_seq_false_retry;
} else {
op = &args->ops[resp->opcnt++];
op->status = nfserr_retry_uncached_rep;
nfsd4_encode_operation(resp, op);
}
return op->status;
}
/*
* The sequence operation is not cached because we can use the slot and
* session values.
*/
static __be32
nfsd4_replay_cache_entry(struct nfsd4_compoundres *resp,
struct nfsd4_sequence *seq)
{
struct nfsd4_slot *slot = resp->cstate.slot;
struct xdr_stream *xdr = &resp->xdr;
__be32 *p;
__be32 status;
dprintk("--> %s slot %p\n", __func__, slot);
status = nfsd4_enc_sequence_replay(resp->rqstp->rq_argp, resp);
if (status)
return status;
p = xdr_reserve_space(xdr, slot->sl_datalen);
if (!p) {
WARN_ON_ONCE(1);
return nfserr_serverfault;
}
xdr_encode_opaque_fixed(p, slot->sl_data, slot->sl_datalen);
xdr_commit_encode(xdr);
resp->opcnt = slot->sl_opcnt;
return slot->sl_status;
}
/*
* Set the exchange_id flags returned by the server.
*/
static void
nfsd4_set_ex_flags(struct nfs4_client *new, struct nfsd4_exchange_id *clid)
{
#ifdef CONFIG_NFSD_PNFS
new->cl_exchange_flags |= EXCHGID4_FLAG_USE_PNFS_MDS;
#else
new->cl_exchange_flags |= EXCHGID4_FLAG_USE_NON_PNFS;
#endif
/* Referrals are supported, Migration is not. */
new->cl_exchange_flags |= EXCHGID4_FLAG_SUPP_MOVED_REFER;
/* set the wire flags to return to client. */
clid->flags = new->cl_exchange_flags;
}
static bool client_has_openowners(struct nfs4_client *clp)
{
struct nfs4_openowner *oo;
list_for_each_entry(oo, &clp->cl_openowners, oo_perclient) {
if (!list_empty(&oo->oo_owner.so_stateids))
return true;
}
return false;
}
static bool client_has_state(struct nfs4_client *clp)
{
return client_has_openowners(clp)
#ifdef CONFIG_NFSD_PNFS
|| !list_empty(&clp->cl_lo_states)
#endif
|| !list_empty(&clp->cl_delegations)
|| !list_empty(&clp->cl_sessions);
}
__be32
nfsd4_exchange_id(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_exchange_id *exid = &u->exchange_id;
struct nfs4_client *conf, *new;
struct nfs4_client *unconf = NULL;
__be32 status;
char addr_str[INET6_ADDRSTRLEN];
nfs4_verifier verf = exid->verifier;
struct sockaddr *sa = svc_addr(rqstp);
bool update = exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
rpc_ntop(sa, addr_str, sizeof(addr_str));
dprintk("%s rqstp=%p exid=%p clname.len=%u clname.data=%p "
"ip_addr=%s flags %x, spa_how %d\n",
__func__, rqstp, exid, exid->clname.len, exid->clname.data,
addr_str, exid->flags, exid->spa_how);
if (exid->flags & ~EXCHGID4_FLAG_MASK_A)
return nfserr_inval;
new = create_client(exid->clname, rqstp, &verf);
if (new == NULL)
return nfserr_jukebox;
switch (exid->spa_how) {
case SP4_MACH_CRED:
exid->spo_must_enforce[0] = 0;
exid->spo_must_enforce[1] = (
1 << (OP_BIND_CONN_TO_SESSION - 32) |
1 << (OP_EXCHANGE_ID - 32) |
1 << (OP_CREATE_SESSION - 32) |
1 << (OP_DESTROY_SESSION - 32) |
1 << (OP_DESTROY_CLIENTID - 32));
exid->spo_must_allow[0] &= (1 << (OP_CLOSE) |
1 << (OP_OPEN_DOWNGRADE) |
1 << (OP_LOCKU) |
1 << (OP_DELEGRETURN));
exid->spo_must_allow[1] &= (
1 << (OP_TEST_STATEID - 32) |
1 << (OP_FREE_STATEID - 32));
if (!svc_rqst_integrity_protected(rqstp)) {
status = nfserr_inval;
goto out_nolock;
}
/*
* Sometimes userspace doesn't give us a principal.
* Which is a bug, really. Anyway, we can't enforce
* MACH_CRED in that case, better to give up now:
*/
if (!new->cl_cred.cr_principal &&
!new->cl_cred.cr_raw_principal) {
status = nfserr_serverfault;
goto out_nolock;
}
new->cl_mach_cred = true;
case SP4_NONE:
break;
default: /* checked by xdr code */
WARN_ON_ONCE(1);
case SP4_SSV:
status = nfserr_encr_alg_unsupp;
goto out_nolock;
}
/* Cases below refer to rfc 5661 section 18.35.4: */
spin_lock(&nn->client_lock);
conf = find_confirmed_client_by_name(&exid->clname, nn);
if (conf) {
bool creds_match = same_creds(&conf->cl_cred, &rqstp->rq_cred);
bool verfs_match = same_verf(&verf, &conf->cl_verifier);
if (update) {
if (!clp_used_exchangeid(conf)) { /* buggy client */
status = nfserr_inval;
goto out;
}
if (!nfsd4_mach_creds_match(conf, rqstp)) {
status = nfserr_wrong_cred;
goto out;
}
if (!creds_match) { /* case 9 */
status = nfserr_perm;
goto out;
}
if (!verfs_match) { /* case 8 */
status = nfserr_not_same;
goto out;
}
/* case 6 */
exid->flags |= EXCHGID4_FLAG_CONFIRMED_R;
goto out_copy;
}
if (!creds_match) { /* case 3 */
if (client_has_state(conf)) {
status = nfserr_clid_inuse;
goto out;
}
goto out_new;
}
if (verfs_match) { /* case 2 */
conf->cl_exchange_flags |= EXCHGID4_FLAG_CONFIRMED_R;
goto out_copy;
}
/* case 5, client reboot */
conf = NULL;
goto out_new;
}
if (update) { /* case 7 */
status = nfserr_noent;
goto out;
}
unconf = find_unconfirmed_client_by_name(&exid->clname, nn);
if (unconf) /* case 4, possible retry or client restart */
unhash_client_locked(unconf);
/* case 1 (normal case) */
out_new:
if (conf) {
status = mark_client_expired_locked(conf);
if (status)
goto out;
}
new->cl_minorversion = cstate->minorversion;
new->cl_spo_must_allow.u.words[0] = exid->spo_must_allow[0];
new->cl_spo_must_allow.u.words[1] = exid->spo_must_allow[1];
gen_clid(new, nn);
add_to_unconfirmed(new);
swap(new, conf);
out_copy:
exid->clientid.cl_boot = conf->cl_clientid.cl_boot;
exid->clientid.cl_id = conf->cl_clientid.cl_id;
exid->seqid = conf->cl_cs_slot.sl_seqid + 1;
nfsd4_set_ex_flags(conf, exid);
dprintk("nfsd4_exchange_id seqid %d flags %x\n",
conf->cl_cs_slot.sl_seqid, conf->cl_exchange_flags);
status = nfs_ok;
out:
spin_unlock(&nn->client_lock);
out_nolock:
if (new)
expire_client(new);
if (unconf)
expire_client(unconf);
return status;
}
static __be32
check_slot_seqid(u32 seqid, u32 slot_seqid, int slot_inuse)
{
dprintk("%s enter. seqid %d slot_seqid %d\n", __func__, seqid,
slot_seqid);
/* The slot is in use, and no response has been sent. */
if (slot_inuse) {
if (seqid == slot_seqid)
return nfserr_jukebox;
else
return nfserr_seq_misordered;
}
/* Note unsigned 32-bit arithmetic handles wraparound: */
if (likely(seqid == slot_seqid + 1))
return nfs_ok;
if (seqid == slot_seqid)
return nfserr_replay_cache;
return nfserr_seq_misordered;
}
/*
* Cache the create session result into the create session single DRC
* slot cache by saving the xdr structure. sl_seqid has been set.
* Do this for solo or embedded create session operations.
*/
static void
nfsd4_cache_create_session(struct nfsd4_create_session *cr_ses,
struct nfsd4_clid_slot *slot, __be32 nfserr)
{
slot->sl_status = nfserr;
memcpy(&slot->sl_cr_ses, cr_ses, sizeof(*cr_ses));
}
static __be32
nfsd4_replay_create_session(struct nfsd4_create_session *cr_ses,
struct nfsd4_clid_slot *slot)
{
memcpy(cr_ses, &slot->sl_cr_ses, sizeof(*cr_ses));
return slot->sl_status;
}
#define NFSD_MIN_REQ_HDR_SEQ_SZ ((\
2 * 2 + /* credential,verifier: AUTH_NULL, length 0 */ \
1 + /* MIN tag is length with zero, only length */ \
3 + /* version, opcount, opcode */ \
XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \
/* seqid, slotID, slotID, cache */ \
4 ) * sizeof(__be32))
#define NFSD_MIN_RESP_HDR_SEQ_SZ ((\
2 + /* verifier: AUTH_NULL, length 0 */\
1 + /* status */ \
1 + /* MIN tag is length with zero, only length */ \
3 + /* opcount, opcode, opstatus*/ \
XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \
/* seqid, slotID, slotID, slotID, status */ \
5 ) * sizeof(__be32))
static __be32 check_forechannel_attrs(struct nfsd4_channel_attrs *ca, struct nfsd_net *nn)
{
u32 maxrpc = nn->nfsd_serv->sv_max_mesg;
if (ca->maxreq_sz < NFSD_MIN_REQ_HDR_SEQ_SZ)
return nfserr_toosmall;
if (ca->maxresp_sz < NFSD_MIN_RESP_HDR_SEQ_SZ)
return nfserr_toosmall;
ca->headerpadsz = 0;
ca->maxreq_sz = min_t(u32, ca->maxreq_sz, maxrpc);
ca->maxresp_sz = min_t(u32, ca->maxresp_sz, maxrpc);
ca->maxops = min_t(u32, ca->maxops, NFSD_MAX_OPS_PER_COMPOUND);
ca->maxresp_cached = min_t(u32, ca->maxresp_cached,
NFSD_SLOT_CACHE_SIZE + NFSD_MIN_HDR_SEQ_SZ);
ca->maxreqs = min_t(u32, ca->maxreqs, NFSD_MAX_SLOTS_PER_SESSION);
/*
* Note decreasing slot size below client's request may make it
* difficult for client to function correctly, whereas
* decreasing the number of slots will (just?) affect
* performance. When short on memory we therefore prefer to
* decrease number of slots instead of their size. Clients that
* request larger slots than they need will get poor results:
*/
ca->maxreqs = nfsd4_get_drc_mem(ca);
if (!ca->maxreqs)
return nfserr_jukebox;
return nfs_ok;
}
/*
* Server's NFSv4.1 backchannel support is AUTH_SYS-only for now.
* These are based on similar macros in linux/sunrpc/msg_prot.h .
*/
#define RPC_MAX_HEADER_WITH_AUTH_SYS \
(RPC_CALLHDRSIZE + 2 * (2 + UNX_CALLSLACK))
#define RPC_MAX_REPHEADER_WITH_AUTH_SYS \
(RPC_REPHDRSIZE + (2 + NUL_REPLYSLACK))
#define NFSD_CB_MAX_REQ_SZ ((NFS4_enc_cb_recall_sz + \
RPC_MAX_HEADER_WITH_AUTH_SYS) * sizeof(__be32))
#define NFSD_CB_MAX_RESP_SZ ((NFS4_dec_cb_recall_sz + \
RPC_MAX_REPHEADER_WITH_AUTH_SYS) * \
sizeof(__be32))
static __be32 check_backchannel_attrs(struct nfsd4_channel_attrs *ca)
{
ca->headerpadsz = 0;
if (ca->maxreq_sz < NFSD_CB_MAX_REQ_SZ)
return nfserr_toosmall;
if (ca->maxresp_sz < NFSD_CB_MAX_RESP_SZ)
return nfserr_toosmall;
ca->maxresp_cached = 0;
if (ca->maxops < 2)
return nfserr_toosmall;
return nfs_ok;
}
static __be32 nfsd4_check_cb_sec(struct nfsd4_cb_sec *cbs)
{
switch (cbs->flavor) {
case RPC_AUTH_NULL:
case RPC_AUTH_UNIX:
return nfs_ok;
default:
/*
* GSS case: the spec doesn't allow us to return this
* error. But it also doesn't allow us not to support
* GSS.
* I'd rather this fail hard than return some error the
* client might think it can already handle:
*/
return nfserr_encr_alg_unsupp;
}
}
__be32
nfsd4_create_session(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate, union nfsd4_op_u *u)
{
struct nfsd4_create_session *cr_ses = &u->create_session;
struct sockaddr *sa = svc_addr(rqstp);
struct nfs4_client *conf, *unconf;
struct nfs4_client *old = NULL;
struct nfsd4_session *new;
struct nfsd4_conn *conn;
struct nfsd4_clid_slot *cs_slot = NULL;
__be32 status = 0;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
if (cr_ses->flags & ~SESSION4_FLAG_MASK_A)
return nfserr_inval;
status = nfsd4_check_cb_sec(&cr_ses->cb_sec);
if (status)
return status;
status = check_forechannel_attrs(&cr_ses->fore_channel, nn);
if (status)
return status;
status = check_backchannel_attrs(&cr_ses->back_channel);
if (status)
goto out_release_drc_mem;
status = nfserr_jukebox;
new = alloc_session(&cr_ses->fore_channel, &cr_ses->back_channel);
if (!new)
goto out_release_drc_mem;
conn = alloc_conn_from_crses(rqstp, cr_ses);
if (!conn)
goto out_free_session;
spin_lock(&nn->client_lock);
unconf = find_unconfirmed_client(&cr_ses->clientid, true, nn);
conf = find_confirmed_client(&cr_ses->clientid, true, nn);
WARN_ON_ONCE(conf && unconf);
if (conf) {
status = nfserr_wrong_cred;
if (!nfsd4_mach_creds_match(conf, rqstp))
goto out_free_conn;
cs_slot = &conf->cl_cs_slot;
status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0);
if (status) {
if (status == nfserr_replay_cache)
status = nfsd4_replay_create_session(cr_ses, cs_slot);
goto out_free_conn;
}
} else if (unconf) {
if (!same_creds(&unconf->cl_cred, &rqstp->rq_cred) ||
!rpc_cmp_addr(sa, (struct sockaddr *) &unconf->cl_addr)) {
status = nfserr_clid_inuse;
goto out_free_conn;
}
status = nfserr_wrong_cred;
if (!nfsd4_mach_creds_match(unconf, rqstp))
goto out_free_conn;
cs_slot = &unconf->cl_cs_slot;
status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0);
if (status) {
/* an unconfirmed replay returns misordered */
status = nfserr_seq_misordered;
goto out_free_conn;
}
old = find_confirmed_client_by_name(&unconf->cl_name, nn);
if (old) {
status = mark_client_expired_locked(old);
if (status) {
old = NULL;
goto out_free_conn;
}
}
move_to_confirmed(unconf);
conf = unconf;
} else {
status = nfserr_stale_clientid;
goto out_free_conn;
}
status = nfs_ok;
/* Persistent sessions are not supported */
cr_ses->flags &= ~SESSION4_PERSIST;
/* Upshifting from TCP to RDMA is not supported */
cr_ses->flags &= ~SESSION4_RDMA;
init_session(rqstp, new, conf, cr_ses);
nfsd4_get_session_locked(new);
memcpy(cr_ses->sessionid.data, new->se_sessionid.data,
NFS4_MAX_SESSIONID_LEN);
cs_slot->sl_seqid++;
cr_ses->seqid = cs_slot->sl_seqid;
/* cache solo and embedded create sessions under the client_lock */
nfsd4_cache_create_session(cr_ses, cs_slot, status);
spin_unlock(&nn->client_lock);
/* init connection and backchannel */
nfsd4_init_conn(rqstp, conn, new);
nfsd4_put_session(new);
if (old)
expire_client(old);
return status;
out_free_conn:
spin_unlock(&nn->client_lock);
free_conn(conn);
if (old)
expire_client(old);
out_free_session:
__free_session(new);
out_release_drc_mem:
nfsd4_put_drc_mem(&cr_ses->fore_channel);
return status;
}
static __be32 nfsd4_map_bcts_dir(u32 *dir)
{
switch (*dir) {
case NFS4_CDFC4_FORE:
case NFS4_CDFC4_BACK:
return nfs_ok;
case NFS4_CDFC4_FORE_OR_BOTH:
case NFS4_CDFC4_BACK_OR_BOTH:
*dir = NFS4_CDFC4_BOTH;
return nfs_ok;
};
return nfserr_inval;
}
__be32 nfsd4_backchannel_ctl(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_backchannel_ctl *bc = &u->backchannel_ctl;
struct nfsd4_session *session = cstate->session;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
__be32 status;
status = nfsd4_check_cb_sec(&bc->bc_cb_sec);
if (status)
return status;
spin_lock(&nn->client_lock);
session->se_cb_prog = bc->bc_cb_program;
session->se_cb_sec = bc->bc_cb_sec;
spin_unlock(&nn->client_lock);
nfsd4_probe_callback(session->se_client);
return nfs_ok;
}
__be32 nfsd4_bind_conn_to_session(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_bind_conn_to_session *bcts = &u->bind_conn_to_session;
__be32 status;
struct nfsd4_conn *conn;
struct nfsd4_session *session;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
if (!nfsd4_last_compound_op(rqstp))
return nfserr_not_only_op;
spin_lock(&nn->client_lock);
session = find_in_sessionid_hashtbl(&bcts->sessionid, net, &status);
spin_unlock(&nn->client_lock);
if (!session)
goto out_no_session;
status = nfserr_wrong_cred;
if (!nfsd4_mach_creds_match(session->se_client, rqstp))
goto out;
status = nfsd4_map_bcts_dir(&bcts->dir);
if (status)
goto out;
conn = alloc_conn(rqstp, bcts->dir);
status = nfserr_jukebox;
if (!conn)
goto out;
nfsd4_init_conn(rqstp, conn, session);
status = nfs_ok;
out:
nfsd4_put_session(session);
out_no_session:
return status;
}
static bool nfsd4_compound_in_session(struct nfsd4_session *session, struct nfs4_sessionid *sid)
{
if (!session)
return 0;
return !memcmp(sid, &session->se_sessionid, sizeof(*sid));
}
__be32
nfsd4_destroy_session(struct svc_rqst *r, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_destroy_session *sessionid = &u->destroy_session;
struct nfsd4_session *ses;
__be32 status;
int ref_held_by_me = 0;
struct net *net = SVC_NET(r);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
status = nfserr_not_only_op;
if (nfsd4_compound_in_session(cstate->session, &sessionid->sessionid)) {
if (!nfsd4_last_compound_op(r))
goto out;
ref_held_by_me++;
}
dump_sessionid(__func__, &sessionid->sessionid);
spin_lock(&nn->client_lock);
ses = find_in_sessionid_hashtbl(&sessionid->sessionid, net, &status);
if (!ses)
goto out_client_lock;
status = nfserr_wrong_cred;
if (!nfsd4_mach_creds_match(ses->se_client, r))
goto out_put_session;
status = mark_session_dead_locked(ses, 1 + ref_held_by_me);
if (status)
goto out_put_session;
unhash_session(ses);
spin_unlock(&nn->client_lock);
nfsd4_probe_callback_sync(ses->se_client);
spin_lock(&nn->client_lock);
status = nfs_ok;
out_put_session:
nfsd4_put_session_locked(ses);
out_client_lock:
spin_unlock(&nn->client_lock);
out:
return status;
}
static struct nfsd4_conn *__nfsd4_find_conn(struct svc_xprt *xpt, struct nfsd4_session *s)
{
struct nfsd4_conn *c;
list_for_each_entry(c, &s->se_conns, cn_persession) {
if (c->cn_xprt == xpt) {
return c;
}
}
return NULL;
}
static __be32 nfsd4_sequence_check_conn(struct nfsd4_conn *new, struct nfsd4_session *ses)
{
struct nfs4_client *clp = ses->se_client;
struct nfsd4_conn *c;
__be32 status = nfs_ok;
int ret;
spin_lock(&clp->cl_lock);
c = __nfsd4_find_conn(new->cn_xprt, ses);
if (c)
goto out_free;
status = nfserr_conn_not_bound_to_session;
if (clp->cl_mach_cred)
goto out_free;
__nfsd4_hash_conn(new, ses);
spin_unlock(&clp->cl_lock);
ret = nfsd4_register_conn(new);
if (ret)
/* oops; xprt is already down: */
nfsd4_conn_lost(&new->cn_xpt_user);
return nfs_ok;
out_free:
spin_unlock(&clp->cl_lock);
free_conn(new);
return status;
}
static bool nfsd4_session_too_many_ops(struct svc_rqst *rqstp, struct nfsd4_session *session)
{
struct nfsd4_compoundargs *args = rqstp->rq_argp;
return args->opcnt > session->se_fchannel.maxops;
}
static bool nfsd4_request_too_big(struct svc_rqst *rqstp,
struct nfsd4_session *session)
{
struct xdr_buf *xb = &rqstp->rq_arg;
return xb->len > session->se_fchannel.maxreq_sz;
}
static bool replay_matches_cache(struct svc_rqst *rqstp,
struct nfsd4_sequence *seq, struct nfsd4_slot *slot)
{
struct nfsd4_compoundargs *argp = rqstp->rq_argp;
if ((bool)(slot->sl_flags & NFSD4_SLOT_CACHETHIS) !=
(bool)seq->cachethis)
return false;
/*
* If there's an error than the reply can have fewer ops than
* the call. But if we cached a reply with *more* ops than the
* call you're sending us now, then this new call is clearly not
* really a replay of the old one:
*/
if (slot->sl_opcnt < argp->opcnt)
return false;
/* This is the only check explicitly called by spec: */
if (!same_creds(&rqstp->rq_cred, &slot->sl_cred))
return false;
/*
* There may be more comparisons we could actually do, but the
* spec doesn't require us to catch every case where the calls
* don't match (that would require caching the call as well as
* the reply), so we don't bother.
*/
return true;
}
__be32
nfsd4_sequence(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_sequence *seq = &u->sequence;
struct nfsd4_compoundres *resp = rqstp->rq_resp;
struct xdr_stream *xdr = &resp->xdr;
struct nfsd4_session *session;
struct nfs4_client *clp;
struct nfsd4_slot *slot;
struct nfsd4_conn *conn;
__be32 status;
int buflen;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
if (resp->opcnt != 1)
return nfserr_sequence_pos;
/*
* Will be either used or freed by nfsd4_sequence_check_conn
* below.
*/
conn = alloc_conn(rqstp, NFS4_CDFC4_FORE);
if (!conn)
return nfserr_jukebox;
spin_lock(&nn->client_lock);
session = find_in_sessionid_hashtbl(&seq->sessionid, net, &status);
if (!session)
goto out_no_session;
clp = session->se_client;
status = nfserr_too_many_ops;
if (nfsd4_session_too_many_ops(rqstp, session))
goto out_put_session;
status = nfserr_req_too_big;
if (nfsd4_request_too_big(rqstp, session))
goto out_put_session;
status = nfserr_badslot;
if (seq->slotid >= session->se_fchannel.maxreqs)
goto out_put_session;
slot = session->se_slots[seq->slotid];
dprintk("%s: slotid %d\n", __func__, seq->slotid);
/* We do not negotiate the number of slots yet, so set the
* maxslots to the session maxreqs which is used to encode
* sr_highest_slotid and the sr_target_slot id to maxslots */
seq->maxslots = session->se_fchannel.maxreqs;
status = check_slot_seqid(seq->seqid, slot->sl_seqid,
slot->sl_flags & NFSD4_SLOT_INUSE);
if (status == nfserr_replay_cache) {
status = nfserr_seq_misordered;
if (!(slot->sl_flags & NFSD4_SLOT_INITIALIZED))
goto out_put_session;
status = nfserr_seq_false_retry;
if (!replay_matches_cache(rqstp, seq, slot))
goto out_put_session;
cstate->slot = slot;
cstate->session = session;
cstate->clp = clp;
/* Return the cached reply status and set cstate->status
* for nfsd4_proc_compound processing */
status = nfsd4_replay_cache_entry(resp, seq);
cstate->status = nfserr_replay_cache;
goto out;
}
if (status)
goto out_put_session;
status = nfsd4_sequence_check_conn(conn, session);
conn = NULL;
if (status)
goto out_put_session;
buflen = (seq->cachethis) ?
session->se_fchannel.maxresp_cached :
session->se_fchannel.maxresp_sz;
status = (seq->cachethis) ? nfserr_rep_too_big_to_cache :
nfserr_rep_too_big;
if (xdr_restrict_buflen(xdr, buflen - rqstp->rq_auth_slack))
goto out_put_session;
svc_reserve(rqstp, buflen);
status = nfs_ok;
/* Success! bump slot seqid */
slot->sl_seqid = seq->seqid;
slot->sl_flags |= NFSD4_SLOT_INUSE;
if (seq->cachethis)
slot->sl_flags |= NFSD4_SLOT_CACHETHIS;
else
slot->sl_flags &= ~NFSD4_SLOT_CACHETHIS;
cstate->slot = slot;
cstate->session = session;
cstate->clp = clp;
out:
switch (clp->cl_cb_state) {
case NFSD4_CB_DOWN:
seq->status_flags = SEQ4_STATUS_CB_PATH_DOWN;
break;
case NFSD4_CB_FAULT:
seq->status_flags = SEQ4_STATUS_BACKCHANNEL_FAULT;
break;
default:
seq->status_flags = 0;
}
if (!list_empty(&clp->cl_revoked))
seq->status_flags |= SEQ4_STATUS_RECALLABLE_STATE_REVOKED;
out_no_session:
if (conn)
free_conn(conn);
spin_unlock(&nn->client_lock);
return status;
out_put_session:
nfsd4_put_session_locked(session);
goto out_no_session;
}
void
nfsd4_sequence_done(struct nfsd4_compoundres *resp)
{
struct nfsd4_compound_state *cs = &resp->cstate;
if (nfsd4_has_session(cs)) {
if (cs->status != nfserr_replay_cache) {
nfsd4_store_cache_entry(resp);
cs->slot->sl_flags &= ~NFSD4_SLOT_INUSE;
}
/* Drop session reference that was taken in nfsd4_sequence() */
nfsd4_put_session(cs->session);
} else if (cs->clp)
put_client_renew(cs->clp);
}
__be32
nfsd4_destroy_clientid(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_destroy_clientid *dc = &u->destroy_clientid;
struct nfs4_client *conf, *unconf;
struct nfs4_client *clp = NULL;
__be32 status = 0;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
spin_lock(&nn->client_lock);
unconf = find_unconfirmed_client(&dc->clientid, true, nn);
conf = find_confirmed_client(&dc->clientid, true, nn);
WARN_ON_ONCE(conf && unconf);
if (conf) {
if (client_has_state(conf)) {
status = nfserr_clientid_busy;
goto out;
}
status = mark_client_expired_locked(conf);
if (status)
goto out;
clp = conf;
} else if (unconf)
clp = unconf;
else {
status = nfserr_stale_clientid;
goto out;
}
if (!nfsd4_mach_creds_match(clp, rqstp)) {
clp = NULL;
status = nfserr_wrong_cred;
goto out;
}
unhash_client_locked(clp);
out:
spin_unlock(&nn->client_lock);
if (clp)
expire_client(clp);
return status;
}
__be32
nfsd4_reclaim_complete(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate, union nfsd4_op_u *u)
{
struct nfsd4_reclaim_complete *rc = &u->reclaim_complete;
__be32 status = 0;
if (rc->rca_one_fs) {
if (!cstate->current_fh.fh_dentry)
return nfserr_nofilehandle;
/*
* We don't take advantage of the rca_one_fs case.
* That's OK, it's optional, we can safely ignore it.
*/
return nfs_ok;
}
status = nfserr_complete_already;
if (test_and_set_bit(NFSD4_CLIENT_RECLAIM_COMPLETE,
&cstate->session->se_client->cl_flags))
goto out;
status = nfserr_stale_clientid;
if (is_client_expired(cstate->session->se_client))
/*
* The following error isn't really legal.
* But we only get here if the client just explicitly
* destroyed the client. Surely it no longer cares what
* error it gets back on an operation for the dead
* client.
*/
goto out;
status = nfs_ok;
nfsd4_client_record_create(cstate->session->se_client);
out:
return status;
}
__be32
nfsd4_setclientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_setclientid *setclid = &u->setclientid;
struct xdr_netobj clname = setclid->se_name;
nfs4_verifier clverifier = setclid->se_verf;
struct nfs4_client *conf, *new;
struct nfs4_client *unconf = NULL;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
new = create_client(clname, rqstp, &clverifier);
if (new == NULL)
return nfserr_jukebox;
/* Cases below refer to rfc 3530 section 14.2.33: */
spin_lock(&nn->client_lock);
conf = find_confirmed_client_by_name(&clname, nn);
if (conf && client_has_state(conf)) {
/* case 0: */
status = nfserr_clid_inuse;
if (clp_used_exchangeid(conf))
goto out;
if (!same_creds(&conf->cl_cred, &rqstp->rq_cred)) {
char addr_str[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *) &conf->cl_addr, addr_str,
sizeof(addr_str));
dprintk("NFSD: setclientid: string in use by client "
"at %s\n", addr_str);
goto out;
}
}
unconf = find_unconfirmed_client_by_name(&clname, nn);
if (unconf)
unhash_client_locked(unconf);
if (conf && same_verf(&conf->cl_verifier, &clverifier)) {
/* case 1: probable callback update */
copy_clid(new, conf);
gen_confirm(new, nn);
} else /* case 4 (new client) or cases 2, 3 (client reboot): */
gen_clid(new, nn);
new->cl_minorversion = 0;
gen_callback(new, setclid, rqstp);
add_to_unconfirmed(new);
setclid->se_clientid.cl_boot = new->cl_clientid.cl_boot;
setclid->se_clientid.cl_id = new->cl_clientid.cl_id;
memcpy(setclid->se_confirm.data, new->cl_confirm.data, sizeof(setclid->se_confirm.data));
new = NULL;
status = nfs_ok;
out:
spin_unlock(&nn->client_lock);
if (new)
free_client(new);
if (unconf)
expire_client(unconf);
return status;
}
__be32
nfsd4_setclientid_confirm(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_setclientid_confirm *setclientid_confirm =
&u->setclientid_confirm;
struct nfs4_client *conf, *unconf;
struct nfs4_client *old = NULL;
nfs4_verifier confirm = setclientid_confirm->sc_confirm;
clientid_t * clid = &setclientid_confirm->sc_clientid;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
if (STALE_CLIENTID(clid, nn))
return nfserr_stale_clientid;
spin_lock(&nn->client_lock);
conf = find_confirmed_client(clid, false, nn);
unconf = find_unconfirmed_client(clid, false, nn);
/*
* We try hard to give out unique clientid's, so if we get an
* attempt to confirm the same clientid with a different cred,
* the client may be buggy; this should never happen.
*
* Nevertheless, RFC 7530 recommends INUSE for this case:
*/
status = nfserr_clid_inuse;
if (unconf && !same_creds(&unconf->cl_cred, &rqstp->rq_cred))
goto out;
if (conf && !same_creds(&conf->cl_cred, &rqstp->rq_cred))
goto out;
/* cases below refer to rfc 3530 section 14.2.34: */
if (!unconf || !same_verf(&confirm, &unconf->cl_confirm)) {
if (conf && same_verf(&confirm, &conf->cl_confirm)) {
/* case 2: probable retransmit */
status = nfs_ok;
} else /* case 4: client hasn't noticed we rebooted yet? */
status = nfserr_stale_clientid;
goto out;
}
status = nfs_ok;
if (conf) { /* case 1: callback update */
old = unconf;
unhash_client_locked(old);
nfsd4_change_callback(conf, &unconf->cl_cb_conn);
} else { /* case 3: normal case; new or rebooted client */
old = find_confirmed_client_by_name(&unconf->cl_name, nn);
if (old) {
status = nfserr_clid_inuse;
if (client_has_state(old)
&& !same_creds(&unconf->cl_cred,
&old->cl_cred))
goto out;
status = mark_client_expired_locked(old);
if (status) {
old = NULL;
goto out;
}
}
move_to_confirmed(unconf);
conf = unconf;
}
get_client_locked(conf);
spin_unlock(&nn->client_lock);
nfsd4_probe_callback(conf);
spin_lock(&nn->client_lock);
put_client_renew_locked(conf);
out:
spin_unlock(&nn->client_lock);
if (old)
expire_client(old);
return status;
}
static struct nfs4_file *nfsd4_alloc_file(void)
{
return kmem_cache_alloc(file_slab, GFP_KERNEL);
}
/* OPEN Share state helper functions */
static void nfsd4_init_file(struct knfsd_fh *fh, unsigned int hashval,
struct nfs4_file *fp)
{
lockdep_assert_held(&state_lock);
refcount_set(&fp->fi_ref, 1);
spin_lock_init(&fp->fi_lock);
INIT_LIST_HEAD(&fp->fi_stateids);
INIT_LIST_HEAD(&fp->fi_delegations);
INIT_LIST_HEAD(&fp->fi_clnt_odstate);
fh_copy_shallow(&fp->fi_fhandle, fh);
fp->fi_deleg_file = NULL;
fp->fi_had_conflict = false;
fp->fi_share_deny = 0;
memset(fp->fi_fds, 0, sizeof(fp->fi_fds));
memset(fp->fi_access, 0, sizeof(fp->fi_access));
#ifdef CONFIG_NFSD_PNFS
INIT_LIST_HEAD(&fp->fi_lo_states);
atomic_set(&fp->fi_lo_recalls, 0);
#endif
hlist_add_head_rcu(&fp->fi_hash, &file_hashtbl[hashval]);
}
void
nfsd4_free_slabs(void)
{
kmem_cache_destroy(odstate_slab);
kmem_cache_destroy(openowner_slab);
kmem_cache_destroy(lockowner_slab);
kmem_cache_destroy(file_slab);
kmem_cache_destroy(stateid_slab);
kmem_cache_destroy(deleg_slab);
}
int
nfsd4_init_slabs(void)
{
openowner_slab = kmem_cache_create("nfsd4_openowners",
sizeof(struct nfs4_openowner), 0, 0, NULL);
if (openowner_slab == NULL)
goto out;
lockowner_slab = kmem_cache_create("nfsd4_lockowners",
sizeof(struct nfs4_lockowner), 0, 0, NULL);
if (lockowner_slab == NULL)
goto out_free_openowner_slab;
file_slab = kmem_cache_create("nfsd4_files",
sizeof(struct nfs4_file), 0, 0, NULL);
if (file_slab == NULL)
goto out_free_lockowner_slab;
stateid_slab = kmem_cache_create("nfsd4_stateids",
sizeof(struct nfs4_ol_stateid), 0, 0, NULL);
if (stateid_slab == NULL)
goto out_free_file_slab;
deleg_slab = kmem_cache_create("nfsd4_delegations",
sizeof(struct nfs4_delegation), 0, 0, NULL);
if (deleg_slab == NULL)
goto out_free_stateid_slab;
odstate_slab = kmem_cache_create("nfsd4_odstate",
sizeof(struct nfs4_clnt_odstate), 0, 0, NULL);
if (odstate_slab == NULL)
goto out_free_deleg_slab;
return 0;
out_free_deleg_slab:
kmem_cache_destroy(deleg_slab);
out_free_stateid_slab:
kmem_cache_destroy(stateid_slab);
out_free_file_slab:
kmem_cache_destroy(file_slab);
out_free_lockowner_slab:
kmem_cache_destroy(lockowner_slab);
out_free_openowner_slab:
kmem_cache_destroy(openowner_slab);
out:
dprintk("nfsd4: out of memory while initializing nfsv4\n");
return -ENOMEM;
}
static void init_nfs4_replay(struct nfs4_replay *rp)
{
rp->rp_status = nfserr_serverfault;
rp->rp_buflen = 0;
rp->rp_buf = rp->rp_ibuf;
mutex_init(&rp->rp_mutex);
}
static void nfsd4_cstate_assign_replay(struct nfsd4_compound_state *cstate,
struct nfs4_stateowner *so)
{
if (!nfsd4_has_session(cstate)) {
mutex_lock(&so->so_replay.rp_mutex);
cstate->replay_owner = nfs4_get_stateowner(so);
}
}
void nfsd4_cstate_clear_replay(struct nfsd4_compound_state *cstate)
{
struct nfs4_stateowner *so = cstate->replay_owner;
if (so != NULL) {
cstate->replay_owner = NULL;
mutex_unlock(&so->so_replay.rp_mutex);
nfs4_put_stateowner(so);
}
}
static inline void *alloc_stateowner(struct kmem_cache *slab, struct xdr_netobj *owner, struct nfs4_client *clp)
{
struct nfs4_stateowner *sop;
sop = kmem_cache_alloc(slab, GFP_KERNEL);
if (!sop)
return NULL;
sop->so_owner.data = kmemdup(owner->data, owner->len, GFP_KERNEL);
if (!sop->so_owner.data) {
kmem_cache_free(slab, sop);
return NULL;
}
sop->so_owner.len = owner->len;
INIT_LIST_HEAD(&sop->so_stateids);
sop->so_client = clp;
init_nfs4_replay(&sop->so_replay);
atomic_set(&sop->so_count, 1);
return sop;
}
static void hash_openowner(struct nfs4_openowner *oo, struct nfs4_client *clp, unsigned int strhashval)
{
lockdep_assert_held(&clp->cl_lock);
list_add(&oo->oo_owner.so_strhash,
&clp->cl_ownerstr_hashtbl[strhashval]);
list_add(&oo->oo_perclient, &clp->cl_openowners);
}
static void nfs4_unhash_openowner(struct nfs4_stateowner *so)
{
unhash_openowner_locked(openowner(so));
}
static void nfs4_free_openowner(struct nfs4_stateowner *so)
{
struct nfs4_openowner *oo = openowner(so);
kmem_cache_free(openowner_slab, oo);
}
static const struct nfs4_stateowner_operations openowner_ops = {
.so_unhash = nfs4_unhash_openowner,
.so_free = nfs4_free_openowner,
};
static struct nfs4_ol_stateid *
nfsd4_find_existing_open(struct nfs4_file *fp, struct nfsd4_open *open)
{
struct nfs4_ol_stateid *local, *ret = NULL;
struct nfs4_openowner *oo = open->op_openowner;
lockdep_assert_held(&fp->fi_lock);
list_for_each_entry(local, &fp->fi_stateids, st_perfile) {
/* ignore lock owners */
if (local->st_stateowner->so_is_open_owner == 0)
continue;
if (local->st_stateowner != &oo->oo_owner)
continue;
if (local->st_stid.sc_type == NFS4_OPEN_STID) {
ret = local;
refcount_inc(&ret->st_stid.sc_count);
break;
}
}
return ret;
}
static __be32
nfsd4_verify_open_stid(struct nfs4_stid *s)
{
__be32 ret = nfs_ok;
switch (s->sc_type) {
default:
break;
case 0:
case NFS4_CLOSED_STID:
case NFS4_CLOSED_DELEG_STID:
ret = nfserr_bad_stateid;
break;
case NFS4_REVOKED_DELEG_STID:
ret = nfserr_deleg_revoked;
}
return ret;
}
/* Lock the stateid st_mutex, and deal with races with CLOSE */
static __be32
nfsd4_lock_ol_stateid(struct nfs4_ol_stateid *stp)
{
__be32 ret;
mutex_lock_nested(&stp->st_mutex, LOCK_STATEID_MUTEX);
ret = nfsd4_verify_open_stid(&stp->st_stid);
if (ret != nfs_ok)
mutex_unlock(&stp->st_mutex);
return ret;
}
static struct nfs4_ol_stateid *
nfsd4_find_and_lock_existing_open(struct nfs4_file *fp, struct nfsd4_open *open)
{
struct nfs4_ol_stateid *stp;
for (;;) {
spin_lock(&fp->fi_lock);
stp = nfsd4_find_existing_open(fp, open);
spin_unlock(&fp->fi_lock);
if (!stp || nfsd4_lock_ol_stateid(stp) == nfs_ok)
break;
nfs4_put_stid(&stp->st_stid);
}
return stp;
}
static struct nfs4_openowner *
alloc_init_open_stateowner(unsigned int strhashval, struct nfsd4_open *open,
struct nfsd4_compound_state *cstate)
{
struct nfs4_client *clp = cstate->clp;
struct nfs4_openowner *oo, *ret;
oo = alloc_stateowner(openowner_slab, &open->op_owner, clp);
if (!oo)
return NULL;
oo->oo_owner.so_ops = &openowner_ops;
oo->oo_owner.so_is_open_owner = 1;
oo->oo_owner.so_seqid = open->op_seqid;
oo->oo_flags = 0;
if (nfsd4_has_session(cstate))
oo->oo_flags |= NFS4_OO_CONFIRMED;
oo->oo_time = 0;
oo->oo_last_closed_stid = NULL;
INIT_LIST_HEAD(&oo->oo_close_lru);
spin_lock(&clp->cl_lock);
ret = find_openstateowner_str_locked(strhashval, open, clp);
if (ret == NULL) {
hash_openowner(oo, clp, strhashval);
ret = oo;
} else
nfs4_free_stateowner(&oo->oo_owner);
spin_unlock(&clp->cl_lock);
return ret;
}
static struct nfs4_ol_stateid *
init_open_stateid(struct nfs4_file *fp, struct nfsd4_open *open)
{
struct nfs4_openowner *oo = open->op_openowner;
struct nfs4_ol_stateid *retstp = NULL;
struct nfs4_ol_stateid *stp;
stp = open->op_stp;
/* We are moving these outside of the spinlocks to avoid the warnings */
mutex_init(&stp->st_mutex);
mutex_lock_nested(&stp->st_mutex, OPEN_STATEID_MUTEX);
retry:
spin_lock(&oo->oo_owner.so_client->cl_lock);
spin_lock(&fp->fi_lock);
retstp = nfsd4_find_existing_open(fp, open);
if (retstp)
goto out_unlock;
open->op_stp = NULL;
refcount_inc(&stp->st_stid.sc_count);
stp->st_stid.sc_type = NFS4_OPEN_STID;
INIT_LIST_HEAD(&stp->st_locks);
stp->st_stateowner = nfs4_get_stateowner(&oo->oo_owner);
get_nfs4_file(fp);
stp->st_stid.sc_file = fp;
stp->st_access_bmap = 0;
stp->st_deny_bmap = 0;
stp->st_openstp = NULL;
list_add(&stp->st_perstateowner, &oo->oo_owner.so_stateids);
list_add(&stp->st_perfile, &fp->fi_stateids);
out_unlock:
spin_unlock(&fp->fi_lock);
spin_unlock(&oo->oo_owner.so_client->cl_lock);
if (retstp) {
/* Handle races with CLOSE */
if (nfsd4_lock_ol_stateid(retstp) != nfs_ok) {
nfs4_put_stid(&retstp->st_stid);
goto retry;
}
/* To keep mutex tracking happy */
mutex_unlock(&stp->st_mutex);
stp = retstp;
}
return stp;
}
/*
* In the 4.0 case we need to keep the owners around a little while to handle
* CLOSE replay. We still do need to release any file access that is held by
* them before returning however.
*/
static void
move_to_close_lru(struct nfs4_ol_stateid *s, struct net *net)
{
struct nfs4_ol_stateid *last;
struct nfs4_openowner *oo = openowner(s->st_stateowner);
struct nfsd_net *nn = net_generic(s->st_stid.sc_client->net,
nfsd_net_id);
dprintk("NFSD: move_to_close_lru nfs4_openowner %p\n", oo);
/*
* We know that we hold one reference via nfsd4_close, and another
* "persistent" reference for the client. If the refcount is higher
* than 2, then there are still calls in progress that are using this
* stateid. We can't put the sc_file reference until they are finished.
* Wait for the refcount to drop to 2. Since it has been unhashed,
* there should be no danger of the refcount going back up again at
* this point.
*/
wait_event(close_wq, refcount_read(&s->st_stid.sc_count) == 2);
release_all_access(s);
if (s->st_stid.sc_file) {
put_nfs4_file(s->st_stid.sc_file);
s->st_stid.sc_file = NULL;
}
spin_lock(&nn->client_lock);
last = oo->oo_last_closed_stid;
oo->oo_last_closed_stid = s;
list_move_tail(&oo->oo_close_lru, &nn->close_lru);
oo->oo_time = get_seconds();
spin_unlock(&nn->client_lock);
if (last)
nfs4_put_stid(&last->st_stid);
}
/* search file_hashtbl[] for file */
static struct nfs4_file *
find_file_locked(struct knfsd_fh *fh, unsigned int hashval)
{
struct nfs4_file *fp;
hlist_for_each_entry_rcu(fp, &file_hashtbl[hashval], fi_hash) {
if (fh_match(&fp->fi_fhandle, fh)) {
if (refcount_inc_not_zero(&fp->fi_ref))
return fp;
}
}
return NULL;
}
struct nfs4_file *
find_file(struct knfsd_fh *fh)
{
struct nfs4_file *fp;
unsigned int hashval = file_hashval(fh);
rcu_read_lock();
fp = find_file_locked(fh, hashval);
rcu_read_unlock();
return fp;
}
static struct nfs4_file *
find_or_add_file(struct nfs4_file *new, struct knfsd_fh *fh)
{
struct nfs4_file *fp;
unsigned int hashval = file_hashval(fh);
rcu_read_lock();
fp = find_file_locked(fh, hashval);
rcu_read_unlock();
if (fp)
return fp;
spin_lock(&state_lock);
fp = find_file_locked(fh, hashval);
if (likely(fp == NULL)) {
nfsd4_init_file(fh, hashval, new);
fp = new;
}
spin_unlock(&state_lock);
return fp;
}
/*
* Called to check deny when READ with all zero stateid or
* WRITE with all zero or all one stateid
*/
static __be32
nfs4_share_conflict(struct svc_fh *current_fh, unsigned int deny_type)
{
struct nfs4_file *fp;
__be32 ret = nfs_ok;
fp = find_file(&current_fh->fh_handle);
if (!fp)
return ret;
/* Check for conflicting share reservations */
spin_lock(&fp->fi_lock);
if (fp->fi_share_deny & deny_type)
ret = nfserr_locked;
spin_unlock(&fp->fi_lock);
put_nfs4_file(fp);
return ret;
}
static void nfsd4_cb_recall_prepare(struct nfsd4_callback *cb)
{
struct nfs4_delegation *dp = cb_to_delegation(cb);
struct nfsd_net *nn = net_generic(dp->dl_stid.sc_client->net,
nfsd_net_id);
block_delegations(&dp->dl_stid.sc_file->fi_fhandle);
/*
* We can't do this in nfsd_break_deleg_cb because it is
* already holding inode->i_lock.
*
* If the dl_time != 0, then we know that it has already been
* queued for a lease break. Don't queue it again.
*/
spin_lock(&state_lock);
if (dp->dl_time == 0) {
dp->dl_time = get_seconds();
list_add_tail(&dp->dl_recall_lru, &nn->del_recall_lru);
}
spin_unlock(&state_lock);
}
static int nfsd4_cb_recall_done(struct nfsd4_callback *cb,
struct rpc_task *task)
{
struct nfs4_delegation *dp = cb_to_delegation(cb);
if (dp->dl_stid.sc_type == NFS4_CLOSED_DELEG_STID)
return 1;
switch (task->tk_status) {
case 0:
return 1;
case -EBADHANDLE:
case -NFS4ERR_BAD_STATEID:
/*
* Race: client probably got cb_recall before open reply
* granting delegation.
*/
if (dp->dl_retries--) {
rpc_delay(task, 2 * HZ);
return 0;
}
/*FALLTHRU*/
default:
return -1;
}
}
static void nfsd4_cb_recall_release(struct nfsd4_callback *cb)
{
struct nfs4_delegation *dp = cb_to_delegation(cb);
nfs4_put_stid(&dp->dl_stid);
}
static const struct nfsd4_callback_ops nfsd4_cb_recall_ops = {
.prepare = nfsd4_cb_recall_prepare,
.done = nfsd4_cb_recall_done,
.release = nfsd4_cb_recall_release,
};
static void nfsd_break_one_deleg(struct nfs4_delegation *dp)
{
/*
* We're assuming the state code never drops its reference
* without first removing the lease. Since we're in this lease
* callback (and since the lease code is serialized by the kernel
* lock) we know the server hasn't removed the lease yet, we know
* it's safe to take a reference.
*/
refcount_inc(&dp->dl_stid.sc_count);
nfsd4_run_cb(&dp->dl_recall);
}
/* Called from break_lease() with i_lock held. */
static bool
nfsd_break_deleg_cb(struct file_lock *fl)
{
bool ret = false;
struct nfs4_file *fp = (struct nfs4_file *)fl->fl_owner;
struct nfs4_delegation *dp;
if (!fp) {
WARN(1, "(%p)->fl_owner NULL\n", fl);
return ret;
}
if (fp->fi_had_conflict) {
WARN(1, "duplicate break on %p\n", fp);
return ret;
}
/*
* We don't want the locks code to timeout the lease for us;
* we'll remove it ourself if a delegation isn't returned
* in time:
*/
fl->fl_break_time = 0;
spin_lock(&fp->fi_lock);
fp->fi_had_conflict = true;
/*
* If there are no delegations on the list, then return true
* so that the lease code will go ahead and delete it.
*/
if (list_empty(&fp->fi_delegations))
ret = true;
else
list_for_each_entry(dp, &fp->fi_delegations, dl_perfile)
nfsd_break_one_deleg(dp);
spin_unlock(&fp->fi_lock);
return ret;
}
static int
nfsd_change_deleg_cb(struct file_lock *onlist, int arg,
struct list_head *dispose)
{
if (arg & F_UNLCK)
return lease_modify(onlist, arg, dispose);
else
return -EAGAIN;
}
static const struct lock_manager_operations nfsd_lease_mng_ops = {
.lm_break = nfsd_break_deleg_cb,
.lm_change = nfsd_change_deleg_cb,
};
static __be32 nfsd4_check_seqid(struct nfsd4_compound_state *cstate, struct nfs4_stateowner *so, u32 seqid)
{
if (nfsd4_has_session(cstate))
return nfs_ok;
if (seqid == so->so_seqid - 1)
return nfserr_replay_me;
if (seqid == so->so_seqid)
return nfs_ok;
return nfserr_bad_seqid;
}
static __be32 lookup_clientid(clientid_t *clid,
struct nfsd4_compound_state *cstate,
struct nfsd_net *nn)
{
struct nfs4_client *found;
if (cstate->clp) {
found = cstate->clp;
if (!same_clid(&found->cl_clientid, clid))
return nfserr_stale_clientid;
return nfs_ok;
}
if (STALE_CLIENTID(clid, nn))
return nfserr_stale_clientid;
/*
* For v4.1+ we get the client in the SEQUENCE op. If we don't have one
* cached already then we know this is for is for v4.0 and "sessions"
* will be false.
*/
WARN_ON_ONCE(cstate->session);
spin_lock(&nn->client_lock);
found = find_confirmed_client(clid, false, nn);
if (!found) {
spin_unlock(&nn->client_lock);
return nfserr_expired;
}
atomic_inc(&found->cl_refcount);
spin_unlock(&nn->client_lock);
/* Cache the nfs4_client in cstate! */
cstate->clp = found;
return nfs_ok;
}
__be32
nfsd4_process_open1(struct nfsd4_compound_state *cstate,
struct nfsd4_open *open, struct nfsd_net *nn)
{
clientid_t *clientid = &open->op_clientid;
struct nfs4_client *clp = NULL;
unsigned int strhashval;
struct nfs4_openowner *oo = NULL;
__be32 status;
if (STALE_CLIENTID(&open->op_clientid, nn))
return nfserr_stale_clientid;
/*
* In case we need it later, after we've already created the
* file and don't want to risk a further failure:
*/
open->op_file = nfsd4_alloc_file();
if (open->op_file == NULL)
return nfserr_jukebox;
status = lookup_clientid(clientid, cstate, nn);
if (status)
return status;
clp = cstate->clp;
strhashval = ownerstr_hashval(&open->op_owner);
oo = find_openstateowner_str(strhashval, open, clp);
open->op_openowner = oo;
if (!oo) {
goto new_owner;
}
if (!(oo->oo_flags & NFS4_OO_CONFIRMED)) {
/* Replace unconfirmed owners without checking for replay. */
release_openowner(oo);
open->op_openowner = NULL;
goto new_owner;
}
status = nfsd4_check_seqid(cstate, &oo->oo_owner, open->op_seqid);
if (status)
return status;
goto alloc_stateid;
new_owner:
oo = alloc_init_open_stateowner(strhashval, open, cstate);
if (oo == NULL)
return nfserr_jukebox;
open->op_openowner = oo;
alloc_stateid:
open->op_stp = nfs4_alloc_open_stateid(clp);
if (!open->op_stp)
return nfserr_jukebox;
if (nfsd4_has_session(cstate) &&
(cstate->current_fh.fh_export->ex_flags & NFSEXP_PNFS)) {
open->op_odstate = alloc_clnt_odstate(clp);
if (!open->op_odstate)
return nfserr_jukebox;
}
return nfs_ok;
}
static inline __be32
nfs4_check_delegmode(struct nfs4_delegation *dp, int flags)
{
if ((flags & WR_STATE) && (dp->dl_type == NFS4_OPEN_DELEGATE_READ))
return nfserr_openmode;
else
return nfs_ok;
}
static int share_access_to_flags(u32 share_access)
{
return share_access == NFS4_SHARE_ACCESS_READ ? RD_STATE : WR_STATE;
}
static struct nfs4_delegation *find_deleg_stateid(struct nfs4_client *cl, stateid_t *s)
{
struct nfs4_stid *ret;
ret = find_stateid_by_type(cl, s,
NFS4_DELEG_STID|NFS4_REVOKED_DELEG_STID);
if (!ret)
return NULL;
return delegstateid(ret);
}
static bool nfsd4_is_deleg_cur(struct nfsd4_open *open)
{
return open->op_claim_type == NFS4_OPEN_CLAIM_DELEGATE_CUR ||
open->op_claim_type == NFS4_OPEN_CLAIM_DELEG_CUR_FH;
}
static __be32
nfs4_check_deleg(struct nfs4_client *cl, struct nfsd4_open *open,
struct nfs4_delegation **dp)
{
int flags;
__be32 status = nfserr_bad_stateid;
struct nfs4_delegation *deleg;
deleg = find_deleg_stateid(cl, &open->op_delegate_stateid);
if (deleg == NULL)
goto out;
if (deleg->dl_stid.sc_type == NFS4_REVOKED_DELEG_STID) {
nfs4_put_stid(&deleg->dl_stid);
if (cl->cl_minorversion)
status = nfserr_deleg_revoked;
goto out;
}
flags = share_access_to_flags(open->op_share_access);
status = nfs4_check_delegmode(deleg, flags);
if (status) {
nfs4_put_stid(&deleg->dl_stid);
goto out;
}
*dp = deleg;
out:
if (!nfsd4_is_deleg_cur(open))
return nfs_ok;
if (status)
return status;
open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED;
return nfs_ok;
}
static inline int nfs4_access_to_access(u32 nfs4_access)
{
int flags = 0;
if (nfs4_access & NFS4_SHARE_ACCESS_READ)
flags |= NFSD_MAY_READ;
if (nfs4_access & NFS4_SHARE_ACCESS_WRITE)
flags |= NFSD_MAY_WRITE;
return flags;
}
static inline __be32
nfsd4_truncate(struct svc_rqst *rqstp, struct svc_fh *fh,
struct nfsd4_open *open)
{
struct iattr iattr = {
.ia_valid = ATTR_SIZE,
.ia_size = 0,
};
if (!open->op_truncate)
return 0;
if (!(open->op_share_access & NFS4_SHARE_ACCESS_WRITE))
return nfserr_inval;
return nfsd_setattr(rqstp, fh, &iattr, 0, (time_t)0);
}
static __be32 nfs4_get_vfs_file(struct svc_rqst *rqstp, struct nfs4_file *fp,
struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp,
struct nfsd4_open *open)
{
struct file *filp = NULL;
__be32 status;
int oflag = nfs4_access_to_omode(open->op_share_access);
int access = nfs4_access_to_access(open->op_share_access);
unsigned char old_access_bmap, old_deny_bmap;
spin_lock(&fp->fi_lock);
/*
* Are we trying to set a deny mode that would conflict with
* current access?
*/
status = nfs4_file_check_deny(fp, open->op_share_deny);
if (status != nfs_ok) {
spin_unlock(&fp->fi_lock);
goto out;
}
/* set access to the file */
status = nfs4_file_get_access(fp, open->op_share_access);
if (status != nfs_ok) {
spin_unlock(&fp->fi_lock);
goto out;
}
/* Set access bits in stateid */
old_access_bmap = stp->st_access_bmap;
set_access(open->op_share_access, stp);
/* Set new deny mask */
old_deny_bmap = stp->st_deny_bmap;
set_deny(open->op_share_deny, stp);
fp->fi_share_deny |= (open->op_share_deny & NFS4_SHARE_DENY_BOTH);
if (!fp->fi_fds[oflag]) {
spin_unlock(&fp->fi_lock);
status = nfsd_open(rqstp, cur_fh, S_IFREG, access, &filp);
if (status)
goto out_put_access;
spin_lock(&fp->fi_lock);
if (!fp->fi_fds[oflag]) {
fp->fi_fds[oflag] = filp;
filp = NULL;
}
}
spin_unlock(&fp->fi_lock);
if (filp)
fput(filp);
status = nfsd4_truncate(rqstp, cur_fh, open);
if (status)
goto out_put_access;
out:
return status;
out_put_access:
stp->st_access_bmap = old_access_bmap;
nfs4_file_put_access(fp, open->op_share_access);
reset_union_bmap_deny(bmap_to_share_mode(old_deny_bmap), stp);
goto out;
}
static __be32
nfs4_upgrade_open(struct svc_rqst *rqstp, struct nfs4_file *fp, struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp, struct nfsd4_open *open)
{
__be32 status;
unsigned char old_deny_bmap = stp->st_deny_bmap;
if (!test_access(open->op_share_access, stp))
return nfs4_get_vfs_file(rqstp, fp, cur_fh, stp, open);
/* test and set deny mode */
spin_lock(&fp->fi_lock);
status = nfs4_file_check_deny(fp, open->op_share_deny);
if (status == nfs_ok) {
set_deny(open->op_share_deny, stp);
fp->fi_share_deny |=
(open->op_share_deny & NFS4_SHARE_DENY_BOTH);
}
spin_unlock(&fp->fi_lock);
if (status != nfs_ok)
return status;
status = nfsd4_truncate(rqstp, cur_fh, open);
if (status != nfs_ok)
reset_union_bmap_deny(old_deny_bmap, stp);
return status;
}
/* Should we give out recallable state?: */
static bool nfsd4_cb_channel_good(struct nfs4_client *clp)
{
if (clp->cl_cb_state == NFSD4_CB_UP)
return true;
/*
* In the sessions case, since we don't have to establish a
* separate connection for callbacks, we assume it's OK
* until we hear otherwise:
*/
return clp->cl_minorversion && clp->cl_cb_state == NFSD4_CB_UNKNOWN;
}
static struct file_lock *nfs4_alloc_init_lease(struct nfs4_file *fp, int flag)
{
struct file_lock *fl;
fl = locks_alloc_lock();
if (!fl)
return NULL;
fl->fl_lmops = &nfsd_lease_mng_ops;
fl->fl_flags = FL_DELEG;
fl->fl_type = flag == NFS4_OPEN_DELEGATE_READ? F_RDLCK: F_WRLCK;
fl->fl_end = OFFSET_MAX;
fl->fl_owner = (fl_owner_t)fp;
fl->fl_pid = current->tgid;
return fl;
}
/**
* nfs4_setlease - Obtain a delegation by requesting lease from vfs layer
* @dp: a pointer to the nfs4_delegation we're adding.
*
* Return:
* On success: Return code will be 0 on success.
*
* On error: -EAGAIN if there was an existing delegation.
* nonzero if there is an error in other cases.
*
*/
static int nfs4_setlease(struct nfs4_delegation *dp)
{
struct nfs4_file *fp = dp->dl_stid.sc_file;
struct file_lock *fl;
struct file *filp;
int status = 0;
fl = nfs4_alloc_init_lease(fp, NFS4_OPEN_DELEGATE_READ);
if (!fl)
return -ENOMEM;
filp = find_readable_file(fp);
if (!filp) {
/* We should always have a readable file here */
WARN_ON_ONCE(1);
locks_free_lock(fl);
return -EBADF;
}
fl->fl_file = filp;
status = vfs_setlease(filp, fl->fl_type, &fl, NULL);
if (fl)
locks_free_lock(fl);
if (status)
goto out_fput;
spin_lock(&state_lock);
spin_lock(&fp->fi_lock);
/* Did the lease get broken before we took the lock? */
status = -EAGAIN;
if (fp->fi_had_conflict)
goto out_unlock;
/* Race breaker */
if (fp->fi_deleg_file) {
status = hash_delegation_locked(dp, fp);
goto out_unlock;
}
fp->fi_deleg_file = filp;
fp->fi_delegees = 0;
status = hash_delegation_locked(dp, fp);
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
if (status) {
/* Should never happen, this is a new fi_deleg_file */
WARN_ON_ONCE(1);
goto out_fput;
}
return 0;
out_unlock:
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
out_fput:
fput(filp);
return status;
}
static struct nfs4_delegation *
nfs4_set_delegation(struct nfs4_client *clp, struct svc_fh *fh,
struct nfs4_file *fp, struct nfs4_clnt_odstate *odstate)
{
int status;
struct nfs4_delegation *dp;
if (fp->fi_had_conflict)
return ERR_PTR(-EAGAIN);
spin_lock(&state_lock);
spin_lock(&fp->fi_lock);
status = nfs4_get_existing_delegation(clp, fp);
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
if (status)
return ERR_PTR(status);
dp = alloc_init_deleg(clp, fh, odstate);
if (!dp)
return ERR_PTR(-ENOMEM);
get_nfs4_file(fp);
spin_lock(&state_lock);
spin_lock(&fp->fi_lock);
dp->dl_stid.sc_file = fp;
if (!fp->fi_deleg_file) {
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
status = nfs4_setlease(dp);
goto out;
}
if (fp->fi_had_conflict) {
status = -EAGAIN;
goto out_unlock;
}
status = hash_delegation_locked(dp, fp);
out_unlock:
spin_unlock(&fp->fi_lock);
spin_unlock(&state_lock);
out:
if (status) {
put_clnt_odstate(dp->dl_clnt_odstate);
nfs4_put_stid(&dp->dl_stid);
return ERR_PTR(status);
}
return dp;
}
static void nfsd4_open_deleg_none_ext(struct nfsd4_open *open, int status)
{
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
if (status == -EAGAIN)
open->op_why_no_deleg = WND4_CONTENTION;
else {
open->op_why_no_deleg = WND4_RESOURCE;
switch (open->op_deleg_want) {
case NFS4_SHARE_WANT_READ_DELEG:
case NFS4_SHARE_WANT_WRITE_DELEG:
case NFS4_SHARE_WANT_ANY_DELEG:
break;
case NFS4_SHARE_WANT_CANCEL:
open->op_why_no_deleg = WND4_CANCELLED;
break;
case NFS4_SHARE_WANT_NO_DELEG:
WARN_ON_ONCE(1);
}
}
}
/*
* Attempt to hand out a delegation.
*
* Note we don't support write delegations, and won't until the vfs has
* proper support for them.
*/
static void
nfs4_open_delegation(struct svc_fh *fh, struct nfsd4_open *open,
struct nfs4_ol_stateid *stp)
{
struct nfs4_delegation *dp;
struct nfs4_openowner *oo = openowner(stp->st_stateowner);
struct nfs4_client *clp = stp->st_stid.sc_client;
int cb_up;
int status = 0;
cb_up = nfsd4_cb_channel_good(oo->oo_owner.so_client);
open->op_recall = 0;
switch (open->op_claim_type) {
case NFS4_OPEN_CLAIM_PREVIOUS:
if (!cb_up)
open->op_recall = 1;
if (open->op_delegate_type != NFS4_OPEN_DELEGATE_READ)
goto out_no_deleg;
break;
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_FH:
/*
* Let's not give out any delegations till everyone's
* had the chance to reclaim theirs, *and* until
* NLM locks have all been reclaimed:
*/
if (locks_in_grace(clp->net))
goto out_no_deleg;
if (!cb_up || !(oo->oo_flags & NFS4_OO_CONFIRMED))
goto out_no_deleg;
/*
* Also, if the file was opened for write or
* create, there's a good chance the client's
* about to write to it, resulting in an
* immediate recall (since we don't support
* write delegations):
*/
if (open->op_share_access & NFS4_SHARE_ACCESS_WRITE)
goto out_no_deleg;
if (open->op_create == NFS4_OPEN_CREATE)
goto out_no_deleg;
break;
default:
goto out_no_deleg;
}
dp = nfs4_set_delegation(clp, fh, stp->st_stid.sc_file, stp->st_clnt_odstate);
if (IS_ERR(dp))
goto out_no_deleg;
memcpy(&open->op_delegate_stateid, &dp->dl_stid.sc_stateid, sizeof(dp->dl_stid.sc_stateid));
dprintk("NFSD: delegation stateid=" STATEID_FMT "\n",
STATEID_VAL(&dp->dl_stid.sc_stateid));
open->op_delegate_type = NFS4_OPEN_DELEGATE_READ;
nfs4_put_stid(&dp->dl_stid);
return;
out_no_deleg:
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE;
if (open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS &&
open->op_delegate_type != NFS4_OPEN_DELEGATE_NONE) {
dprintk("NFSD: WARNING: refusing delegation reclaim\n");
open->op_recall = 1;
}
/* 4.1 client asking for a delegation? */
if (open->op_deleg_want)
nfsd4_open_deleg_none_ext(open, status);
return;
}
static void nfsd4_deleg_xgrade_none_ext(struct nfsd4_open *open,
struct nfs4_delegation *dp)
{
if (open->op_deleg_want == NFS4_SHARE_WANT_READ_DELEG &&
dp->dl_type == NFS4_OPEN_DELEGATE_WRITE) {
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
open->op_why_no_deleg = WND4_NOT_SUPP_DOWNGRADE;
} else if (open->op_deleg_want == NFS4_SHARE_WANT_WRITE_DELEG &&
dp->dl_type == NFS4_OPEN_DELEGATE_WRITE) {
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
open->op_why_no_deleg = WND4_NOT_SUPP_UPGRADE;
}
/* Otherwise the client must be confused wanting a delegation
* it already has, therefore we don't return
* NFS4_OPEN_DELEGATE_NONE_EXT and reason.
*/
}
__be32
nfsd4_process_open2(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_open *open)
{
struct nfsd4_compoundres *resp = rqstp->rq_resp;
struct nfs4_client *cl = open->op_openowner->oo_owner.so_client;
struct nfs4_file *fp = NULL;
struct nfs4_ol_stateid *stp = NULL;
struct nfs4_delegation *dp = NULL;
__be32 status;
bool new_stp = false;
/*
* Lookup file; if found, lookup stateid and check open request,
* and check for delegations in the process of being recalled.
* If not found, create the nfs4_file struct
*/
fp = find_or_add_file(open->op_file, &current_fh->fh_handle);
if (fp != open->op_file) {
status = nfs4_check_deleg(cl, open, &dp);
if (status)
goto out;
stp = nfsd4_find_and_lock_existing_open(fp, open);
} else {
open->op_file = NULL;
status = nfserr_bad_stateid;
if (nfsd4_is_deleg_cur(open))
goto out;
}
if (!stp) {
stp = init_open_stateid(fp, open);
if (!open->op_stp)
new_stp = true;
}
/*
* OPEN the file, or upgrade an existing OPEN.
* If truncate fails, the OPEN fails.
*
* stp is already locked.
*/
if (!new_stp) {
/* Stateid was found, this is an OPEN upgrade */
status = nfs4_upgrade_open(rqstp, fp, current_fh, stp, open);
if (status) {
mutex_unlock(&stp->st_mutex);
goto out;
}
} else {
status = nfs4_get_vfs_file(rqstp, fp, current_fh, stp, open);
if (status) {
stp->st_stid.sc_type = NFS4_CLOSED_STID;
release_open_stateid(stp);
mutex_unlock(&stp->st_mutex);
goto out;
}
stp->st_clnt_odstate = find_or_hash_clnt_odstate(fp,
open->op_odstate);
if (stp->st_clnt_odstate == open->op_odstate)
open->op_odstate = NULL;
}
nfs4_inc_and_copy_stateid(&open->op_stateid, &stp->st_stid);
mutex_unlock(&stp->st_mutex);
if (nfsd4_has_session(&resp->cstate)) {
if (open->op_deleg_want & NFS4_SHARE_WANT_NO_DELEG) {
open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT;
open->op_why_no_deleg = WND4_NOT_WANTED;
goto nodeleg;
}
}
/*
* Attempt to hand out a delegation. No error return, because the
* OPEN succeeds even if we fail.
*/
nfs4_open_delegation(current_fh, open, stp);
nodeleg:
status = nfs_ok;
dprintk("%s: stateid=" STATEID_FMT "\n", __func__,
STATEID_VAL(&stp->st_stid.sc_stateid));
out:
/* 4.1 client trying to upgrade/downgrade delegation? */
if (open->op_delegate_type == NFS4_OPEN_DELEGATE_NONE && dp &&
open->op_deleg_want)
nfsd4_deleg_xgrade_none_ext(open, dp);
if (fp)
put_nfs4_file(fp);
if (status == 0 && open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS)
open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED;
/*
* To finish the open response, we just need to set the rflags.
*/
open->op_rflags = NFS4_OPEN_RESULT_LOCKTYPE_POSIX;
if (nfsd4_has_session(&resp->cstate))
open->op_rflags |= NFS4_OPEN_RESULT_MAY_NOTIFY_LOCK;
else if (!(open->op_openowner->oo_flags & NFS4_OO_CONFIRMED))
open->op_rflags |= NFS4_OPEN_RESULT_CONFIRM;
if (dp)
nfs4_put_stid(&dp->dl_stid);
if (stp)
nfs4_put_stid(&stp->st_stid);
return status;
}
void nfsd4_cleanup_open_state(struct nfsd4_compound_state *cstate,
struct nfsd4_open *open)
{
if (open->op_openowner) {
struct nfs4_stateowner *so = &open->op_openowner->oo_owner;
nfsd4_cstate_assign_replay(cstate, so);
nfs4_put_stateowner(so);
}
if (open->op_file)
kmem_cache_free(file_slab, open->op_file);
if (open->op_stp)
nfs4_put_stid(&open->op_stp->st_stid);
if (open->op_odstate)
kmem_cache_free(odstate_slab, open->op_odstate);
}
__be32
nfsd4_renew(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
clientid_t *clid = &u->renew;
struct nfs4_client *clp;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("process_renew(%08x/%08x): starting\n",
clid->cl_boot, clid->cl_id);
status = lookup_clientid(clid, cstate, nn);
if (status)
goto out;
clp = cstate->clp;
status = nfserr_cb_path_down;
if (!list_empty(&clp->cl_delegations)
&& clp->cl_cb_state != NFSD4_CB_UP)
goto out;
status = nfs_ok;
out:
return status;
}
void
nfsd4_end_grace(struct nfsd_net *nn)
{
/* do nothing if grace period already ended */
if (nn->grace_ended)
return;
dprintk("NFSD: end of grace period\n");
nn->grace_ended = true;
/*
* If the server goes down again right now, an NFSv4
* client will still be allowed to reclaim after it comes back up,
* even if it hasn't yet had a chance to reclaim state this time.
*
*/
nfsd4_record_grace_done(nn);
/*
* At this point, NFSv4 clients can still reclaim. But if the
* server crashes, any that have not yet reclaimed will be out
* of luck on the next boot.
*
* (NFSv4.1+ clients are considered to have reclaimed once they
* call RECLAIM_COMPLETE. NFSv4.0 clients are considered to
* have reclaimed after their first OPEN.)
*/
locks_end_grace(&nn->nfsd4_manager);
/*
* At this point, and once lockd and/or any other containers
* exit their grace period, further reclaims will fail and
* regular locking can resume.
*/
}
static time_t
nfs4_laundromat(struct nfsd_net *nn)
{
struct nfs4_client *clp;
struct nfs4_openowner *oo;
struct nfs4_delegation *dp;
struct nfs4_ol_stateid *stp;
struct nfsd4_blocked_lock *nbl;
struct list_head *pos, *next, reaplist;
time_t cutoff = get_seconds() - nn->nfsd4_lease;
time_t t, new_timeo = nn->nfsd4_lease;
dprintk("NFSD: laundromat service - starting\n");
nfsd4_end_grace(nn);
INIT_LIST_HEAD(&reaplist);
spin_lock(&nn->client_lock);
list_for_each_safe(pos, next, &nn->client_lru) {
clp = list_entry(pos, struct nfs4_client, cl_lru);
if (time_after((unsigned long)clp->cl_time, (unsigned long)cutoff)) {
t = clp->cl_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
if (mark_client_expired_locked(clp)) {
dprintk("NFSD: client in use (clientid %08x)\n",
clp->cl_clientid.cl_id);
continue;
}
list_add(&clp->cl_lru, &reaplist);
}
spin_unlock(&nn->client_lock);
list_for_each_safe(pos, next, &reaplist) {
clp = list_entry(pos, struct nfs4_client, cl_lru);
dprintk("NFSD: purging unused client (clientid %08x)\n",
clp->cl_clientid.cl_id);
list_del_init(&clp->cl_lru);
expire_client(clp);
}
spin_lock(&state_lock);
list_for_each_safe(pos, next, &nn->del_recall_lru) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
if (time_after((unsigned long)dp->dl_time, (unsigned long)cutoff)) {
t = dp->dl_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
WARN_ON(!unhash_delegation_locked(dp));
list_add(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&state_lock);
while (!list_empty(&reaplist)) {
dp = list_first_entry(&reaplist, struct nfs4_delegation,
dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
revoke_delegation(dp);
}
spin_lock(&nn->client_lock);
while (!list_empty(&nn->close_lru)) {
oo = list_first_entry(&nn->close_lru, struct nfs4_openowner,
oo_close_lru);
if (time_after((unsigned long)oo->oo_time,
(unsigned long)cutoff)) {
t = oo->oo_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
list_del_init(&oo->oo_close_lru);
stp = oo->oo_last_closed_stid;
oo->oo_last_closed_stid = NULL;
spin_unlock(&nn->client_lock);
nfs4_put_stid(&stp->st_stid);
spin_lock(&nn->client_lock);
}
spin_unlock(&nn->client_lock);
/*
* It's possible for a client to try and acquire an already held lock
* that is being held for a long time, and then lose interest in it.
* So, we clean out any un-revisited request after a lease period
* under the assumption that the client is no longer interested.
*
* RFC5661, sec. 9.6 states that the client must not rely on getting
* notifications and must continue to poll for locks, even when the
* server supports them. Thus this shouldn't lead to clients blocking
* indefinitely once the lock does become free.
*/
BUG_ON(!list_empty(&reaplist));
spin_lock(&nn->blocked_locks_lock);
while (!list_empty(&nn->blocked_locks_lru)) {
nbl = list_first_entry(&nn->blocked_locks_lru,
struct nfsd4_blocked_lock, nbl_lru);
if (time_after((unsigned long)nbl->nbl_time,
(unsigned long)cutoff)) {
t = nbl->nbl_time - cutoff;
new_timeo = min(new_timeo, t);
break;
}
list_move(&nbl->nbl_lru, &reaplist);
list_del_init(&nbl->nbl_list);
}
spin_unlock(&nn->blocked_locks_lock);
while (!list_empty(&reaplist)) {
nbl = list_first_entry(&reaplist,
struct nfsd4_blocked_lock, nbl_lru);
list_del_init(&nbl->nbl_lru);
posix_unblock_lock(&nbl->nbl_lock);
free_blocked_lock(nbl);
}
new_timeo = max_t(time_t, new_timeo, NFSD_LAUNDROMAT_MINTIMEOUT);
return new_timeo;
}
static struct workqueue_struct *laundry_wq;
static void laundromat_main(struct work_struct *);
static void
laundromat_main(struct work_struct *laundry)
{
time_t t;
struct delayed_work *dwork = to_delayed_work(laundry);
struct nfsd_net *nn = container_of(dwork, struct nfsd_net,
laundromat_work);
t = nfs4_laundromat(nn);
dprintk("NFSD: laundromat_main - sleeping for %ld seconds\n", t);
queue_delayed_work(laundry_wq, &nn->laundromat_work, t*HZ);
}
static inline __be32 nfs4_check_fh(struct svc_fh *fhp, struct nfs4_stid *stp)
{
if (!fh_match(&fhp->fh_handle, &stp->sc_file->fi_fhandle))
return nfserr_bad_stateid;
return nfs_ok;
}
static inline int
access_permit_read(struct nfs4_ol_stateid *stp)
{
return test_access(NFS4_SHARE_ACCESS_READ, stp) ||
test_access(NFS4_SHARE_ACCESS_BOTH, stp) ||
test_access(NFS4_SHARE_ACCESS_WRITE, stp);
}
static inline int
access_permit_write(struct nfs4_ol_stateid *stp)
{
return test_access(NFS4_SHARE_ACCESS_WRITE, stp) ||
test_access(NFS4_SHARE_ACCESS_BOTH, stp);
}
static
__be32 nfs4_check_openmode(struct nfs4_ol_stateid *stp, int flags)
{
__be32 status = nfserr_openmode;
/* For lock stateid's, we test the parent open, not the lock: */
if (stp->st_openstp)
stp = stp->st_openstp;
if ((flags & WR_STATE) && !access_permit_write(stp))
goto out;
if ((flags & RD_STATE) && !access_permit_read(stp))
goto out;
status = nfs_ok;
out:
return status;
}
static inline __be32
check_special_stateids(struct net *net, svc_fh *current_fh, stateid_t *stateid, int flags)
{
if (ONE_STATEID(stateid) && (flags & RD_STATE))
return nfs_ok;
else if (opens_in_grace(net)) {
/* Answer in remaining cases depends on existence of
* conflicting state; so we must wait out the grace period. */
return nfserr_grace;
} else if (flags & WR_STATE)
return nfs4_share_conflict(current_fh,
NFS4_SHARE_DENY_WRITE);
else /* (flags & RD_STATE) && ZERO_STATEID(stateid) */
return nfs4_share_conflict(current_fh,
NFS4_SHARE_DENY_READ);
}
/*
* Allow READ/WRITE during grace period on recovered state only for files
* that are not able to provide mandatory locking.
*/
static inline int
grace_disallows_io(struct net *net, struct inode *inode)
{
return opens_in_grace(net) && mandatory_lock(inode);
}
static __be32 check_stateid_generation(stateid_t *in, stateid_t *ref, bool has_session)
{
/*
* When sessions are used the stateid generation number is ignored
* when it is zero.
*/
if (has_session && in->si_generation == 0)
return nfs_ok;
if (in->si_generation == ref->si_generation)
return nfs_ok;
/* If the client sends us a stateid from the future, it's buggy: */
if (nfsd4_stateid_generation_after(in, ref))
return nfserr_bad_stateid;
/*
* However, we could see a stateid from the past, even from a
* non-buggy client. For example, if the client sends a lock
* while some IO is outstanding, the lock may bump si_generation
* while the IO is still in flight. The client could avoid that
* situation by waiting for responses on all the IO requests,
* but better performance may result in retrying IO that
* receives an old_stateid error if requests are rarely
* reordered in flight:
*/
return nfserr_old_stateid;
}
static __be32 nfsd4_stid_check_stateid_generation(stateid_t *in, struct nfs4_stid *s, bool has_session)
{
__be32 ret;
spin_lock(&s->sc_lock);
ret = nfsd4_verify_open_stid(s);
if (ret == nfs_ok)
ret = check_stateid_generation(in, &s->sc_stateid, has_session);
spin_unlock(&s->sc_lock);
return ret;
}
static __be32 nfsd4_check_openowner_confirmed(struct nfs4_ol_stateid *ols)
{
if (ols->st_stateowner->so_is_open_owner &&
!(openowner(ols->st_stateowner)->oo_flags & NFS4_OO_CONFIRMED))
return nfserr_bad_stateid;
return nfs_ok;
}
static __be32 nfsd4_validate_stateid(struct nfs4_client *cl, stateid_t *stateid)
{
struct nfs4_stid *s;
__be32 status = nfserr_bad_stateid;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid) ||
CLOSE_STATEID(stateid))
return status;
/* Client debugging aid. */
if (!same_clid(&stateid->si_opaque.so_clid, &cl->cl_clientid)) {
char addr_str[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *)&cl->cl_addr, addr_str,
sizeof(addr_str));
pr_warn_ratelimited("NFSD: client %s testing state ID "
"with incorrect client ID\n", addr_str);
return status;
}
spin_lock(&cl->cl_lock);
s = find_stateid_locked(cl, stateid);
if (!s)
goto out_unlock;
status = nfsd4_stid_check_stateid_generation(stateid, s, 1);
if (status)
goto out_unlock;
switch (s->sc_type) {
case NFS4_DELEG_STID:
status = nfs_ok;
break;
case NFS4_REVOKED_DELEG_STID:
status = nfserr_deleg_revoked;
break;
case NFS4_OPEN_STID:
case NFS4_LOCK_STID:
status = nfsd4_check_openowner_confirmed(openlockstateid(s));
break;
default:
printk("unknown stateid type %x\n", s->sc_type);
/* Fallthrough */
case NFS4_CLOSED_STID:
case NFS4_CLOSED_DELEG_STID:
status = nfserr_bad_stateid;
}
out_unlock:
spin_unlock(&cl->cl_lock);
return status;
}
__be32
nfsd4_lookup_stateid(struct nfsd4_compound_state *cstate,
stateid_t *stateid, unsigned char typemask,
struct nfs4_stid **s, struct nfsd_net *nn)
{
__be32 status;
bool return_revoked = false;
/*
* only return revoked delegations if explicitly asked.
* otherwise we report revoked or bad_stateid status.
*/
if (typemask & NFS4_REVOKED_DELEG_STID)
return_revoked = true;
else if (typemask & NFS4_DELEG_STID)
typemask |= NFS4_REVOKED_DELEG_STID;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid) ||
CLOSE_STATEID(stateid))
return nfserr_bad_stateid;
status = lookup_clientid(&stateid->si_opaque.so_clid, cstate, nn);
if (status == nfserr_stale_clientid) {
if (cstate->session)
return nfserr_bad_stateid;
return nfserr_stale_stateid;
}
if (status)
return status;
*s = find_stateid_by_type(cstate->clp, stateid, typemask);
if (!*s)
return nfserr_bad_stateid;
if (((*s)->sc_type == NFS4_REVOKED_DELEG_STID) && !return_revoked) {
nfs4_put_stid(*s);
if (cstate->minorversion)
return nfserr_deleg_revoked;
return nfserr_bad_stateid;
}
return nfs_ok;
}
static struct file *
nfs4_find_file(struct nfs4_stid *s, int flags)
{
if (!s)
return NULL;
switch (s->sc_type) {
case NFS4_DELEG_STID:
if (WARN_ON_ONCE(!s->sc_file->fi_deleg_file))
return NULL;
return get_file(s->sc_file->fi_deleg_file);
case NFS4_OPEN_STID:
case NFS4_LOCK_STID:
if (flags & RD_STATE)
return find_readable_file(s->sc_file);
else
return find_writeable_file(s->sc_file);
break;
}
return NULL;
}
static __be32
nfs4_check_olstateid(struct svc_fh *fhp, struct nfs4_ol_stateid *ols, int flags)
{
__be32 status;
status = nfsd4_check_openowner_confirmed(ols);
if (status)
return status;
return nfs4_check_openmode(ols, flags);
}
static __be32
nfs4_check_file(struct svc_rqst *rqstp, struct svc_fh *fhp, struct nfs4_stid *s,
struct file **filpp, bool *tmp_file, int flags)
{
int acc = (flags & RD_STATE) ? NFSD_MAY_READ : NFSD_MAY_WRITE;
struct file *file;
__be32 status;
file = nfs4_find_file(s, flags);
if (file) {
status = nfsd_permission(rqstp, fhp->fh_export, fhp->fh_dentry,
acc | NFSD_MAY_OWNER_OVERRIDE);
if (status) {
fput(file);
return status;
}
*filpp = file;
} else {
status = nfsd_open(rqstp, fhp, S_IFREG, acc, filpp);
if (status)
return status;
if (tmp_file)
*tmp_file = true;
}
return 0;
}
/*
* Checks for stateid operations
*/
__be32
nfs4_preprocess_stateid_op(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate, struct svc_fh *fhp,
stateid_t *stateid, int flags, struct file **filpp, bool *tmp_file)
{
struct inode *ino = d_inode(fhp->fh_dentry);
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct nfs4_stid *s = NULL;
__be32 status;
if (filpp)
*filpp = NULL;
if (tmp_file)
*tmp_file = false;
if (grace_disallows_io(net, ino))
return nfserr_grace;
if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) {
status = check_special_stateids(net, fhp, stateid, flags);
goto done;
}
status = nfsd4_lookup_stateid(cstate, stateid,
NFS4_DELEG_STID|NFS4_OPEN_STID|NFS4_LOCK_STID,
&s, nn);
if (status)
return status;
status = nfsd4_stid_check_stateid_generation(stateid, s,
nfsd4_has_session(cstate));
if (status)
goto out;
switch (s->sc_type) {
case NFS4_DELEG_STID:
status = nfs4_check_delegmode(delegstateid(s), flags);
break;
case NFS4_OPEN_STID:
case NFS4_LOCK_STID:
status = nfs4_check_olstateid(fhp, openlockstateid(s), flags);
break;
default:
status = nfserr_bad_stateid;
break;
}
if (status)
goto out;
status = nfs4_check_fh(fhp, s);
done:
if (!status && filpp)
status = nfs4_check_file(rqstp, fhp, s, filpp, tmp_file, flags);
out:
if (s)
nfs4_put_stid(s);
return status;
}
/*
* Test if the stateid is valid
*/
__be32
nfsd4_test_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_test_stateid *test_stateid = &u->test_stateid;
struct nfsd4_test_stateid_id *stateid;
struct nfs4_client *cl = cstate->session->se_client;
list_for_each_entry(stateid, &test_stateid->ts_stateid_list, ts_id_list)
stateid->ts_id_status =
nfsd4_validate_stateid(cl, &stateid->ts_id_stateid);
return nfs_ok;
}
static __be32
nfsd4_free_lock_stateid(stateid_t *stateid, struct nfs4_stid *s)
{
struct nfs4_ol_stateid *stp = openlockstateid(s);
__be32 ret;
ret = nfsd4_lock_ol_stateid(stp);
if (ret)
goto out_put_stid;
ret = check_stateid_generation(stateid, &s->sc_stateid, 1);
if (ret)
goto out;
ret = nfserr_locks_held;
if (check_for_locks(stp->st_stid.sc_file,
lockowner(stp->st_stateowner)))
goto out;
release_lock_stateid(stp);
ret = nfs_ok;
out:
mutex_unlock(&stp->st_mutex);
out_put_stid:
nfs4_put_stid(s);
return ret;
}
__be32
nfsd4_free_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_free_stateid *free_stateid = &u->free_stateid;
stateid_t *stateid = &free_stateid->fr_stateid;
struct nfs4_stid *s;
struct nfs4_delegation *dp;
struct nfs4_client *cl = cstate->session->se_client;
__be32 ret = nfserr_bad_stateid;
spin_lock(&cl->cl_lock);
s = find_stateid_locked(cl, stateid);
if (!s)
goto out_unlock;
spin_lock(&s->sc_lock);
switch (s->sc_type) {
case NFS4_DELEG_STID:
ret = nfserr_locks_held;
break;
case NFS4_OPEN_STID:
ret = check_stateid_generation(stateid, &s->sc_stateid, 1);
if (ret)
break;
ret = nfserr_locks_held;
break;
case NFS4_LOCK_STID:
spin_unlock(&s->sc_lock);
refcount_inc(&s->sc_count);
spin_unlock(&cl->cl_lock);
ret = nfsd4_free_lock_stateid(stateid, s);
goto out;
case NFS4_REVOKED_DELEG_STID:
spin_unlock(&s->sc_lock);
dp = delegstateid(s);
list_del_init(&dp->dl_recall_lru);
spin_unlock(&cl->cl_lock);
nfs4_put_stid(s);
ret = nfs_ok;
goto out;
/* Default falls through and returns nfserr_bad_stateid */
}
spin_unlock(&s->sc_lock);
out_unlock:
spin_unlock(&cl->cl_lock);
out:
return ret;
}
static inline int
setlkflg (int type)
{
return (type == NFS4_READW_LT || type == NFS4_READ_LT) ?
RD_STATE : WR_STATE;
}
static __be32 nfs4_seqid_op_checks(struct nfsd4_compound_state *cstate, stateid_t *stateid, u32 seqid, struct nfs4_ol_stateid *stp)
{
struct svc_fh *current_fh = &cstate->current_fh;
struct nfs4_stateowner *sop = stp->st_stateowner;
__be32 status;
status = nfsd4_check_seqid(cstate, sop, seqid);
if (status)
return status;
status = nfsd4_lock_ol_stateid(stp);
if (status != nfs_ok)
return status;
status = check_stateid_generation(stateid, &stp->st_stid.sc_stateid, nfsd4_has_session(cstate));
if (status == nfs_ok)
status = nfs4_check_fh(current_fh, &stp->st_stid);
if (status != nfs_ok)
mutex_unlock(&stp->st_mutex);
return status;
}
/*
* Checks for sequence id mutating operations.
*/
static __be32
nfs4_preprocess_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid,
stateid_t *stateid, char typemask,
struct nfs4_ol_stateid **stpp,
struct nfsd_net *nn)
{
__be32 status;
struct nfs4_stid *s;
struct nfs4_ol_stateid *stp = NULL;
dprintk("NFSD: %s: seqid=%d stateid = " STATEID_FMT "\n", __func__,
seqid, STATEID_VAL(stateid));
*stpp = NULL;
status = nfsd4_lookup_stateid(cstate, stateid, typemask, &s, nn);
if (status)
return status;
stp = openlockstateid(s);
nfsd4_cstate_assign_replay(cstate, stp->st_stateowner);
status = nfs4_seqid_op_checks(cstate, stateid, seqid, stp);
if (!status)
*stpp = stp;
else
nfs4_put_stid(&stp->st_stid);
return status;
}
static __be32 nfs4_preprocess_confirmed_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid,
stateid_t *stateid, struct nfs4_ol_stateid **stpp, struct nfsd_net *nn)
{
__be32 status;
struct nfs4_openowner *oo;
struct nfs4_ol_stateid *stp;
status = nfs4_preprocess_seqid_op(cstate, seqid, stateid,
NFS4_OPEN_STID, &stp, nn);
if (status)
return status;
oo = openowner(stp->st_stateowner);
if (!(oo->oo_flags & NFS4_OO_CONFIRMED)) {
mutex_unlock(&stp->st_mutex);
nfs4_put_stid(&stp->st_stid);
return nfserr_bad_stateid;
}
*stpp = stp;
return nfs_ok;
}
__be32
nfsd4_open_confirm(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_open_confirm *oc = &u->open_confirm;
__be32 status;
struct nfs4_openowner *oo;
struct nfs4_ol_stateid *stp;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("NFSD: nfsd4_open_confirm on file %pd\n",
cstate->current_fh.fh_dentry);
status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0);
if (status)
return status;
status = nfs4_preprocess_seqid_op(cstate,
oc->oc_seqid, &oc->oc_req_stateid,
NFS4_OPEN_STID, &stp, nn);
if (status)
goto out;
oo = openowner(stp->st_stateowner);
status = nfserr_bad_stateid;
if (oo->oo_flags & NFS4_OO_CONFIRMED) {
mutex_unlock(&stp->st_mutex);
goto put_stateid;
}
oo->oo_flags |= NFS4_OO_CONFIRMED;
nfs4_inc_and_copy_stateid(&oc->oc_resp_stateid, &stp->st_stid);
mutex_unlock(&stp->st_mutex);
dprintk("NFSD: %s: success, seqid=%d stateid=" STATEID_FMT "\n",
__func__, oc->oc_seqid, STATEID_VAL(&stp->st_stid.sc_stateid));
nfsd4_client_record_create(oo->oo_owner.so_client);
status = nfs_ok;
put_stateid:
nfs4_put_stid(&stp->st_stid);
out:
nfsd4_bump_seqid(cstate, status);
return status;
}
static inline void nfs4_stateid_downgrade_bit(struct nfs4_ol_stateid *stp, u32 access)
{
if (!test_access(access, stp))
return;
nfs4_file_put_access(stp->st_stid.sc_file, access);
clear_access(access, stp);
}
static inline void nfs4_stateid_downgrade(struct nfs4_ol_stateid *stp, u32 to_access)
{
switch (to_access) {
case NFS4_SHARE_ACCESS_READ:
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_WRITE);
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH);
break;
case NFS4_SHARE_ACCESS_WRITE:
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_READ);
nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH);
break;
case NFS4_SHARE_ACCESS_BOTH:
break;
default:
WARN_ON_ONCE(1);
}
}
__be32
nfsd4_open_downgrade(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate, union nfsd4_op_u *u)
{
struct nfsd4_open_downgrade *od = &u->open_downgrade;
__be32 status;
struct nfs4_ol_stateid *stp;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("NFSD: nfsd4_open_downgrade on file %pd\n",
cstate->current_fh.fh_dentry);
/* We don't yet support WANT bits: */
if (od->od_deleg_want)
dprintk("NFSD: %s: od_deleg_want=0x%x ignored\n", __func__,
od->od_deleg_want);
status = nfs4_preprocess_confirmed_seqid_op(cstate, od->od_seqid,
&od->od_stateid, &stp, nn);
if (status)
goto out;
status = nfserr_inval;
if (!test_access(od->od_share_access, stp)) {
dprintk("NFSD: access not a subset of current bitmap: 0x%hhx, input access=%08x\n",
stp->st_access_bmap, od->od_share_access);
goto put_stateid;
}
if (!test_deny(od->od_share_deny, stp)) {
dprintk("NFSD: deny not a subset of current bitmap: 0x%hhx, input deny=%08x\n",
stp->st_deny_bmap, od->od_share_deny);
goto put_stateid;
}
nfs4_stateid_downgrade(stp, od->od_share_access);
reset_union_bmap_deny(od->od_share_deny, stp);
nfs4_inc_and_copy_stateid(&od->od_stateid, &stp->st_stid);
status = nfs_ok;
put_stateid:
mutex_unlock(&stp->st_mutex);
nfs4_put_stid(&stp->st_stid);
out:
nfsd4_bump_seqid(cstate, status);
return status;
}
static void nfsd4_close_open_stateid(struct nfs4_ol_stateid *s)
{
struct nfs4_client *clp = s->st_stid.sc_client;
bool unhashed;
LIST_HEAD(reaplist);
spin_lock(&clp->cl_lock);
unhashed = unhash_open_stateid(s, &reaplist);
if (clp->cl_minorversion) {
if (unhashed)
put_ol_stateid_locked(s, &reaplist);
spin_unlock(&clp->cl_lock);
free_ol_stateid_reaplist(&reaplist);
} else {
spin_unlock(&clp->cl_lock);
free_ol_stateid_reaplist(&reaplist);
if (unhashed)
move_to_close_lru(s, clp->net);
}
}
/*
* nfs4_unlock_state() called after encode
*/
__be32
nfsd4_close(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_close *close = &u->close;
__be32 status;
struct nfs4_ol_stateid *stp;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
dprintk("NFSD: nfsd4_close on file %pd\n",
cstate->current_fh.fh_dentry);
status = nfs4_preprocess_seqid_op(cstate, close->cl_seqid,
&close->cl_stateid,
NFS4_OPEN_STID|NFS4_CLOSED_STID,
&stp, nn);
nfsd4_bump_seqid(cstate, status);
if (status)
goto out;
stp->st_stid.sc_type = NFS4_CLOSED_STID;
nfs4_inc_and_copy_stateid(&close->cl_stateid, &stp->st_stid);
nfsd4_close_open_stateid(stp);
mutex_unlock(&stp->st_mutex);
/* See RFC5661 sectionm 18.2.4 */
if (stp->st_stid.sc_client->cl_minorversion)
memcpy(&close->cl_stateid, &close_stateid,
sizeof(close->cl_stateid));
/* put reference from nfs4_preprocess_seqid_op */
nfs4_put_stid(&stp->st_stid);
out:
return status;
}
__be32
nfsd4_delegreturn(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_delegreturn *dr = &u->delegreturn;
struct nfs4_delegation *dp;
stateid_t *stateid = &dr->dr_stateid;
struct nfs4_stid *s;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0)))
return status;
status = nfsd4_lookup_stateid(cstate, stateid, NFS4_DELEG_STID, &s, nn);
if (status)
goto out;
dp = delegstateid(s);
status = nfsd4_stid_check_stateid_generation(stateid, &dp->dl_stid, nfsd4_has_session(cstate));
if (status)
goto put_stateid;
destroy_delegation(dp);
put_stateid:
nfs4_put_stid(&dp->dl_stid);
out:
return status;
}
static inline u64
end_offset(u64 start, u64 len)
{
u64 end;
end = start + len;
return end >= start ? end: NFS4_MAX_UINT64;
}
/* last octet in a range */
static inline u64
last_byte_offset(u64 start, u64 len)
{
u64 end;
WARN_ON_ONCE(!len);
end = start + len;
return end > start ? end - 1: NFS4_MAX_UINT64;
}
/*
* TODO: Linux file offsets are _signed_ 64-bit quantities, which means that
* we can't properly handle lock requests that go beyond the (2^63 - 1)-th
* byte, because of sign extension problems. Since NFSv4 calls for 64-bit
* locking, this prevents us from being completely protocol-compliant. The
* real solution to this problem is to start using unsigned file offsets in
* the VFS, but this is a very deep change!
*/
static inline void
nfs4_transform_lock_offset(struct file_lock *lock)
{
if (lock->fl_start < 0)
lock->fl_start = OFFSET_MAX;
if (lock->fl_end < 0)
lock->fl_end = OFFSET_MAX;
}
static fl_owner_t
nfsd4_fl_get_owner(fl_owner_t owner)
{
struct nfs4_lockowner *lo = (struct nfs4_lockowner *)owner;
nfs4_get_stateowner(&lo->lo_owner);
return owner;
}
static void
nfsd4_fl_put_owner(fl_owner_t owner)
{
struct nfs4_lockowner *lo = (struct nfs4_lockowner *)owner;
if (lo)
nfs4_put_stateowner(&lo->lo_owner);
}
static void
nfsd4_lm_notify(struct file_lock *fl)
{
struct nfs4_lockowner *lo = (struct nfs4_lockowner *)fl->fl_owner;
struct net *net = lo->lo_owner.so_client->net;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct nfsd4_blocked_lock *nbl = container_of(fl,
struct nfsd4_blocked_lock, nbl_lock);
bool queue = false;
/* An empty list means that something else is going to be using it */
spin_lock(&nn->blocked_locks_lock);
if (!list_empty(&nbl->nbl_list)) {
list_del_init(&nbl->nbl_list);
list_del_init(&nbl->nbl_lru);
queue = true;
}
spin_unlock(&nn->blocked_locks_lock);
if (queue)
nfsd4_run_cb(&nbl->nbl_cb);
}
static const struct lock_manager_operations nfsd_posix_mng_ops = {
.lm_notify = nfsd4_lm_notify,
.lm_get_owner = nfsd4_fl_get_owner,
.lm_put_owner = nfsd4_fl_put_owner,
};
static inline void
nfs4_set_lock_denied(struct file_lock *fl, struct nfsd4_lock_denied *deny)
{
struct nfs4_lockowner *lo;
if (fl->fl_lmops == &nfsd_posix_mng_ops) {
lo = (struct nfs4_lockowner *) fl->fl_owner;
deny->ld_owner.data = kmemdup(lo->lo_owner.so_owner.data,
lo->lo_owner.so_owner.len, GFP_KERNEL);
if (!deny->ld_owner.data)
/* We just don't care that much */
goto nevermind;
deny->ld_owner.len = lo->lo_owner.so_owner.len;
deny->ld_clientid = lo->lo_owner.so_client->cl_clientid;
} else {
nevermind:
deny->ld_owner.len = 0;
deny->ld_owner.data = NULL;
deny->ld_clientid.cl_boot = 0;
deny->ld_clientid.cl_id = 0;
}
deny->ld_start = fl->fl_start;
deny->ld_length = NFS4_MAX_UINT64;
if (fl->fl_end != NFS4_MAX_UINT64)
deny->ld_length = fl->fl_end - fl->fl_start + 1;
deny->ld_type = NFS4_READ_LT;
if (fl->fl_type != F_RDLCK)
deny->ld_type = NFS4_WRITE_LT;
}
static struct nfs4_lockowner *
find_lockowner_str_locked(struct nfs4_client *clp, struct xdr_netobj *owner)
{
unsigned int strhashval = ownerstr_hashval(owner);
struct nfs4_stateowner *so;
lockdep_assert_held(&clp->cl_lock);
list_for_each_entry(so, &clp->cl_ownerstr_hashtbl[strhashval],
so_strhash) {
if (so->so_is_open_owner)
continue;
if (same_owner_str(so, owner))
return lockowner(nfs4_get_stateowner(so));
}
return NULL;
}
static struct nfs4_lockowner *
find_lockowner_str(struct nfs4_client *clp, struct xdr_netobj *owner)
{
struct nfs4_lockowner *lo;
spin_lock(&clp->cl_lock);
lo = find_lockowner_str_locked(clp, owner);
spin_unlock(&clp->cl_lock);
return lo;
}
static void nfs4_unhash_lockowner(struct nfs4_stateowner *sop)
{
unhash_lockowner_locked(lockowner(sop));
}
static void nfs4_free_lockowner(struct nfs4_stateowner *sop)
{
struct nfs4_lockowner *lo = lockowner(sop);
kmem_cache_free(lockowner_slab, lo);
}
static const struct nfs4_stateowner_operations lockowner_ops = {
.so_unhash = nfs4_unhash_lockowner,
.so_free = nfs4_free_lockowner,
};
/*
* Alloc a lock owner structure.
* Called in nfsd4_lock - therefore, OPEN and OPEN_CONFIRM (if needed) has
* occurred.
*
* strhashval = ownerstr_hashval
*/
static struct nfs4_lockowner *
alloc_init_lock_stateowner(unsigned int strhashval, struct nfs4_client *clp,
struct nfs4_ol_stateid *open_stp,
struct nfsd4_lock *lock)
{
struct nfs4_lockowner *lo, *ret;
lo = alloc_stateowner(lockowner_slab, &lock->lk_new_owner, clp);
if (!lo)
return NULL;
INIT_LIST_HEAD(&lo->lo_blocked);
INIT_LIST_HEAD(&lo->lo_owner.so_stateids);
lo->lo_owner.so_is_open_owner = 0;
lo->lo_owner.so_seqid = lock->lk_new_lock_seqid;
lo->lo_owner.so_ops = &lockowner_ops;
spin_lock(&clp->cl_lock);
ret = find_lockowner_str_locked(clp, &lock->lk_new_owner);
if (ret == NULL) {
list_add(&lo->lo_owner.so_strhash,
&clp->cl_ownerstr_hashtbl[strhashval]);
ret = lo;
} else
nfs4_free_stateowner(&lo->lo_owner);
spin_unlock(&clp->cl_lock);
return ret;
}
static struct nfs4_ol_stateid *
find_lock_stateid(struct nfs4_lockowner *lo, struct nfs4_file *fp)
{
struct nfs4_ol_stateid *lst;
struct nfs4_client *clp = lo->lo_owner.so_client;
lockdep_assert_held(&clp->cl_lock);
list_for_each_entry(lst, &lo->lo_owner.so_stateids, st_perstateowner) {
if (lst->st_stid.sc_type != NFS4_LOCK_STID)
continue;
if (lst->st_stid.sc_file == fp) {
refcount_inc(&lst->st_stid.sc_count);
return lst;
}
}
return NULL;
}
static struct nfs4_ol_stateid *
init_lock_stateid(struct nfs4_ol_stateid *stp, struct nfs4_lockowner *lo,
struct nfs4_file *fp, struct inode *inode,
struct nfs4_ol_stateid *open_stp)
{
struct nfs4_client *clp = lo->lo_owner.so_client;
struct nfs4_ol_stateid *retstp;
mutex_init(&stp->st_mutex);
mutex_lock_nested(&stp->st_mutex, OPEN_STATEID_MUTEX);
retry:
spin_lock(&clp->cl_lock);
spin_lock(&fp->fi_lock);
retstp = find_lock_stateid(lo, fp);
if (retstp)
goto out_unlock;
refcount_inc(&stp->st_stid.sc_count);
stp->st_stid.sc_type = NFS4_LOCK_STID;
stp->st_stateowner = nfs4_get_stateowner(&lo->lo_owner);
get_nfs4_file(fp);
stp->st_stid.sc_file = fp;
stp->st_access_bmap = 0;
stp->st_deny_bmap = open_stp->st_deny_bmap;
stp->st_openstp = open_stp;
list_add(&stp->st_locks, &open_stp->st_locks);
list_add(&stp->st_perstateowner, &lo->lo_owner.so_stateids);
list_add(&stp->st_perfile, &fp->fi_stateids);
out_unlock:
spin_unlock(&fp->fi_lock);
spin_unlock(&clp->cl_lock);
if (retstp) {
if (nfsd4_lock_ol_stateid(retstp) != nfs_ok) {
nfs4_put_stid(&retstp->st_stid);
goto retry;
}
/* To keep mutex tracking happy */
mutex_unlock(&stp->st_mutex);
stp = retstp;
}
return stp;
}
static struct nfs4_ol_stateid *
find_or_create_lock_stateid(struct nfs4_lockowner *lo, struct nfs4_file *fi,
struct inode *inode, struct nfs4_ol_stateid *ost,
bool *new)
{
struct nfs4_stid *ns = NULL;
struct nfs4_ol_stateid *lst;
struct nfs4_openowner *oo = openowner(ost->st_stateowner);
struct nfs4_client *clp = oo->oo_owner.so_client;
*new = false;
spin_lock(&clp->cl_lock);
lst = find_lock_stateid(lo, fi);
spin_unlock(&clp->cl_lock);
if (lst != NULL) {
if (nfsd4_lock_ol_stateid(lst) == nfs_ok)
goto out;
nfs4_put_stid(&lst->st_stid);
}
ns = nfs4_alloc_stid(clp, stateid_slab, nfs4_free_lock_stateid);
if (ns == NULL)
return NULL;
lst = init_lock_stateid(openlockstateid(ns), lo, fi, inode, ost);
if (lst == openlockstateid(ns))
*new = true;
else
nfs4_put_stid(ns);
out:
return lst;
}
static int
check_lock_length(u64 offset, u64 length)
{
return ((length == 0) || ((length != NFS4_MAX_UINT64) &&
(length > ~offset)));
}
static void get_lock_access(struct nfs4_ol_stateid *lock_stp, u32 access)
{
struct nfs4_file *fp = lock_stp->st_stid.sc_file;
lockdep_assert_held(&fp->fi_lock);
if (test_access(access, lock_stp))
return;
__nfs4_file_get_access(fp, access);
set_access(access, lock_stp);
}
static __be32
lookup_or_create_lock_state(struct nfsd4_compound_state *cstate,
struct nfs4_ol_stateid *ost,
struct nfsd4_lock *lock,
struct nfs4_ol_stateid **plst, bool *new)
{
__be32 status;
struct nfs4_file *fi = ost->st_stid.sc_file;
struct nfs4_openowner *oo = openowner(ost->st_stateowner);
struct nfs4_client *cl = oo->oo_owner.so_client;
struct inode *inode = d_inode(cstate->current_fh.fh_dentry);
struct nfs4_lockowner *lo;
struct nfs4_ol_stateid *lst;
unsigned int strhashval;
lo = find_lockowner_str(cl, &lock->lk_new_owner);
if (!lo) {
strhashval = ownerstr_hashval(&lock->lk_new_owner);
lo = alloc_init_lock_stateowner(strhashval, cl, ost, lock);
if (lo == NULL)
return nfserr_jukebox;
} else {
/* with an existing lockowner, seqids must be the same */
status = nfserr_bad_seqid;
if (!cstate->minorversion &&
lock->lk_new_lock_seqid != lo->lo_owner.so_seqid)
goto out;
}
lst = find_or_create_lock_stateid(lo, fi, inode, ost, new);
if (lst == NULL) {
status = nfserr_jukebox;
goto out;
}
status = nfs_ok;
*plst = lst;
out:
nfs4_put_stateowner(&lo->lo_owner);
return status;
}
/*
* LOCK operation
*/
__be32
nfsd4_lock(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_lock *lock = &u->lock;
struct nfs4_openowner *open_sop = NULL;
struct nfs4_lockowner *lock_sop = NULL;
struct nfs4_ol_stateid *lock_stp = NULL;
struct nfs4_ol_stateid *open_stp = NULL;
struct nfs4_file *fp;
struct file *filp = NULL;
struct nfsd4_blocked_lock *nbl = NULL;
struct file_lock *file_lock = NULL;
struct file_lock *conflock = NULL;
__be32 status = 0;
int lkflg;
int err;
bool new = false;
unsigned char fl_type;
unsigned int fl_flags = FL_POSIX;
struct net *net = SVC_NET(rqstp);
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
dprintk("NFSD: nfsd4_lock: start=%Ld length=%Ld\n",
(long long) lock->lk_offset,
(long long) lock->lk_length);
if (check_lock_length(lock->lk_offset, lock->lk_length))
return nfserr_inval;
if ((status = fh_verify(rqstp, &cstate->current_fh,
S_IFREG, NFSD_MAY_LOCK))) {
dprintk("NFSD: nfsd4_lock: permission denied!\n");
return status;
}
if (lock->lk_is_new) {
if (nfsd4_has_session(cstate))
/* See rfc 5661 18.10.3: given clientid is ignored: */
memcpy(&lock->lk_new_clientid,
&cstate->session->se_client->cl_clientid,
sizeof(clientid_t));
status = nfserr_stale_clientid;
if (STALE_CLIENTID(&lock->lk_new_clientid, nn))
goto out;
/* validate and update open stateid and open seqid */
status = nfs4_preprocess_confirmed_seqid_op(cstate,
lock->lk_new_open_seqid,
&lock->lk_new_open_stateid,
&open_stp, nn);
if (status)
goto out;
mutex_unlock(&open_stp->st_mutex);
open_sop = openowner(open_stp->st_stateowner);
status = nfserr_bad_stateid;
if (!same_clid(&open_sop->oo_owner.so_client->cl_clientid,
&lock->lk_new_clientid))
goto out;
status = lookup_or_create_lock_state(cstate, open_stp, lock,
&lock_stp, &new);
} else {
status = nfs4_preprocess_seqid_op(cstate,
lock->lk_old_lock_seqid,
&lock->lk_old_lock_stateid,
NFS4_LOCK_STID, &lock_stp, nn);
}
if (status)
goto out;
lock_sop = lockowner(lock_stp->st_stateowner);
lkflg = setlkflg(lock->lk_type);
status = nfs4_check_openmode(lock_stp, lkflg);
if (status)
goto out;
status = nfserr_grace;
if (locks_in_grace(net) && !lock->lk_reclaim)
goto out;
status = nfserr_no_grace;
if (!locks_in_grace(net) && lock->lk_reclaim)
goto out;
fp = lock_stp->st_stid.sc_file;
switch (lock->lk_type) {
case NFS4_READW_LT:
if (nfsd4_has_session(cstate))
fl_flags |= FL_SLEEP;
/* Fallthrough */
case NFS4_READ_LT:
spin_lock(&fp->fi_lock);
filp = find_readable_file_locked(fp);
if (filp)
get_lock_access(lock_stp, NFS4_SHARE_ACCESS_READ);
spin_unlock(&fp->fi_lock);
fl_type = F_RDLCK;
break;
case NFS4_WRITEW_LT:
if (nfsd4_has_session(cstate))
fl_flags |= FL_SLEEP;
/* Fallthrough */
case NFS4_WRITE_LT:
spin_lock(&fp->fi_lock);
filp = find_writeable_file_locked(fp);
if (filp)
get_lock_access(lock_stp, NFS4_SHARE_ACCESS_WRITE);
spin_unlock(&fp->fi_lock);
fl_type = F_WRLCK;
break;
default:
status = nfserr_inval;
goto out;
}
if (!filp) {
status = nfserr_openmode;
goto out;
}
nbl = find_or_allocate_block(lock_sop, &fp->fi_fhandle, nn);
if (!nbl) {
dprintk("NFSD: %s: unable to allocate block!\n", __func__);
status = nfserr_jukebox;
goto out;
}
file_lock = &nbl->nbl_lock;
file_lock->fl_type = fl_type;
file_lock->fl_owner = (fl_owner_t)lockowner(nfs4_get_stateowner(&lock_sop->lo_owner));
file_lock->fl_pid = current->tgid;
file_lock->fl_file = filp;
file_lock->fl_flags = fl_flags;
file_lock->fl_lmops = &nfsd_posix_mng_ops;
file_lock->fl_start = lock->lk_offset;
file_lock->fl_end = last_byte_offset(lock->lk_offset, lock->lk_length);
nfs4_transform_lock_offset(file_lock);
conflock = locks_alloc_lock();
if (!conflock) {
dprintk("NFSD: %s: unable to allocate lock!\n", __func__);
status = nfserr_jukebox;
goto out;
}
if (fl_flags & FL_SLEEP) {
nbl->nbl_time = jiffies;
spin_lock(&nn->blocked_locks_lock);
list_add_tail(&nbl->nbl_list, &lock_sop->lo_blocked);
list_add_tail(&nbl->nbl_lru, &nn->blocked_locks_lru);
spin_unlock(&nn->blocked_locks_lock);
}
err = vfs_lock_file(filp, F_SETLK, file_lock, conflock);
switch (err) {
case 0: /* success! */
nfs4_inc_and_copy_stateid(&lock->lk_resp_stateid, &lock_stp->st_stid);
status = 0;
break;
case FILE_LOCK_DEFERRED:
nbl = NULL;
/* Fallthrough */
case -EAGAIN: /* conflock holds conflicting lock */
status = nfserr_denied;
dprintk("NFSD: nfsd4_lock: conflicting lock found!\n");
nfs4_set_lock_denied(conflock, &lock->lk_denied);
break;
case -EDEADLK:
status = nfserr_deadlock;
break;
default:
dprintk("NFSD: nfsd4_lock: vfs_lock_file() failed! status %d\n",err);
status = nfserrno(err);
break;
}
out:
if (nbl) {
/* dequeue it if we queued it before */
if (fl_flags & FL_SLEEP) {
spin_lock(&nn->blocked_locks_lock);
list_del_init(&nbl->nbl_list);
list_del_init(&nbl->nbl_lru);
spin_unlock(&nn->blocked_locks_lock);
}
free_blocked_lock(nbl);
}
if (filp)
fput(filp);
if (lock_stp) {
/* Bump seqid manually if the 4.0 replay owner is openowner */
if (cstate->replay_owner &&
cstate->replay_owner != &lock_sop->lo_owner &&
seqid_mutating_err(ntohl(status)))
lock_sop->lo_owner.so_seqid++;
/*
* If this is a new, never-before-used stateid, and we are
* returning an error, then just go ahead and release it.
*/
if (status && new)
release_lock_stateid(lock_stp);
mutex_unlock(&lock_stp->st_mutex);
nfs4_put_stid(&lock_stp->st_stid);
}
if (open_stp)
nfs4_put_stid(&open_stp->st_stid);
nfsd4_bump_seqid(cstate, status);
if (conflock)
locks_free_lock(conflock);
return status;
}
/*
* The NFSv4 spec allows a client to do a LOCKT without holding an OPEN,
* so we do a temporary open here just to get an open file to pass to
* vfs_test_lock. (Arguably perhaps test_lock should be done with an
* inode operation.)
*/
static __be32 nfsd_test_lock(struct svc_rqst *rqstp, struct svc_fh *fhp, struct file_lock *lock)
{
struct file *file;
__be32 err = nfsd_open(rqstp, fhp, S_IFREG, NFSD_MAY_READ, &file);
if (!err) {
err = nfserrno(vfs_test_lock(file, lock));
fput(file);
}
return err;
}
/*
* LOCKT operation
*/
__be32
nfsd4_lockt(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_lockt *lockt = &u->lockt;
struct file_lock *file_lock = NULL;
struct nfs4_lockowner *lo = NULL;
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
if (locks_in_grace(SVC_NET(rqstp)))
return nfserr_grace;
if (check_lock_length(lockt->lt_offset, lockt->lt_length))
return nfserr_inval;
if (!nfsd4_has_session(cstate)) {
status = lookup_clientid(&lockt->lt_clientid, cstate, nn);
if (status)
goto out;
}
if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0)))
goto out;
file_lock = locks_alloc_lock();
if (!file_lock) {
dprintk("NFSD: %s: unable to allocate lock!\n", __func__);
status = nfserr_jukebox;
goto out;
}
switch (lockt->lt_type) {
case NFS4_READ_LT:
case NFS4_READW_LT:
file_lock->fl_type = F_RDLCK;
break;
case NFS4_WRITE_LT:
case NFS4_WRITEW_LT:
file_lock->fl_type = F_WRLCK;
break;
default:
dprintk("NFSD: nfs4_lockt: bad lock type!\n");
status = nfserr_inval;
goto out;
}
lo = find_lockowner_str(cstate->clp, &lockt->lt_owner);
if (lo)
file_lock->fl_owner = (fl_owner_t)lo;
file_lock->fl_pid = current->tgid;
file_lock->fl_flags = FL_POSIX;
file_lock->fl_start = lockt->lt_offset;
file_lock->fl_end = last_byte_offset(lockt->lt_offset, lockt->lt_length);
nfs4_transform_lock_offset(file_lock);
status = nfsd_test_lock(rqstp, &cstate->current_fh, file_lock);
if (status)
goto out;
if (file_lock->fl_type != F_UNLCK) {
status = nfserr_denied;
nfs4_set_lock_denied(file_lock, &lockt->lt_denied);
}
out:
if (lo)
nfs4_put_stateowner(&lo->lo_owner);
if (file_lock)
locks_free_lock(file_lock);
return status;
}
__be32
nfsd4_locku(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_locku *locku = &u->locku;
struct nfs4_ol_stateid *stp;
struct file *filp = NULL;
struct file_lock *file_lock = NULL;
__be32 status;
int err;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
dprintk("NFSD: nfsd4_locku: start=%Ld length=%Ld\n",
(long long) locku->lu_offset,
(long long) locku->lu_length);
if (check_lock_length(locku->lu_offset, locku->lu_length))
return nfserr_inval;
status = nfs4_preprocess_seqid_op(cstate, locku->lu_seqid,
&locku->lu_stateid, NFS4_LOCK_STID,
&stp, nn);
if (status)
goto out;
filp = find_any_file(stp->st_stid.sc_file);
if (!filp) {
status = nfserr_lock_range;
goto put_stateid;
}
file_lock = locks_alloc_lock();
if (!file_lock) {
dprintk("NFSD: %s: unable to allocate lock!\n", __func__);
status = nfserr_jukebox;
goto fput;
}
file_lock->fl_type = F_UNLCK;
file_lock->fl_owner = (fl_owner_t)lockowner(nfs4_get_stateowner(stp->st_stateowner));
file_lock->fl_pid = current->tgid;
file_lock->fl_file = filp;
file_lock->fl_flags = FL_POSIX;
file_lock->fl_lmops = &nfsd_posix_mng_ops;
file_lock->fl_start = locku->lu_offset;
file_lock->fl_end = last_byte_offset(locku->lu_offset,
locku->lu_length);
nfs4_transform_lock_offset(file_lock);
err = vfs_lock_file(filp, F_SETLK, file_lock, NULL);
if (err) {
dprintk("NFSD: nfs4_locku: vfs_lock_file failed!\n");
goto out_nfserr;
}
nfs4_inc_and_copy_stateid(&locku->lu_stateid, &stp->st_stid);
fput:
fput(filp);
put_stateid:
mutex_unlock(&stp->st_mutex);
nfs4_put_stid(&stp->st_stid);
out:
nfsd4_bump_seqid(cstate, status);
if (file_lock)
locks_free_lock(file_lock);
return status;
out_nfserr:
status = nfserrno(err);
goto fput;
}
/*
* returns
* true: locks held by lockowner
* false: no locks held by lockowner
*/
static bool
check_for_locks(struct nfs4_file *fp, struct nfs4_lockowner *lowner)
{
struct file_lock *fl;
int status = false;
struct file *filp = find_any_file(fp);
struct inode *inode;
struct file_lock_context *flctx;
if (!filp) {
/* Any valid lock stateid should have some sort of access */
WARN_ON_ONCE(1);
return status;
}
inode = file_inode(filp);
flctx = inode->i_flctx;
if (flctx && !list_empty_careful(&flctx->flc_posix)) {
spin_lock(&flctx->flc_lock);
list_for_each_entry(fl, &flctx->flc_posix, fl_list) {
if (fl->fl_owner == (fl_owner_t)lowner) {
status = true;
break;
}
}
spin_unlock(&flctx->flc_lock);
}
fput(filp);
return status;
}
__be32
nfsd4_release_lockowner(struct svc_rqst *rqstp,
struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
struct nfsd4_release_lockowner *rlockowner = &u->release_lockowner;
clientid_t *clid = &rlockowner->rl_clientid;
struct nfs4_stateowner *sop;
struct nfs4_lockowner *lo = NULL;
struct nfs4_ol_stateid *stp;
struct xdr_netobj *owner = &rlockowner->rl_owner;
unsigned int hashval = ownerstr_hashval(owner);
__be32 status;
struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
struct nfs4_client *clp;
LIST_HEAD (reaplist);
dprintk("nfsd4_release_lockowner clientid: (%08x/%08x):\n",
clid->cl_boot, clid->cl_id);
status = lookup_clientid(clid, cstate, nn);
if (status)
return status;
clp = cstate->clp;
/* Find the matching lock stateowner */
spin_lock(&clp->cl_lock);
list_for_each_entry(sop, &clp->cl_ownerstr_hashtbl[hashval],
so_strhash) {
if (sop->so_is_open_owner || !same_owner_str(sop, owner))
continue;
/* see if there are still any locks associated with it */
lo = lockowner(sop);
list_for_each_entry(stp, &sop->so_stateids, st_perstateowner) {
if (check_for_locks(stp->st_stid.sc_file, lo)) {
status = nfserr_locks_held;
spin_unlock(&clp->cl_lock);
return status;
}
}
nfs4_get_stateowner(sop);
break;
}
if (!lo) {
spin_unlock(&clp->cl_lock);
return status;
}
unhash_lockowner_locked(lo);
while (!list_empty(&lo->lo_owner.so_stateids)) {
stp = list_first_entry(&lo->lo_owner.so_stateids,
struct nfs4_ol_stateid,
st_perstateowner);
WARN_ON(!unhash_lock_stateid(stp));
put_ol_stateid_locked(stp, &reaplist);
}
spin_unlock(&clp->cl_lock);
free_ol_stateid_reaplist(&reaplist);
nfs4_put_stateowner(&lo->lo_owner);
return status;
}
static inline struct nfs4_client_reclaim *
alloc_reclaim(void)
{
return kmalloc(sizeof(struct nfs4_client_reclaim), GFP_KERNEL);
}
bool
nfs4_has_reclaimed_state(const char *name, struct nfsd_net *nn)
{
struct nfs4_client_reclaim *crp;
crp = nfsd4_find_reclaim_client(name, nn);
return (crp && crp->cr_clp);
}
/*
* failure => all reset bets are off, nfserr_no_grace...
*/
struct nfs4_client_reclaim *
nfs4_client_to_reclaim(const char *name, struct nfsd_net *nn)
{
unsigned int strhashval;
struct nfs4_client_reclaim *crp;
dprintk("NFSD nfs4_client_to_reclaim NAME: %.*s\n", HEXDIR_LEN, name);
crp = alloc_reclaim();
if (crp) {
strhashval = clientstr_hashval(name);
INIT_LIST_HEAD(&crp->cr_strhash);
list_add(&crp->cr_strhash, &nn->reclaim_str_hashtbl[strhashval]);
memcpy(crp->cr_recdir, name, HEXDIR_LEN);
crp->cr_clp = NULL;
nn->reclaim_str_hashtbl_size++;
}
return crp;
}
void
nfs4_remove_reclaim_record(struct nfs4_client_reclaim *crp, struct nfsd_net *nn)
{
list_del(&crp->cr_strhash);
kfree(crp);
nn->reclaim_str_hashtbl_size--;
}
void
nfs4_release_reclaim(struct nfsd_net *nn)
{
struct nfs4_client_reclaim *crp = NULL;
int i;
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&nn->reclaim_str_hashtbl[i])) {
crp = list_entry(nn->reclaim_str_hashtbl[i].next,
struct nfs4_client_reclaim, cr_strhash);
nfs4_remove_reclaim_record(crp, nn);
}
}
WARN_ON_ONCE(nn->reclaim_str_hashtbl_size);
}
/*
* called from OPEN, CLAIM_PREVIOUS with a new clientid. */
struct nfs4_client_reclaim *
nfsd4_find_reclaim_client(const char *recdir, struct nfsd_net *nn)
{
unsigned int strhashval;
struct nfs4_client_reclaim *crp = NULL;
dprintk("NFSD: nfs4_find_reclaim_client for recdir %s\n", recdir);
strhashval = clientstr_hashval(recdir);
list_for_each_entry(crp, &nn->reclaim_str_hashtbl[strhashval], cr_strhash) {
if (same_name(crp->cr_recdir, recdir)) {
return crp;
}
}
return NULL;
}
/*
* Called from OPEN. Look for clientid in reclaim list.
*/
__be32
nfs4_check_open_reclaim(clientid_t *clid,
struct nfsd4_compound_state *cstate,
struct nfsd_net *nn)
{
__be32 status;
/* find clientid in conf_id_hashtbl */
status = lookup_clientid(clid, cstate, nn);
if (status)
return nfserr_reclaim_bad;
if (test_bit(NFSD4_CLIENT_RECLAIM_COMPLETE, &cstate->clp->cl_flags))
return nfserr_no_grace;
if (nfsd4_client_record_check(cstate->clp))
return nfserr_reclaim_bad;
return nfs_ok;
}
#ifdef CONFIG_NFSD_FAULT_INJECTION
static inline void
put_client(struct nfs4_client *clp)
{
atomic_dec(&clp->cl_refcount);
}
static struct nfs4_client *
nfsd_find_client(struct sockaddr_storage *addr, size_t addr_size)
{
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!nfsd_netns_ready(nn))
return NULL;
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
if (memcmp(&clp->cl_addr, addr, addr_size) == 0)
return clp;
}
return NULL;
}
u64
nfsd_inject_print_clients(void)
{
struct nfs4_client *clp;
u64 count = 0;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
char buf[INET6_ADDRSTRLEN];
if (!nfsd_netns_ready(nn))
return 0;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
rpc_ntop((struct sockaddr *)&clp->cl_addr, buf, sizeof(buf));
pr_info("NFS Client: %s\n", buf);
++count;
}
spin_unlock(&nn->client_lock);
return count;
}
u64
nfsd_inject_forget_client(struct sockaddr_storage *addr, size_t addr_size)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
clp = nfsd_find_client(addr, addr_size);
if (clp) {
if (mark_client_expired_locked(clp) == nfs_ok)
++count;
else
clp = NULL;
}
spin_unlock(&nn->client_lock);
if (clp)
expire_client(clp);
return count;
}
u64
nfsd_inject_forget_clients(u64 max)
{
u64 count = 0;
struct nfs4_client *clp, *next;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
list_for_each_entry_safe(clp, next, &nn->client_lru, cl_lru) {
if (mark_client_expired_locked(clp) == nfs_ok) {
list_add(&clp->cl_lru, &reaplist);
if (max != 0 && ++count >= max)
break;
}
}
spin_unlock(&nn->client_lock);
list_for_each_entry_safe(clp, next, &reaplist, cl_lru)
expire_client(clp);
return count;
}
static void nfsd_print_count(struct nfs4_client *clp, unsigned int count,
const char *type)
{
char buf[INET6_ADDRSTRLEN];
rpc_ntop((struct sockaddr *)&clp->cl_addr, buf, sizeof(buf));
printk(KERN_INFO "NFS Client: %s has %u %s\n", buf, count, type);
}
static void
nfsd_inject_add_lock_to_list(struct nfs4_ol_stateid *lst,
struct list_head *collect)
{
struct nfs4_client *clp = lst->st_stid.sc_client;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!collect)
return;
lockdep_assert_held(&nn->client_lock);
atomic_inc(&clp->cl_refcount);
list_add(&lst->st_locks, collect);
}
static u64 nfsd_foreach_client_lock(struct nfs4_client *clp, u64 max,
struct list_head *collect,
bool (*func)(struct nfs4_ol_stateid *))
{
struct nfs4_openowner *oop;
struct nfs4_ol_stateid *stp, *st_next;
struct nfs4_ol_stateid *lst, *lst_next;
u64 count = 0;
spin_lock(&clp->cl_lock);
list_for_each_entry(oop, &clp->cl_openowners, oo_perclient) {
list_for_each_entry_safe(stp, st_next,
&oop->oo_owner.so_stateids, st_perstateowner) {
list_for_each_entry_safe(lst, lst_next,
&stp->st_locks, st_locks) {
if (func) {
if (func(lst))
nfsd_inject_add_lock_to_list(lst,
collect);
}
++count;
/*
* Despite the fact that these functions deal
* with 64-bit integers for "count", we must
* ensure that it doesn't blow up the
* clp->cl_refcount. Throw a warning if we
* start to approach INT_MAX here.
*/
WARN_ON_ONCE(count == (INT_MAX / 2));
if (count == max)
goto out;
}
}
}
out:
spin_unlock(&clp->cl_lock);
return count;
}
static u64
nfsd_collect_client_locks(struct nfs4_client *clp, struct list_head *collect,
u64 max)
{
return nfsd_foreach_client_lock(clp, max, collect, unhash_lock_stateid);
}
static u64
nfsd_print_client_locks(struct nfs4_client *clp)
{
u64 count = nfsd_foreach_client_lock(clp, 0, NULL, NULL);
nfsd_print_count(clp, count, "locked files");
return count;
}
u64
nfsd_inject_print_locks(void)
{
struct nfs4_client *clp;
u64 count = 0;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!nfsd_netns_ready(nn))
return 0;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru)
count += nfsd_print_client_locks(clp);
spin_unlock(&nn->client_lock);
return count;
}
static void
nfsd_reap_locks(struct list_head *reaplist)
{
struct nfs4_client *clp;
struct nfs4_ol_stateid *stp, *next;
list_for_each_entry_safe(stp, next, reaplist, st_locks) {
list_del_init(&stp->st_locks);
clp = stp->st_stid.sc_client;
nfs4_put_stid(&stp->st_stid);
put_client(clp);
}
}
u64
nfsd_inject_forget_client_locks(struct sockaddr_storage *addr, size_t addr_size)
{
unsigned int count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
clp = nfsd_find_client(addr, addr_size);
if (clp)
count = nfsd_collect_client_locks(clp, &reaplist, 0);
spin_unlock(&nn->client_lock);
nfsd_reap_locks(&reaplist);
return count;
}
u64
nfsd_inject_forget_locks(u64 max)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
count += nfsd_collect_client_locks(clp, &reaplist, max - count);
if (max != 0 && count >= max)
break;
}
spin_unlock(&nn->client_lock);
nfsd_reap_locks(&reaplist);
return count;
}
static u64
nfsd_foreach_client_openowner(struct nfs4_client *clp, u64 max,
struct list_head *collect,
void (*func)(struct nfs4_openowner *))
{
struct nfs4_openowner *oop, *next;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
u64 count = 0;
lockdep_assert_held(&nn->client_lock);
spin_lock(&clp->cl_lock);
list_for_each_entry_safe(oop, next, &clp->cl_openowners, oo_perclient) {
if (func) {
func(oop);
if (collect) {
atomic_inc(&clp->cl_refcount);
list_add(&oop->oo_perclient, collect);
}
}
++count;
/*
* Despite the fact that these functions deal with
* 64-bit integers for "count", we must ensure that
* it doesn't blow up the clp->cl_refcount. Throw a
* warning if we start to approach INT_MAX here.
*/
WARN_ON_ONCE(count == (INT_MAX / 2));
if (count == max)
break;
}
spin_unlock(&clp->cl_lock);
return count;
}
static u64
nfsd_print_client_openowners(struct nfs4_client *clp)
{
u64 count = nfsd_foreach_client_openowner(clp, 0, NULL, NULL);
nfsd_print_count(clp, count, "openowners");
return count;
}
static u64
nfsd_collect_client_openowners(struct nfs4_client *clp,
struct list_head *collect, u64 max)
{
return nfsd_foreach_client_openowner(clp, max, collect,
unhash_openowner_locked);
}
u64
nfsd_inject_print_openowners(void)
{
struct nfs4_client *clp;
u64 count = 0;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!nfsd_netns_ready(nn))
return 0;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru)
count += nfsd_print_client_openowners(clp);
spin_unlock(&nn->client_lock);
return count;
}
static void
nfsd_reap_openowners(struct list_head *reaplist)
{
struct nfs4_client *clp;
struct nfs4_openowner *oop, *next;
list_for_each_entry_safe(oop, next, reaplist, oo_perclient) {
list_del_init(&oop->oo_perclient);
clp = oop->oo_owner.so_client;
release_openowner(oop);
put_client(clp);
}
}
u64
nfsd_inject_forget_client_openowners(struct sockaddr_storage *addr,
size_t addr_size)
{
unsigned int count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
clp = nfsd_find_client(addr, addr_size);
if (clp)
count = nfsd_collect_client_openowners(clp, &reaplist, 0);
spin_unlock(&nn->client_lock);
nfsd_reap_openowners(&reaplist);
return count;
}
u64
nfsd_inject_forget_openowners(u64 max)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
count += nfsd_collect_client_openowners(clp, &reaplist,
max - count);
if (max != 0 && count >= max)
break;
}
spin_unlock(&nn->client_lock);
nfsd_reap_openowners(&reaplist);
return count;
}
static u64 nfsd_find_all_delegations(struct nfs4_client *clp, u64 max,
struct list_head *victims)
{
struct nfs4_delegation *dp, *next;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
u64 count = 0;
lockdep_assert_held(&nn->client_lock);
spin_lock(&state_lock);
list_for_each_entry_safe(dp, next, &clp->cl_delegations, dl_perclnt) {
if (victims) {
/*
* It's not safe to mess with delegations that have a
* non-zero dl_time. They might have already been broken
* and could be processed by the laundromat outside of
* the state_lock. Just leave them be.
*/
if (dp->dl_time != 0)
continue;
atomic_inc(&clp->cl_refcount);
WARN_ON(!unhash_delegation_locked(dp));
list_add(&dp->dl_recall_lru, victims);
}
++count;
/*
* Despite the fact that these functions deal with
* 64-bit integers for "count", we must ensure that
* it doesn't blow up the clp->cl_refcount. Throw a
* warning if we start to approach INT_MAX here.
*/
WARN_ON_ONCE(count == (INT_MAX / 2));
if (count == max)
break;
}
spin_unlock(&state_lock);
return count;
}
static u64
nfsd_print_client_delegations(struct nfs4_client *clp)
{
u64 count = nfsd_find_all_delegations(clp, 0, NULL);
nfsd_print_count(clp, count, "delegations");
return count;
}
u64
nfsd_inject_print_delegations(void)
{
struct nfs4_client *clp;
u64 count = 0;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
if (!nfsd_netns_ready(nn))
return 0;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru)
count += nfsd_print_client_delegations(clp);
spin_unlock(&nn->client_lock);
return count;
}
static void
nfsd_forget_delegations(struct list_head *reaplist)
{
struct nfs4_client *clp;
struct nfs4_delegation *dp, *next;
list_for_each_entry_safe(dp, next, reaplist, dl_recall_lru) {
list_del_init(&dp->dl_recall_lru);
clp = dp->dl_stid.sc_client;
revoke_delegation(dp);
put_client(clp);
}
}
u64
nfsd_inject_forget_client_delegations(struct sockaddr_storage *addr,
size_t addr_size)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
clp = nfsd_find_client(addr, addr_size);
if (clp)
count = nfsd_find_all_delegations(clp, 0, &reaplist);
spin_unlock(&nn->client_lock);
nfsd_forget_delegations(&reaplist);
return count;
}
u64
nfsd_inject_forget_delegations(u64 max)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
list_for_each_entry(clp, &nn->client_lru, cl_lru) {
count += nfsd_find_all_delegations(clp, max - count, &reaplist);
if (max != 0 && count >= max)
break;
}
spin_unlock(&nn->client_lock);
nfsd_forget_delegations(&reaplist);
return count;
}
static void
nfsd_recall_delegations(struct list_head *reaplist)
{
struct nfs4_client *clp;
struct nfs4_delegation *dp, *next;
list_for_each_entry_safe(dp, next, reaplist, dl_recall_lru) {
list_del_init(&dp->dl_recall_lru);
clp = dp->dl_stid.sc_client;
/*
* We skipped all entries that had a zero dl_time before,
* so we can now reset the dl_time back to 0. If a delegation
* break comes in now, then it won't make any difference since
* we're recalling it either way.
*/
spin_lock(&state_lock);
dp->dl_time = 0;
spin_unlock(&state_lock);
nfsd_break_one_deleg(dp);
put_client(clp);
}
}
u64
nfsd_inject_recall_client_delegations(struct sockaddr_storage *addr,
size_t addr_size)
{
u64 count = 0;
struct nfs4_client *clp;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
clp = nfsd_find_client(addr, addr_size);
if (clp)
count = nfsd_find_all_delegations(clp, 0, &reaplist);
spin_unlock(&nn->client_lock);
nfsd_recall_delegations(&reaplist);
return count;
}
u64
nfsd_inject_recall_delegations(u64 max)
{
u64 count = 0;
struct nfs4_client *clp, *next;
struct nfsd_net *nn = net_generic(current->nsproxy->net_ns,
nfsd_net_id);
LIST_HEAD(reaplist);
if (!nfsd_netns_ready(nn))
return count;
spin_lock(&nn->client_lock);
list_for_each_entry_safe(clp, next, &nn->client_lru, cl_lru) {
count += nfsd_find_all_delegations(clp, max - count, &reaplist);
if (max != 0 && ++count >= max)
break;
}
spin_unlock(&nn->client_lock);
nfsd_recall_delegations(&reaplist);
return count;
}
#endif /* CONFIG_NFSD_FAULT_INJECTION */
/*
* Since the lifetime of a delegation isn't limited to that of an open, a
* client may quite reasonably hang on to a delegation as long as it has
* the inode cached. This becomes an obvious problem the first time a
* client's inode cache approaches the size of the server's total memory.
*
* For now we avoid this problem by imposing a hard limit on the number
* of delegations, which varies according to the server's memory size.
*/
static void
set_max_delegations(void)
{
/*
* Allow at most 4 delegations per megabyte of RAM. Quick
* estimates suggest that in the worst case (where every delegation
* is for a different inode), a delegation could take about 1.5K,
* giving a worst case usage of about 6% of memory.
*/
max_delegations = nr_free_buffer_pages() >> (20 - 2 - PAGE_SHIFT);
}
static int nfs4_state_create_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
int i;
nn->conf_id_hashtbl = kmalloc(sizeof(struct list_head) *
CLIENT_HASH_SIZE, GFP_KERNEL);
if (!nn->conf_id_hashtbl)
goto err;
nn->unconf_id_hashtbl = kmalloc(sizeof(struct list_head) *
CLIENT_HASH_SIZE, GFP_KERNEL);
if (!nn->unconf_id_hashtbl)
goto err_unconf_id;
nn->sessionid_hashtbl = kmalloc(sizeof(struct list_head) *
SESSION_HASH_SIZE, GFP_KERNEL);
if (!nn->sessionid_hashtbl)
goto err_sessionid;
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
INIT_LIST_HEAD(&nn->conf_id_hashtbl[i]);
INIT_LIST_HEAD(&nn->unconf_id_hashtbl[i]);
}
for (i = 0; i < SESSION_HASH_SIZE; i++)
INIT_LIST_HEAD(&nn->sessionid_hashtbl[i]);
nn->conf_name_tree = RB_ROOT;
nn->unconf_name_tree = RB_ROOT;
nn->boot_time = get_seconds();
nn->grace_ended = false;
nn->nfsd4_manager.block_opens = true;
INIT_LIST_HEAD(&nn->nfsd4_manager.list);
INIT_LIST_HEAD(&nn->client_lru);
INIT_LIST_HEAD(&nn->close_lru);
INIT_LIST_HEAD(&nn->del_recall_lru);
spin_lock_init(&nn->client_lock);
spin_lock_init(&nn->blocked_locks_lock);
INIT_LIST_HEAD(&nn->blocked_locks_lru);
INIT_DELAYED_WORK(&nn->laundromat_work, laundromat_main);
get_net(net);
return 0;
err_sessionid:
kfree(nn->unconf_id_hashtbl);
err_unconf_id:
kfree(nn->conf_id_hashtbl);
err:
return -ENOMEM;
}
static void
nfs4_state_destroy_net(struct net *net)
{
int i;
struct nfs4_client *clp = NULL;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&nn->conf_id_hashtbl[i])) {
clp = list_entry(nn->conf_id_hashtbl[i].next, struct nfs4_client, cl_idhash);
destroy_client(clp);
}
}
for (i = 0; i < CLIENT_HASH_SIZE; i++) {
while (!list_empty(&nn->unconf_id_hashtbl[i])) {
clp = list_entry(nn->unconf_id_hashtbl[i].next, struct nfs4_client, cl_idhash);
destroy_client(clp);
}
}
kfree(nn->sessionid_hashtbl);
kfree(nn->unconf_id_hashtbl);
kfree(nn->conf_id_hashtbl);
put_net(net);
}
int
nfs4_state_start_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
int ret;
ret = nfs4_state_create_net(net);
if (ret)
return ret;
locks_start_grace(net, &nn->nfsd4_manager);
nfsd4_client_tracking_init(net);
printk(KERN_INFO "NFSD: starting %ld-second grace period (net %x)\n",
nn->nfsd4_grace, net->ns.inum);
queue_delayed_work(laundry_wq, &nn->laundromat_work, nn->nfsd4_grace * HZ);
return 0;
}
/* initialization to perform when the nfsd service is started: */
int
nfs4_state_start(void)
{
int ret;
ret = set_callback_cred();
if (ret)
return ret;
laundry_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, "nfsd4");
if (laundry_wq == NULL) {
ret = -ENOMEM;
goto out_cleanup_cred;
}
ret = nfsd4_create_callback_queue();
if (ret)
goto out_free_laundry;
set_max_delegations();
return 0;
out_free_laundry:
destroy_workqueue(laundry_wq);
out_cleanup_cred:
cleanup_callback_cred();
return ret;
}
void
nfs4_state_shutdown_net(struct net *net)
{
struct nfs4_delegation *dp = NULL;
struct list_head *pos, *next, reaplist;
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct nfsd4_blocked_lock *nbl;
cancel_delayed_work_sync(&nn->laundromat_work);
locks_end_grace(&nn->nfsd4_manager);
INIT_LIST_HEAD(&reaplist);
spin_lock(&state_lock);
list_for_each_safe(pos, next, &nn->del_recall_lru) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
WARN_ON(!unhash_delegation_locked(dp));
list_add(&dp->dl_recall_lru, &reaplist);
}
spin_unlock(&state_lock);
list_for_each_safe(pos, next, &reaplist) {
dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru);
list_del_init(&dp->dl_recall_lru);
put_clnt_odstate(dp->dl_clnt_odstate);
nfs4_put_deleg_lease(dp->dl_stid.sc_file);
nfs4_put_stid(&dp->dl_stid);
}
BUG_ON(!list_empty(&reaplist));
spin_lock(&nn->blocked_locks_lock);
while (!list_empty(&nn->blocked_locks_lru)) {
nbl = list_first_entry(&nn->blocked_locks_lru,
struct nfsd4_blocked_lock, nbl_lru);
list_move(&nbl->nbl_lru, &reaplist);
list_del_init(&nbl->nbl_list);
}
spin_unlock(&nn->blocked_locks_lock);
while (!list_empty(&reaplist)) {
nbl = list_first_entry(&reaplist,
struct nfsd4_blocked_lock, nbl_lru);
list_del_init(&nbl->nbl_lru);
posix_unblock_lock(&nbl->nbl_lock);
free_blocked_lock(nbl);
}
nfsd4_client_tracking_exit(net);
nfs4_state_destroy_net(net);
}
void
nfs4_state_shutdown(void)
{
destroy_workqueue(laundry_wq);
nfsd4_destroy_callback_queue();
cleanup_callback_cred();
}
static void
get_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid)
{
if (HAS_STATE_ID(cstate, CURRENT_STATE_ID_FLAG) && CURRENT_STATEID(stateid))
memcpy(stateid, &cstate->current_stateid, sizeof(stateid_t));
}
static void
put_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid)
{
if (cstate->minorversion) {
memcpy(&cstate->current_stateid, stateid, sizeof(stateid_t));
SET_STATE_ID(cstate, CURRENT_STATE_ID_FLAG);
}
}
void
clear_current_stateid(struct nfsd4_compound_state *cstate)
{
CLEAR_STATE_ID(cstate, CURRENT_STATE_ID_FLAG);
}
/*
* functions to set current state id
*/
void
nfsd4_set_opendowngradestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
put_stateid(cstate, &u->open_downgrade.od_stateid);
}
void
nfsd4_set_openstateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
put_stateid(cstate, &u->open.op_stateid);
}
void
nfsd4_set_closestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
put_stateid(cstate, &u->close.cl_stateid);
}
void
nfsd4_set_lockstateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
put_stateid(cstate, &u->lock.lk_resp_stateid);
}
/*
* functions to consume current state id
*/
void
nfsd4_get_opendowngradestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->open_downgrade.od_stateid);
}
void
nfsd4_get_delegreturnstateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->delegreturn.dr_stateid);
}
void
nfsd4_get_freestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->free_stateid.fr_stateid);
}
void
nfsd4_get_setattrstateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->setattr.sa_stateid);
}
void
nfsd4_get_closestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->close.cl_stateid);
}
void
nfsd4_get_lockustateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->locku.lu_stateid);
}
void
nfsd4_get_readstateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->read.rd_stateid);
}
void
nfsd4_get_writestateid(struct nfsd4_compound_state *cstate,
union nfsd4_op_u *u)
{
get_stateid(cstate, &u->write.wr_stateid);
}