linux/drivers/ntb/test/ntb_perf.c

900 lines
21 KiB
C

/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2015 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* BSD LICENSE
*
* Copyright(c) 2015 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copy
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* PCIe NTB Perf Linux driver
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/debugfs.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/sizes.h>
#include <linux/ntb.h>
#include <linux/mutex.h>
#define DRIVER_NAME "ntb_perf"
#define DRIVER_DESCRIPTION "PCIe NTB Performance Measurement Tool"
#define DRIVER_LICENSE "Dual BSD/GPL"
#define DRIVER_VERSION "1.0"
#define DRIVER_AUTHOR "Dave Jiang <dave.jiang@intel.com>"
#define PERF_LINK_DOWN_TIMEOUT 10
#define PERF_VERSION 0xffff0001
#define MAX_THREADS 32
#define MAX_TEST_SIZE SZ_1M
#define MAX_SRCS 32
#define DMA_OUT_RESOURCE_TO msecs_to_jiffies(50)
#define DMA_RETRIES 20
#define SZ_4G (1ULL << 32)
#define MAX_SEG_ORDER 20 /* no larger than 1M for kmalloc buffer */
#define PIDX NTB_DEF_PEER_IDX
MODULE_LICENSE(DRIVER_LICENSE);
MODULE_VERSION(DRIVER_VERSION);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
static struct dentry *perf_debugfs_dir;
static unsigned long max_mw_size;
module_param(max_mw_size, ulong, 0644);
MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
static unsigned int seg_order = 19; /* 512K */
module_param(seg_order, uint, 0644);
MODULE_PARM_DESC(seg_order, "size order [2^n] of buffer segment for testing");
static unsigned int run_order = 32; /* 4G */
module_param(run_order, uint, 0644);
MODULE_PARM_DESC(run_order, "size order [2^n] of total data to transfer");
static bool use_dma; /* default to 0 */
module_param(use_dma, bool, 0644);
MODULE_PARM_DESC(use_dma, "Using DMA engine to measure performance");
static bool on_node = true; /* default to 1 */
module_param(on_node, bool, 0644);
MODULE_PARM_DESC(on_node, "Run threads only on NTB device node (default: true)");
struct perf_mw {
phys_addr_t phys_addr;
resource_size_t phys_size;
resource_size_t xlat_align;
resource_size_t xlat_align_size;
void __iomem *vbase;
size_t xlat_size;
size_t buf_size;
void *virt_addr;
dma_addr_t dma_addr;
};
struct perf_ctx;
struct pthr_ctx {
struct task_struct *thread;
struct perf_ctx *perf;
atomic_t dma_sync;
struct dma_chan *dma_chan;
int dma_prep_err;
int src_idx;
void *srcs[MAX_SRCS];
wait_queue_head_t *wq;
int status;
u64 copied;
u64 diff_us;
};
struct perf_ctx {
struct ntb_dev *ntb;
spinlock_t db_lock;
struct perf_mw mw;
bool link_is_up;
struct delayed_work link_work;
wait_queue_head_t link_wq;
u8 perf_threads;
/* mutex ensures only one set of threads run at once */
struct mutex run_mutex;
struct pthr_ctx pthr_ctx[MAX_THREADS];
atomic_t tsync;
atomic_t tdone;
};
enum {
VERSION = 0,
MW_SZ_HIGH,
MW_SZ_LOW,
MAX_SPAD
};
static void perf_link_event(void *ctx)
{
struct perf_ctx *perf = ctx;
if (ntb_link_is_up(perf->ntb, NULL, NULL) == 1) {
schedule_delayed_work(&perf->link_work, 2*HZ);
} else {
dev_dbg(&perf->ntb->pdev->dev, "link down\n");
if (!perf->link_is_up)
cancel_delayed_work_sync(&perf->link_work);
perf->link_is_up = false;
}
}
static void perf_db_event(void *ctx, int vec)
{
struct perf_ctx *perf = ctx;
u64 db_bits, db_mask;
db_mask = ntb_db_vector_mask(perf->ntb, vec);
db_bits = ntb_db_read(perf->ntb);
dev_dbg(&perf->ntb->dev, "doorbell vec %d mask %#llx bits %#llx\n",
vec, db_mask, db_bits);
}
static const struct ntb_ctx_ops perf_ops = {
.link_event = perf_link_event,
.db_event = perf_db_event,
};
static void perf_copy_callback(void *data)
{
struct pthr_ctx *pctx = data;
atomic_dec(&pctx->dma_sync);
}
static ssize_t perf_copy(struct pthr_ctx *pctx, char __iomem *dst,
char *src, size_t size)
{
struct perf_ctx *perf = pctx->perf;
struct dma_async_tx_descriptor *txd;
struct dma_chan *chan = pctx->dma_chan;
struct dma_device *device;
struct dmaengine_unmap_data *unmap;
dma_cookie_t cookie;
size_t src_off, dst_off;
struct perf_mw *mw = &perf->mw;
void __iomem *vbase;
void __iomem *dst_vaddr;
dma_addr_t dst_phys;
int retries = 0;
if (!use_dma) {
memcpy_toio(dst, src, size);
return size;
}
if (!chan) {
dev_err(&perf->ntb->dev, "DMA engine does not exist\n");
return -EINVAL;
}
device = chan->device;
src_off = (uintptr_t)src & ~PAGE_MASK;
dst_off = (uintptr_t __force)dst & ~PAGE_MASK;
if (!is_dma_copy_aligned(device, src_off, dst_off, size))
return -ENODEV;
vbase = mw->vbase;
dst_vaddr = dst;
dst_phys = mw->phys_addr + (dst_vaddr - vbase);
unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
if (!unmap)
return -ENOMEM;
unmap->len = size;
unmap->addr[0] = dma_map_page(device->dev, virt_to_page(src),
src_off, size, DMA_TO_DEVICE);
if (dma_mapping_error(device->dev, unmap->addr[0]))
goto err_get_unmap;
unmap->to_cnt = 1;
do {
txd = device->device_prep_dma_memcpy(chan, dst_phys,
unmap->addr[0],
size, DMA_PREP_INTERRUPT);
if (!txd) {
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(DMA_OUT_RESOURCE_TO);
}
} while (!txd && (++retries < DMA_RETRIES));
if (!txd) {
pctx->dma_prep_err++;
goto err_get_unmap;
}
txd->callback = perf_copy_callback;
txd->callback_param = pctx;
dma_set_unmap(txd, unmap);
cookie = dmaengine_submit(txd);
if (dma_submit_error(cookie))
goto err_set_unmap;
dmaengine_unmap_put(unmap);
atomic_inc(&pctx->dma_sync);
dma_async_issue_pending(chan);
return size;
err_set_unmap:
dmaengine_unmap_put(unmap);
err_get_unmap:
dmaengine_unmap_put(unmap);
return 0;
}
static int perf_move_data(struct pthr_ctx *pctx, char __iomem *dst, char *src,
u64 buf_size, u64 win_size, u64 total)
{
int chunks, total_chunks, i;
int copied_chunks = 0;
u64 copied = 0, result;
char __iomem *tmp = dst;
u64 perf, diff_us;
ktime_t kstart, kstop, kdiff;
unsigned long last_sleep = jiffies;
chunks = div64_u64(win_size, buf_size);
total_chunks = div64_u64(total, buf_size);
kstart = ktime_get();
for (i = 0; i < total_chunks; i++) {
result = perf_copy(pctx, tmp, src, buf_size);
copied += result;
copied_chunks++;
if (copied_chunks == chunks) {
tmp = dst;
copied_chunks = 0;
} else
tmp += buf_size;
/* Probably should schedule every 5s to prevent soft hang. */
if (unlikely((jiffies - last_sleep) > 5 * HZ)) {
last_sleep = jiffies;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
}
if (unlikely(kthread_should_stop()))
break;
}
if (use_dma) {
pr_debug("%s: All DMA descriptors submitted\n", current->comm);
while (atomic_read(&pctx->dma_sync) != 0) {
if (kthread_should_stop())
break;
msleep(20);
}
}
kstop = ktime_get();
kdiff = ktime_sub(kstop, kstart);
diff_us = ktime_to_us(kdiff);
pr_debug("%s: copied %llu bytes\n", current->comm, copied);
pr_debug("%s: lasted %llu usecs\n", current->comm, diff_us);
perf = div64_u64(copied, diff_us);
pr_debug("%s: MBytes/s: %llu\n", current->comm, perf);
pctx->copied = copied;
pctx->diff_us = diff_us;
return 0;
}
static bool perf_dma_filter_fn(struct dma_chan *chan, void *node)
{
/* Is the channel required to be on the same node as the device? */
if (!on_node)
return true;
return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
}
static int ntb_perf_thread(void *data)
{
struct pthr_ctx *pctx = data;
struct perf_ctx *perf = pctx->perf;
struct pci_dev *pdev = perf->ntb->pdev;
struct perf_mw *mw = &perf->mw;
char __iomem *dst;
u64 win_size, buf_size, total;
void *src;
int rc, node, i;
struct dma_chan *dma_chan = NULL;
pr_debug("kthread %s starting...\n", current->comm);
node = on_node ? dev_to_node(&pdev->dev) : NUMA_NO_NODE;
if (use_dma && !pctx->dma_chan) {
dma_cap_mask_t dma_mask;
dma_cap_zero(dma_mask);
dma_cap_set(DMA_MEMCPY, dma_mask);
dma_chan = dma_request_channel(dma_mask, perf_dma_filter_fn,
(void *)(unsigned long)node);
if (!dma_chan) {
pr_warn("%s: cannot acquire DMA channel, quitting\n",
current->comm);
return -ENODEV;
}
pctx->dma_chan = dma_chan;
}
for (i = 0; i < MAX_SRCS; i++) {
pctx->srcs[i] = kmalloc_node(MAX_TEST_SIZE, GFP_KERNEL, node);
if (!pctx->srcs[i]) {
rc = -ENOMEM;
goto err;
}
}
win_size = mw->phys_size;
buf_size = 1ULL << seg_order;
total = 1ULL << run_order;
if (buf_size > MAX_TEST_SIZE)
buf_size = MAX_TEST_SIZE;
dst = (char __iomem *)mw->vbase;
atomic_inc(&perf->tsync);
while (atomic_read(&perf->tsync) != perf->perf_threads)
schedule();
src = pctx->srcs[pctx->src_idx];
pctx->src_idx = (pctx->src_idx + 1) & (MAX_SRCS - 1);
rc = perf_move_data(pctx, dst, src, buf_size, win_size, total);
atomic_dec(&perf->tsync);
if (rc < 0) {
pr_err("%s: failed\n", current->comm);
rc = -ENXIO;
goto err;
}
for (i = 0; i < MAX_SRCS; i++) {
kfree(pctx->srcs[i]);
pctx->srcs[i] = NULL;
}
atomic_inc(&perf->tdone);
wake_up(pctx->wq);
rc = 0;
goto done;
err:
for (i = 0; i < MAX_SRCS; i++) {
kfree(pctx->srcs[i]);
pctx->srcs[i] = NULL;
}
if (dma_chan) {
dma_release_channel(dma_chan);
pctx->dma_chan = NULL;
}
done:
/* Wait until we are told to stop */
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop())
break;
schedule();
}
__set_current_state(TASK_RUNNING);
return rc;
}
static void perf_free_mw(struct perf_ctx *perf)
{
struct perf_mw *mw = &perf->mw;
struct pci_dev *pdev = perf->ntb->pdev;
if (!mw->virt_addr)
return;
ntb_mw_clear_trans(perf->ntb, PIDX, 0);
dma_free_coherent(&pdev->dev, mw->buf_size,
mw->virt_addr, mw->dma_addr);
mw->xlat_size = 0;
mw->buf_size = 0;
mw->virt_addr = NULL;
}
static int perf_set_mw(struct perf_ctx *perf, resource_size_t size)
{
struct perf_mw *mw = &perf->mw;
size_t xlat_size, buf_size;
int rc;
if (!size)
return -EINVAL;
xlat_size = round_up(size, mw->xlat_align_size);
buf_size = round_up(size, mw->xlat_align);
if (mw->xlat_size == xlat_size)
return 0;
if (mw->buf_size)
perf_free_mw(perf);
mw->xlat_size = xlat_size;
mw->buf_size = buf_size;
mw->virt_addr = dma_alloc_coherent(&perf->ntb->pdev->dev, buf_size,
&mw->dma_addr, GFP_KERNEL);
if (!mw->virt_addr) {
mw->xlat_size = 0;
mw->buf_size = 0;
}
rc = ntb_mw_set_trans(perf->ntb, PIDX, 0, mw->dma_addr, mw->xlat_size);
if (rc) {
dev_err(&perf->ntb->dev, "Unable to set mw0 translation\n");
perf_free_mw(perf);
return -EIO;
}
return 0;
}
static void perf_link_work(struct work_struct *work)
{
struct perf_ctx *perf =
container_of(work, struct perf_ctx, link_work.work);
struct ntb_dev *ndev = perf->ntb;
struct pci_dev *pdev = ndev->pdev;
u32 val;
u64 size;
int rc;
dev_dbg(&perf->ntb->pdev->dev, "%s called\n", __func__);
size = perf->mw.phys_size;
if (max_mw_size && size > max_mw_size)
size = max_mw_size;
ntb_peer_spad_write(ndev, PIDX, MW_SZ_HIGH, upper_32_bits(size));
ntb_peer_spad_write(ndev, PIDX, MW_SZ_LOW, lower_32_bits(size));
ntb_peer_spad_write(ndev, PIDX, VERSION, PERF_VERSION);
/* now read what peer wrote */
val = ntb_spad_read(ndev, VERSION);
if (val != PERF_VERSION) {
dev_dbg(&pdev->dev, "Remote version = %#x\n", val);
goto out;
}
val = ntb_spad_read(ndev, MW_SZ_HIGH);
size = (u64)val << 32;
val = ntb_spad_read(ndev, MW_SZ_LOW);
size |= val;
dev_dbg(&pdev->dev, "Remote MW size = %#llx\n", size);
rc = perf_set_mw(perf, size);
if (rc)
goto out1;
perf->link_is_up = true;
wake_up(&perf->link_wq);
return;
out1:
perf_free_mw(perf);
out:
if (ntb_link_is_up(ndev, NULL, NULL) == 1)
schedule_delayed_work(&perf->link_work,
msecs_to_jiffies(PERF_LINK_DOWN_TIMEOUT));
}
static int perf_setup_mw(struct ntb_dev *ntb, struct perf_ctx *perf)
{
struct perf_mw *mw;
int rc;
mw = &perf->mw;
rc = ntb_mw_get_align(ntb, PIDX, 0, &mw->xlat_align,
&mw->xlat_align_size, NULL);
if (rc)
return rc;
rc = ntb_peer_mw_get_addr(ntb, 0, &mw->phys_addr, &mw->phys_size);
if (rc)
return rc;
perf->mw.vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
if (!mw->vbase)
return -ENOMEM;
return 0;
}
static ssize_t debugfs_run_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp)
{
struct perf_ctx *perf = filp->private_data;
char *buf;
ssize_t ret, out_off = 0;
struct pthr_ctx *pctx;
int i;
u64 rate;
if (!perf)
return 0;
buf = kmalloc(1024, GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (mutex_is_locked(&perf->run_mutex)) {
out_off = scnprintf(buf, 64, "running\n");
goto read_from_buf;
}
for (i = 0; i < MAX_THREADS; i++) {
pctx = &perf->pthr_ctx[i];
if (pctx->status == -ENODATA)
break;
if (pctx->status) {
out_off += scnprintf(buf + out_off, 1024 - out_off,
"%d: error %d\n", i,
pctx->status);
continue;
}
rate = div64_u64(pctx->copied, pctx->diff_us);
out_off += scnprintf(buf + out_off, 1024 - out_off,
"%d: copied %llu bytes in %llu usecs, %llu MBytes/s\n",
i, pctx->copied, pctx->diff_us, rate);
}
read_from_buf:
ret = simple_read_from_buffer(ubuf, count, offp, buf, out_off);
kfree(buf);
return ret;
}
static void threads_cleanup(struct perf_ctx *perf)
{
struct pthr_ctx *pctx;
int i;
for (i = 0; i < MAX_THREADS; i++) {
pctx = &perf->pthr_ctx[i];
if (pctx->thread) {
pctx->status = kthread_stop(pctx->thread);
pctx->thread = NULL;
}
}
}
static void perf_clear_thread_status(struct perf_ctx *perf)
{
int i;
for (i = 0; i < MAX_THREADS; i++)
perf->pthr_ctx[i].status = -ENODATA;
}
static ssize_t debugfs_run_write(struct file *filp, const char __user *ubuf,
size_t count, loff_t *offp)
{
struct perf_ctx *perf = filp->private_data;
int node, i;
DECLARE_WAIT_QUEUE_HEAD(wq);
if (wait_event_interruptible(perf->link_wq, perf->link_is_up))
return -ENOLINK;
if (perf->perf_threads == 0)
return -EINVAL;
if (!mutex_trylock(&perf->run_mutex))
return -EBUSY;
perf_clear_thread_status(perf);
if (perf->perf_threads > MAX_THREADS) {
perf->perf_threads = MAX_THREADS;
pr_info("Reset total threads to: %u\n", MAX_THREADS);
}
/* no greater than 1M */
if (seg_order > MAX_SEG_ORDER) {
seg_order = MAX_SEG_ORDER;
pr_info("Fix seg_order to %u\n", seg_order);
}
if (run_order < seg_order) {
run_order = seg_order;
pr_info("Fix run_order to %u\n", run_order);
}
node = on_node ? dev_to_node(&perf->ntb->pdev->dev)
: NUMA_NO_NODE;
atomic_set(&perf->tdone, 0);
/* launch kernel thread */
for (i = 0; i < perf->perf_threads; i++) {
struct pthr_ctx *pctx;
pctx = &perf->pthr_ctx[i];
atomic_set(&pctx->dma_sync, 0);
pctx->perf = perf;
pctx->wq = &wq;
pctx->thread =
kthread_create_on_node(ntb_perf_thread,
(void *)pctx,
node, "ntb_perf %d", i);
if (IS_ERR(pctx->thread)) {
pctx->thread = NULL;
goto err;
} else {
wake_up_process(pctx->thread);
}
}
wait_event_interruptible(wq,
atomic_read(&perf->tdone) == perf->perf_threads);
threads_cleanup(perf);
mutex_unlock(&perf->run_mutex);
return count;
err:
threads_cleanup(perf);
mutex_unlock(&perf->run_mutex);
return -ENXIO;
}
static const struct file_operations ntb_perf_debugfs_run = {
.owner = THIS_MODULE,
.open = simple_open,
.read = debugfs_run_read,
.write = debugfs_run_write,
};
static int perf_debugfs_setup(struct perf_ctx *perf)
{
struct pci_dev *pdev = perf->ntb->pdev;
struct dentry *debugfs_node_dir;
struct dentry *debugfs_run;
struct dentry *debugfs_threads;
struct dentry *debugfs_seg_order;
struct dentry *debugfs_run_order;
struct dentry *debugfs_use_dma;
struct dentry *debugfs_on_node;
if (!debugfs_initialized())
return -ENODEV;
/* Assumpion: only one NTB device in the system */
if (!perf_debugfs_dir) {
perf_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
if (!perf_debugfs_dir)
return -ENODEV;
}
debugfs_node_dir = debugfs_create_dir(pci_name(pdev),
perf_debugfs_dir);
if (!debugfs_node_dir)
goto err;
debugfs_run = debugfs_create_file("run", S_IRUSR | S_IWUSR,
debugfs_node_dir, perf,
&ntb_perf_debugfs_run);
if (!debugfs_run)
goto err;
debugfs_threads = debugfs_create_u8("threads", S_IRUSR | S_IWUSR,
debugfs_node_dir,
&perf->perf_threads);
if (!debugfs_threads)
goto err;
debugfs_seg_order = debugfs_create_u32("seg_order", 0600,
debugfs_node_dir,
&seg_order);
if (!debugfs_seg_order)
goto err;
debugfs_run_order = debugfs_create_u32("run_order", 0600,
debugfs_node_dir,
&run_order);
if (!debugfs_run_order)
goto err;
debugfs_use_dma = debugfs_create_bool("use_dma", 0600,
debugfs_node_dir,
&use_dma);
if (!debugfs_use_dma)
goto err;
debugfs_on_node = debugfs_create_bool("on_node", 0600,
debugfs_node_dir,
&on_node);
if (!debugfs_on_node)
goto err;
return 0;
err:
debugfs_remove_recursive(perf_debugfs_dir);
perf_debugfs_dir = NULL;
return -ENODEV;
}
static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb)
{
struct pci_dev *pdev = ntb->pdev;
struct perf_ctx *perf;
int node;
int rc = 0;
if (ntb_spad_count(ntb) < MAX_SPAD) {
dev_err(&ntb->dev, "Not enough scratch pad registers for %s",
DRIVER_NAME);
return -EIO;
}
if (!ntb->ops->mw_set_trans) {
dev_err(&ntb->dev, "Need inbound MW based NTB API\n");
return -EINVAL;
}
if (ntb_peer_port_count(ntb) != NTB_DEF_PEER_CNT)
dev_warn(&ntb->dev, "Multi-port NTB devices unsupported\n");
node = on_node ? dev_to_node(&pdev->dev) : NUMA_NO_NODE;
perf = kzalloc_node(sizeof(*perf), GFP_KERNEL, node);
if (!perf) {
rc = -ENOMEM;
goto err_perf;
}
perf->ntb = ntb;
perf->perf_threads = 1;
atomic_set(&perf->tsync, 0);
mutex_init(&perf->run_mutex);
spin_lock_init(&perf->db_lock);
perf_setup_mw(ntb, perf);
init_waitqueue_head(&perf->link_wq);
INIT_DELAYED_WORK(&perf->link_work, perf_link_work);
rc = ntb_set_ctx(ntb, perf, &perf_ops);
if (rc)
goto err_ctx;
perf->link_is_up = false;
ntb_link_enable(ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
ntb_link_event(ntb);
rc = perf_debugfs_setup(perf);
if (rc)
goto err_ctx;
perf_clear_thread_status(perf);
return 0;
err_ctx:
cancel_delayed_work_sync(&perf->link_work);
kfree(perf);
err_perf:
return rc;
}
static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb)
{
struct perf_ctx *perf = ntb->ctx;
int i;
dev_dbg(&perf->ntb->dev, "%s called\n", __func__);
mutex_lock(&perf->run_mutex);
cancel_delayed_work_sync(&perf->link_work);
ntb_clear_ctx(ntb);
ntb_link_disable(ntb);
debugfs_remove_recursive(perf_debugfs_dir);
perf_debugfs_dir = NULL;
if (use_dma) {
for (i = 0; i < MAX_THREADS; i++) {
struct pthr_ctx *pctx = &perf->pthr_ctx[i];
if (pctx->dma_chan)
dma_release_channel(pctx->dma_chan);
}
}
kfree(perf);
}
static struct ntb_client perf_client = {
.ops = {
.probe = perf_probe,
.remove = perf_remove,
},
};
module_ntb_client(perf_client);