linux/fs/jffs2
Linus Torvalds 7d6beb71da idmapped-mounts-v5.12
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
 ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
 4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
 =yPaw
 -----END PGP SIGNATURE-----

Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux

Pull idmapped mounts from Christian Brauner:
 "This introduces idmapped mounts which has been in the making for some
  time. Simply put, different mounts can expose the same file or
  directory with different ownership. This initial implementation comes
  with ports for fat, ext4 and with Christoph's port for xfs with more
  filesystems being actively worked on by independent people and
  maintainers.

  Idmapping mounts handle a wide range of long standing use-cases. Here
  are just a few:

   - Idmapped mounts make it possible to easily share files between
     multiple users or multiple machines especially in complex
     scenarios. For example, idmapped mounts will be used in the
     implementation of portable home directories in
     systemd-homed.service(8) where they allow users to move their home
     directory to an external storage device and use it on multiple
     computers where they are assigned different uids and gids. This
     effectively makes it possible to assign random uids and gids at
     login time.

   - It is possible to share files from the host with unprivileged
     containers without having to change ownership permanently through
     chown(2).

   - It is possible to idmap a container's rootfs and without having to
     mangle every file. For example, Chromebooks use it to share the
     user's Download folder with their unprivileged containers in their
     Linux subsystem.

   - It is possible to share files between containers with
     non-overlapping idmappings.

   - Filesystem that lack a proper concept of ownership such as fat can
     use idmapped mounts to implement discretionary access (DAC)
     permission checking.

   - They allow users to efficiently changing ownership on a per-mount
     basis without having to (recursively) chown(2) all files. In
     contrast to chown (2) changing ownership of large sets of files is
     instantenous with idmapped mounts. This is especially useful when
     ownership of a whole root filesystem of a virtual machine or
     container is changed. With idmapped mounts a single syscall
     mount_setattr syscall will be sufficient to change the ownership of
     all files.

   - Idmapped mounts always take the current ownership into account as
     idmappings specify what a given uid or gid is supposed to be mapped
     to. This contrasts with the chown(2) syscall which cannot by itself
     take the current ownership of the files it changes into account. It
     simply changes the ownership to the specified uid and gid. This is
     especially problematic when recursively chown(2)ing a large set of
     files which is commong with the aforementioned portable home
     directory and container and vm scenario.

   - Idmapped mounts allow to change ownership locally, restricting it
     to specific mounts, and temporarily as the ownership changes only
     apply as long as the mount exists.

  Several userspace projects have either already put up patches and
  pull-requests for this feature or will do so should you decide to pull
  this:

   - systemd: In a wide variety of scenarios but especially right away
     in their implementation of portable home directories.

         https://systemd.io/HOME_DIRECTORY/

   - container runtimes: containerd, runC, LXD:To share data between
     host and unprivileged containers, unprivileged and privileged
     containers, etc. The pull request for idmapped mounts support in
     containerd, the default Kubernetes runtime is already up for quite
     a while now: https://github.com/containerd/containerd/pull/4734

   - The virtio-fs developers and several users have expressed interest
     in using this feature with virtual machines once virtio-fs is
     ported.

   - ChromeOS: Sharing host-directories with unprivileged containers.

  I've tightly synced with all those projects and all of those listed
  here have also expressed their need/desire for this feature on the
  mailing list. For more info on how people use this there's a bunch of
  talks about this too. Here's just two recent ones:

      https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdf
      https://fosdem.org/2021/schedule/event/containers_idmap/

  This comes with an extensive xfstests suite covering both ext4 and
  xfs:

      https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts

  It covers truncation, creation, opening, xattrs, vfscaps, setid
  execution, setgid inheritance and more both with idmapped and
  non-idmapped mounts. It already helped to discover an unrelated xfs
  setgid inheritance bug which has since been fixed in mainline. It will
  be sent for inclusion with the xfstests project should you decide to
  merge this.

  In order to support per-mount idmappings vfsmounts are marked with
  user namespaces. The idmapping of the user namespace will be used to
  map the ids of vfs objects when they are accessed through that mount.
  By default all vfsmounts are marked with the initial user namespace.
  The initial user namespace is used to indicate that a mount is not
  idmapped. All operations behave as before and this is verified in the
  testsuite.

  Based on prior discussions we want to attach the whole user namespace
  and not just a dedicated idmapping struct. This allows us to reuse all
  the helpers that already exist for dealing with idmappings instead of
  introducing a whole new range of helpers. In addition, if we decide in
  the future that we are confident enough to enable unprivileged users
  to setup idmapped mounts the permission checking can take into account
  whether the caller is privileged in the user namespace the mount is
  currently marked with.

  The user namespace the mount will be marked with can be specified by
  passing a file descriptor refering to the user namespace as an
  argument to the new mount_setattr() syscall together with the new
  MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
  of extensibility.

  The following conditions must be met in order to create an idmapped
  mount:

   - The caller must currently have the CAP_SYS_ADMIN capability in the
     user namespace the underlying filesystem has been mounted in.

   - The underlying filesystem must support idmapped mounts.

   - The mount must not already be idmapped. This also implies that the
     idmapping of a mount cannot be altered once it has been idmapped.

   - The mount must be a detached/anonymous mount, i.e. it must have
     been created by calling open_tree() with the OPEN_TREE_CLONE flag
     and it must not already have been visible in the filesystem.

  The last two points guarantee easier semantics for userspace and the
  kernel and make the implementation significantly simpler.

  By default vfsmounts are marked with the initial user namespace and no
  behavioral or performance changes are observed.

  The manpage with a detailed description can be found here:

      1d7b902e28

  In order to support idmapped mounts, filesystems need to be changed
  and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
  patches to convert individual filesystem are not very large or
  complicated overall as can be seen from the included fat, ext4, and
  xfs ports. Patches for other filesystems are actively worked on and
  will be sent out separately. The xfstestsuite can be used to verify
  that port has been done correctly.

  The mount_setattr() syscall is motivated independent of the idmapped
  mounts patches and it's been around since July 2019. One of the most
  valuable features of the new mount api is the ability to perform
  mounts based on file descriptors only.

  Together with the lookup restrictions available in the openat2()
  RESOLVE_* flag namespace which we added in v5.6 this is the first time
  we are close to hardened and race-free (e.g. symlinks) mounting and
  path resolution.

  While userspace has started porting to the new mount api to mount
  proper filesystems and create new bind-mounts it is currently not
  possible to change mount options of an already existing bind mount in
  the new mount api since the mount_setattr() syscall is missing.

  With the addition of the mount_setattr() syscall we remove this last
  restriction and userspace can now fully port to the new mount api,
  covering every use-case the old mount api could. We also add the
  crucial ability to recursively change mount options for a whole mount
  tree, both removing and adding mount options at the same time. This
  syscall has been requested multiple times by various people and
  projects.

  There is a simple tool available at

      https://github.com/brauner/mount-idmapped

  that allows to create idmapped mounts so people can play with this
  patch series. I'll add support for the regular mount binary should you
  decide to pull this in the following weeks:

  Here's an example to a simple idmapped mount of another user's home
  directory:

	u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt

	u1001@f2-vm:/$ ls -al /home/ubuntu/
	total 28
	drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
	drwxr-xr-x 4 root   root   4096 Oct 28 04:00 ..
	-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
	-rw-r--r-- 1 ubuntu ubuntu  220 Feb 25  2020 .bash_logout
	-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25  2020 .bashrc
	-rw-r--r-- 1 ubuntu ubuntu  807 Feb 25  2020 .profile
	-rw-r--r-- 1 ubuntu ubuntu    0 Oct 16 16:11 .sudo_as_admin_successful
	-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo

	u1001@f2-vm:/$ ls -al /mnt/
	total 28
	drwxr-xr-x  2 u1001 u1001 4096 Oct 28 22:07 .
	drwxr-xr-x 29 root  root  4096 Oct 28 22:01 ..
	-rw-------  1 u1001 u1001 3154 Oct 28 22:12 .bash_history
	-rw-r--r--  1 u1001 u1001  220 Feb 25  2020 .bash_logout
	-rw-r--r--  1 u1001 u1001 3771 Feb 25  2020 .bashrc
	-rw-r--r--  1 u1001 u1001  807 Feb 25  2020 .profile
	-rw-r--r--  1 u1001 u1001    0 Oct 16 16:11 .sudo_as_admin_successful
	-rw-------  1 u1001 u1001 1144 Oct 28 00:43 .viminfo

	u1001@f2-vm:/$ touch /mnt/my-file

	u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file

	u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file

	u1001@f2-vm:/$ ls -al /mnt/my-file
	-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file

	u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
	-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file

	u1001@f2-vm:/$ getfacl /mnt/my-file
	getfacl: Removing leading '/' from absolute path names
	# file: mnt/my-file
	# owner: u1001
	# group: u1001
	user::rw-
	user:u1001:rwx
	group::rw-
	mask::rwx
	other::r--

	u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
	getfacl: Removing leading '/' from absolute path names
	# file: home/ubuntu/my-file
	# owner: ubuntu
	# group: ubuntu
	user::rw-
	user:ubuntu:rwx
	group::rw-
	mask::rwx
	other::r--"

* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
  xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
  xfs: support idmapped mounts
  ext4: support idmapped mounts
  fat: handle idmapped mounts
  tests: add mount_setattr() selftests
  fs: introduce MOUNT_ATTR_IDMAP
  fs: add mount_setattr()
  fs: add attr_flags_to_mnt_flags helper
  fs: split out functions to hold writers
  namespace: only take read lock in do_reconfigure_mnt()
  mount: make {lock,unlock}_mount_hash() static
  namespace: take lock_mount_hash() directly when changing flags
  nfs: do not export idmapped mounts
  overlayfs: do not mount on top of idmapped mounts
  ecryptfs: do not mount on top of idmapped mounts
  ima: handle idmapped mounts
  apparmor: handle idmapped mounts
  fs: make helpers idmap mount aware
  exec: handle idmapped mounts
  would_dump: handle idmapped mounts
  ...
2021-02-23 13:39:45 -08:00
..
Kconfig treewide: Add SPDX license identifier - Makefile/Kconfig 2019-05-21 10:50:46 +02:00
LICENCE
Makefile License cleanup: add SPDX GPL-2.0 license identifier to files with no license 2017-11-02 11:10:55 +01:00
README.Locking jffs2: Fix page lock / f->sem deadlock 2016-02-25 11:11:26 +00:00
TODO
acl.c fs: make helpers idmap mount aware 2021-01-24 14:27:20 +01:00
acl.h fs: make helpers idmap mount aware 2021-01-24 14:27:20 +01:00
background.c signal: Remove the siginfo paramater from kernel_dqueue_signal 2018-09-11 21:19:14 +02:00
build.c Fix directory hardlinks from deleted directories 2016-02-25 11:11:28 +00:00
compr.c
compr.h
compr_lzo.c
compr_rtime.c jffs2: check the validity of dstlen in jffs2_zlib_compress() 2021-02-12 21:53:23 +01:00
compr_rubin.c jffs2: compr_rubin: Remove unused function 2015-01-12 20:40:03 -08:00
compr_zlib.c initramfs: support initramfs that is bigger than 2GiB 2014-08-08 15:57:26 -07:00
debug.c mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros 2016-04-04 10:41:08 -07:00
debug.h jffs2: Fix if/else empty body warnings 2020-12-13 21:51:54 +01:00
dir.c fs: make helpers idmap mount aware 2021-01-24 14:27:20 +01:00
erase.c treewide: Remove uninitialized_var() usage 2020-07-16 12:35:15 -07:00
file.c jffs2: pass the correct prototype to read_cache_page 2019-07-12 11:05:43 -07:00
fs.c fs: make helpers idmap mount aware 2021-01-24 14:27:20 +01:00
gc.c jffs2: Remove jffs2_gc_fetch_page and jffs2_gc_release_page 2019-09-15 22:42:33 +02:00
ioctl.c
jffs2_fs_i.h
jffs2_fs_sb.h jffs2: Allow setting rp_size to zero during remounting 2020-12-13 21:56:24 +01:00
malloc.c jffs2: drop null test before destroy functions 2015-09-21 17:04:57 -07:00
nodelist.c Revert "jffs2: Fix possible null-pointer dereferences in jffs2_add_frag_to_fragtree()" 2019-11-29 11:29:58 +01:00
nodelist.h jffs2: remove trailing semicolon in macro definition 2020-12-13 21:57:20 +01:00
nodemgmt.c sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h> 2017-03-02 08:42:32 +01:00
os-linux.h fs: make helpers idmap mount aware 2021-01-24 14:27:20 +01:00
read.c
readinode.c jffs2: Fix GC exit abnormally 2020-12-13 21:55:39 +01:00
scan.c jffs2: fix jffs2 mounting failure 2020-08-02 23:56:13 +02:00
security.c acl: handle idmapped mounts 2021-01-24 14:27:17 +01:00
summary.c jffs2: fix use after free in jffs2_sum_write_data() 2021-02-12 21:53:22 +01:00
summary.h jffs2: Replace zero-length array with flexible-array 2020-06-15 23:08:31 -05:00
super.c jffs2: Fix NULL pointer dereference in rp_size fs option parsing 2020-12-13 21:57:21 +01:00
symlink.c vfs: remove ".readlink = generic_readlink" assignments 2016-12-09 16:45:04 +01:00
wbuf.c treewide: kmalloc() -> kmalloc_array() 2018-06-12 16:19:22 -07:00
write.c vfs: make the string hashes salt the hash 2016-06-10 20:21:46 -07:00
writev.c
xattr.c xattr handlers: Simplify list operation 2015-12-13 19:46:12 -05:00
xattr.h jffs2: Remove jffs2_{get,set,remove}xattr macros 2016-10-06 22:17:38 -04:00
xattr_trusted.c acl: handle idmapped mounts 2021-01-24 14:27:17 +01:00
xattr_user.c acl: handle idmapped mounts 2021-01-24 14:27:17 +01:00

README.Locking

	JFFS2 LOCKING DOCUMENTATION
	---------------------------

This document attempts to describe the existing locking rules for
JFFS2. It is not expected to remain perfectly up to date, but ought to
be fairly close.


	alloc_sem
	---------

The alloc_sem is a per-filesystem mutex, used primarily to ensure
contiguous allocation of space on the medium. It is automatically
obtained during space allocations (jffs2_reserve_space()) and freed
upon write completion (jffs2_complete_reservation()). Note that
the garbage collector will obtain this right at the beginning of
jffs2_garbage_collect_pass() and release it at the end, thereby
preventing any other write activity on the file system during a
garbage collect pass.

When writing new nodes, the alloc_sem must be held until the new nodes
have been properly linked into the data structures for the inode to
which they belong. This is for the benefit of NAND flash - adding new
nodes to an inode may obsolete old ones, and by holding the alloc_sem
until this happens we ensure that any data in the write-buffer at the
time this happens are part of the new node, not just something that
was written afterwards. Hence, we can ensure the newly-obsoleted nodes
don't actually get erased until the write-buffer has been flushed to
the medium.

With the introduction of NAND flash support and the write-buffer, 
the alloc_sem is also used to protect the wbuf-related members of the
jffs2_sb_info structure. Atomically reading the wbuf_len member to see
if the wbuf is currently holding any data is permitted, though.

Ordering constraints: See f->sem.


	File Mutex f->sem
	---------------------

This is the JFFS2-internal equivalent of the inode mutex i->i_sem.
It protects the contents of the jffs2_inode_info private inode data,
including the linked list of node fragments (but see the notes below on
erase_completion_lock), etc.

The reason that the i_sem itself isn't used for this purpose is to
avoid deadlocks with garbage collection -- the VFS will lock the i_sem
before calling a function which may need to allocate space. The
allocation may trigger garbage-collection, which may need to move a
node belonging to the inode which was locked in the first place by the
VFS. If the garbage collection code were to attempt to lock the i_sem
of the inode from which it's garbage-collecting a physical node, this
lead to deadlock, unless we played games with unlocking the i_sem
before calling the space allocation functions.

Instead of playing such games, we just have an extra internal
mutex, which is obtained by the garbage collection code and also
by the normal file system code _after_ allocation of space.

Ordering constraints: 

	1. Never attempt to allocate space or lock alloc_sem with 
	   any f->sem held.
	2. Never attempt to lock two file mutexes in one thread.
	   No ordering rules have been made for doing so.
	3. Never lock a page cache page with f->sem held.


	erase_completion_lock spinlock
	------------------------------

This is used to serialise access to the eraseblock lists, to the
per-eraseblock lists of physical jffs2_raw_node_ref structures, and
(NB) the per-inode list of physical nodes. The latter is a special
case - see below.

As the MTD API no longer permits erase-completion callback functions
to be called from bottom-half (timer) context (on the basis that nobody
ever actually implemented such a thing), it's now sufficient to use
a simple spin_lock() rather than spin_lock_bh().

Note that the per-inode list of physical nodes (f->nodes) is a special
case. Any changes to _valid_ nodes (i.e. ->flash_offset & 1 == 0) in
the list are protected by the file mutex f->sem. But the erase code
may remove _obsolete_ nodes from the list while holding only the
erase_completion_lock. So you can walk the list only while holding the
erase_completion_lock, and can drop the lock temporarily mid-walk as
long as the pointer you're holding is to a _valid_ node, not an
obsolete one.

The erase_completion_lock is also used to protect the c->gc_task
pointer when the garbage collection thread exits. The code to kill the
GC thread locks it, sends the signal, then unlocks it - while the GC
thread itself locks it, zeroes c->gc_task, then unlocks on the exit path.


	inocache_lock spinlock
	----------------------

This spinlock protects the hashed list (c->inocache_list) of the
in-core jffs2_inode_cache objects (each inode in JFFS2 has the
correspondent jffs2_inode_cache object). So, the inocache_lock
has to be locked while walking the c->inocache_list hash buckets.

This spinlock also covers allocation of new inode numbers, which is
currently just '++->highest_ino++', but might one day get more complicated
if we need to deal with wrapping after 4 milliard inode numbers are used.

Note, the f->sem guarantees that the correspondent jffs2_inode_cache
will not be removed. So, it is allowed to access it without locking
the inocache_lock spinlock. 

Ordering constraints: 

	If both erase_completion_lock and inocache_lock are needed, the
	c->erase_completion has to be acquired first.


	erase_free_sem
	--------------

This mutex is only used by the erase code which frees obsolete node
references and the jffs2_garbage_collect_deletion_dirent() function.
The latter function on NAND flash must read _obsolete_ nodes to
determine whether the 'deletion dirent' under consideration can be
discarded or whether it is still required to show that an inode has
been unlinked. Because reading from the flash may sleep, the
erase_completion_lock cannot be held, so an alternative, more
heavyweight lock was required to prevent the erase code from freeing
the jffs2_raw_node_ref structures in question while the garbage
collection code is looking at them.

Suggestions for alternative solutions to this problem would be welcomed.


	wbuf_sem
	--------

This read/write semaphore protects against concurrent access to the
write-behind buffer ('wbuf') used for flash chips where we must write
in blocks. It protects both the contents of the wbuf and the metadata
which indicates which flash region (if any) is currently covered by 
the buffer.

Ordering constraints:
	Lock wbuf_sem last, after the alloc_sem or and f->sem.


	c->xattr_sem
	------------

This read/write semaphore protects against concurrent access to the
xattr related objects which include stuff in superblock and ic->xref.
In read-only path, write-semaphore is too much exclusion. It's enough
by read-semaphore. But you must hold write-semaphore when updating,
creating or deleting any xattr related object.

Once xattr_sem released, there would be no assurance for the existence
of those objects. Thus, a series of processes is often required to retry,
when updating such a object is necessary under holding read semaphore.
For example, do_jffs2_getxattr() holds read-semaphore to scan xref and
xdatum at first. But it retries this process with holding write-semaphore
after release read-semaphore, if it's necessary to load name/value pair
from medium.

Ordering constraints:
	Lock xattr_sem last, after the alloc_sem.