linux/security/keys/gc.c

369 lines
10 KiB
C

/* Key garbage collector
*
* Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/slab.h>
#include <linux/security.h>
#include <keys/keyring-type.h>
#include "internal.h"
/*
* Delay between key revocation/expiry in seconds
*/
unsigned key_gc_delay = 5 * 60;
/*
* Reaper for unused keys.
*/
static void key_garbage_collector(struct work_struct *work);
DECLARE_WORK(key_gc_work, key_garbage_collector);
/*
* Reaper for links from keyrings to dead keys.
*/
static void key_gc_timer_func(struct timer_list *);
static DEFINE_TIMER(key_gc_timer, key_gc_timer_func);
static time64_t key_gc_next_run = TIME64_MAX;
static struct key_type *key_gc_dead_keytype;
static unsigned long key_gc_flags;
#define KEY_GC_KEY_EXPIRED 0 /* A key expired and needs unlinking */
#define KEY_GC_REAP_KEYTYPE 1 /* A keytype is being unregistered */
#define KEY_GC_REAPING_KEYTYPE 2 /* Cleared when keytype reaped */
/*
* Any key whose type gets unregistered will be re-typed to this if it can't be
* immediately unlinked.
*/
struct key_type key_type_dead = {
.name = ".dead",
};
/*
* Schedule a garbage collection run.
* - time precision isn't particularly important
*/
void key_schedule_gc(time64_t gc_at)
{
unsigned long expires;
time64_t now = ktime_get_real_seconds();
kenter("%lld", gc_at - now);
if (gc_at <= now || test_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) {
kdebug("IMMEDIATE");
schedule_work(&key_gc_work);
} else if (gc_at < key_gc_next_run) {
kdebug("DEFERRED");
key_gc_next_run = gc_at;
expires = jiffies + (gc_at - now) * HZ;
mod_timer(&key_gc_timer, expires);
}
}
/*
* Schedule a dead links collection run.
*/
void key_schedule_gc_links(void)
{
set_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags);
schedule_work(&key_gc_work);
}
/*
* Some key's cleanup time was met after it expired, so we need to get the
* reaper to go through a cycle finding expired keys.
*/
static void key_gc_timer_func(struct timer_list *unused)
{
kenter("");
key_gc_next_run = TIME64_MAX;
key_schedule_gc_links();
}
/*
* Reap keys of dead type.
*
* We use three flags to make sure we see three complete cycles of the garbage
* collector: the first to mark keys of that type as being dead, the second to
* collect dead links and the third to clean up the dead keys. We have to be
* careful as there may already be a cycle in progress.
*
* The caller must be holding key_types_sem.
*/
void key_gc_keytype(struct key_type *ktype)
{
kenter("%s", ktype->name);
key_gc_dead_keytype = ktype;
set_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
smp_mb();
set_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags);
kdebug("schedule");
schedule_work(&key_gc_work);
kdebug("sleep");
wait_on_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE,
TASK_UNINTERRUPTIBLE);
key_gc_dead_keytype = NULL;
kleave("");
}
/*
* Garbage collect a list of unreferenced, detached keys
*/
static noinline void key_gc_unused_keys(struct list_head *keys)
{
while (!list_empty(keys)) {
struct key *key =
list_entry(keys->next, struct key, graveyard_link);
short state = key->state;
list_del(&key->graveyard_link);
kdebug("- %u", key->serial);
key_check(key);
/* Throw away the key data if the key is instantiated */
if (state == KEY_IS_POSITIVE && key->type->destroy)
key->type->destroy(key);
security_key_free(key);
/* deal with the user's key tracking and quota */
if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
spin_lock(&key->user->lock);
key->user->qnkeys--;
key->user->qnbytes -= key->quotalen;
spin_unlock(&key->user->lock);
}
atomic_dec(&key->user->nkeys);
if (state != KEY_IS_UNINSTANTIATED)
atomic_dec(&key->user->nikeys);
key_user_put(key->user);
kfree(key->description);
memzero_explicit(key, sizeof(*key));
kmem_cache_free(key_jar, key);
}
}
/*
* Garbage collector for unused keys.
*
* This is done in process context so that we don't have to disable interrupts
* all over the place. key_put() schedules this rather than trying to do the
* cleanup itself, which means key_put() doesn't have to sleep.
*/
static void key_garbage_collector(struct work_struct *work)
{
static LIST_HEAD(graveyard);
static u8 gc_state; /* Internal persistent state */
#define KEY_GC_REAP_AGAIN 0x01 /* - Need another cycle */
#define KEY_GC_REAPING_LINKS 0x02 /* - We need to reap links */
#define KEY_GC_SET_TIMER 0x04 /* - We need to restart the timer */
#define KEY_GC_REAPING_DEAD_1 0x10 /* - We need to mark dead keys */
#define KEY_GC_REAPING_DEAD_2 0x20 /* - We need to reap dead key links */
#define KEY_GC_REAPING_DEAD_3 0x40 /* - We need to reap dead keys */
#define KEY_GC_FOUND_DEAD_KEY 0x80 /* - We found at least one dead key */
struct rb_node *cursor;
struct key *key;
time64_t new_timer, limit;
kenter("[%lx,%x]", key_gc_flags, gc_state);
limit = ktime_get_real_seconds();
if (limit > key_gc_delay)
limit -= key_gc_delay;
else
limit = key_gc_delay;
/* Work out what we're going to be doing in this pass */
gc_state &= KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2;
gc_state <<= 1;
if (test_and_clear_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags))
gc_state |= KEY_GC_REAPING_LINKS | KEY_GC_SET_TIMER;
if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags))
gc_state |= KEY_GC_REAPING_DEAD_1;
kdebug("new pass %x", gc_state);
new_timer = TIME64_MAX;
/* As only this function is permitted to remove things from the key
* serial tree, if cursor is non-NULL then it will always point to a
* valid node in the tree - even if lock got dropped.
*/
spin_lock(&key_serial_lock);
cursor = rb_first(&key_serial_tree);
continue_scanning:
while (cursor) {
key = rb_entry(cursor, struct key, serial_node);
cursor = rb_next(cursor);
if (refcount_read(&key->usage) == 0)
goto found_unreferenced_key;
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_1)) {
if (key->type == key_gc_dead_keytype) {
gc_state |= KEY_GC_FOUND_DEAD_KEY;
set_bit(KEY_FLAG_DEAD, &key->flags);
key->perm = 0;
goto skip_dead_key;
} else if (key->type == &key_type_keyring &&
key->restrict_link) {
goto found_restricted_keyring;
}
}
if (gc_state & KEY_GC_SET_TIMER) {
if (key->expiry > limit && key->expiry < new_timer) {
kdebug("will expire %x in %lld",
key_serial(key), key->expiry - limit);
new_timer = key->expiry;
}
}
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2))
if (key->type == key_gc_dead_keytype)
gc_state |= KEY_GC_FOUND_DEAD_KEY;
if ((gc_state & KEY_GC_REAPING_LINKS) ||
unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
if (key->type == &key_type_keyring)
goto found_keyring;
}
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3))
if (key->type == key_gc_dead_keytype)
goto destroy_dead_key;
skip_dead_key:
if (spin_is_contended(&key_serial_lock) || need_resched())
goto contended;
}
contended:
spin_unlock(&key_serial_lock);
maybe_resched:
if (cursor) {
cond_resched();
spin_lock(&key_serial_lock);
goto continue_scanning;
}
/* We've completed the pass. Set the timer if we need to and queue a
* new cycle if necessary. We keep executing cycles until we find one
* where we didn't reap any keys.
*/
kdebug("pass complete");
if (gc_state & KEY_GC_SET_TIMER && new_timer != (time64_t)TIME64_MAX) {
new_timer += key_gc_delay;
key_schedule_gc(new_timer);
}
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2) ||
!list_empty(&graveyard)) {
/* Make sure that all pending keyring payload destructions are
* fulfilled and that people aren't now looking at dead or
* dying keys that they don't have a reference upon or a link
* to.
*/
kdebug("gc sync");
synchronize_rcu();
}
if (!list_empty(&graveyard)) {
kdebug("gc keys");
key_gc_unused_keys(&graveyard);
}
if (unlikely(gc_state & (KEY_GC_REAPING_DEAD_1 |
KEY_GC_REAPING_DEAD_2))) {
if (!(gc_state & KEY_GC_FOUND_DEAD_KEY)) {
/* No remaining dead keys: short circuit the remaining
* keytype reap cycles.
*/
kdebug("dead short");
gc_state &= ~(KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2);
gc_state |= KEY_GC_REAPING_DEAD_3;
} else {
gc_state |= KEY_GC_REAP_AGAIN;
}
}
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) {
kdebug("dead wake");
smp_mb();
clear_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
wake_up_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE);
}
if (gc_state & KEY_GC_REAP_AGAIN)
schedule_work(&key_gc_work);
kleave(" [end %x]", gc_state);
return;
/* We found an unreferenced key - once we've removed it from the tree,
* we can safely drop the lock.
*/
found_unreferenced_key:
kdebug("unrefd key %d", key->serial);
rb_erase(&key->serial_node, &key_serial_tree);
spin_unlock(&key_serial_lock);
list_add_tail(&key->graveyard_link, &graveyard);
gc_state |= KEY_GC_REAP_AGAIN;
goto maybe_resched;
/* We found a restricted keyring and need to update the restriction if
* it is associated with the dead key type.
*/
found_restricted_keyring:
spin_unlock(&key_serial_lock);
keyring_restriction_gc(key, key_gc_dead_keytype);
goto maybe_resched;
/* We found a keyring and we need to check the payload for links to
* dead or expired keys. We don't flag another reap immediately as we
* have to wait for the old payload to be destroyed by RCU before we
* can reap the keys to which it refers.
*/
found_keyring:
spin_unlock(&key_serial_lock);
keyring_gc(key, limit);
goto maybe_resched;
/* We found a dead key that is still referenced. Reset its type and
* destroy its payload with its semaphore held.
*/
destroy_dead_key:
spin_unlock(&key_serial_lock);
kdebug("destroy key %d", key->serial);
down_write(&key->sem);
key->type = &key_type_dead;
if (key_gc_dead_keytype->destroy)
key_gc_dead_keytype->destroy(key);
memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
up_write(&key->sem);
goto maybe_resched;
}