mirror of https://gitee.com/openkylin/linux.git
5537 lines
138 KiB
C
5537 lines
138 KiB
C
/*
|
|
* Copyright © 2006-2014 Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* Authors: David Woodhouse <dwmw2@infradead.org>,
|
|
* Ashok Raj <ashok.raj@intel.com>,
|
|
* Shaohua Li <shaohua.li@intel.com>,
|
|
* Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
|
|
* Fenghua Yu <fenghua.yu@intel.com>
|
|
* Joerg Roedel <jroedel@suse.de>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "DMAR: " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dmar.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iova.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/intel-iommu.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/tboot.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/pci-ats.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/iommu.h>
|
|
|
|
#include "irq_remapping.h"
|
|
|
|
#define ROOT_SIZE VTD_PAGE_SIZE
|
|
#define CONTEXT_SIZE VTD_PAGE_SIZE
|
|
|
|
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
|
|
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
|
|
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
|
|
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
|
|
|
|
#define IOAPIC_RANGE_START (0xfee00000)
|
|
#define IOAPIC_RANGE_END (0xfeefffff)
|
|
#define IOVA_START_ADDR (0x1000)
|
|
|
|
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
|
|
|
|
#define MAX_AGAW_WIDTH 64
|
|
#define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
|
|
|
|
#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
|
|
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
|
|
|
|
/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
|
|
to match. That way, we can use 'unsigned long' for PFNs with impunity. */
|
|
#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
|
|
__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
|
|
#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
|
|
|
|
/* IO virtual address start page frame number */
|
|
#define IOVA_START_PFN (1)
|
|
|
|
#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
|
|
#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
|
|
#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
|
|
|
|
/* page table handling */
|
|
#define LEVEL_STRIDE (9)
|
|
#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
|
|
|
|
/*
|
|
* This bitmap is used to advertise the page sizes our hardware support
|
|
* to the IOMMU core, which will then use this information to split
|
|
* physically contiguous memory regions it is mapping into page sizes
|
|
* that we support.
|
|
*
|
|
* Traditionally the IOMMU core just handed us the mappings directly,
|
|
* after making sure the size is an order of a 4KiB page and that the
|
|
* mapping has natural alignment.
|
|
*
|
|
* To retain this behavior, we currently advertise that we support
|
|
* all page sizes that are an order of 4KiB.
|
|
*
|
|
* If at some point we'd like to utilize the IOMMU core's new behavior,
|
|
* we could change this to advertise the real page sizes we support.
|
|
*/
|
|
#define INTEL_IOMMU_PGSIZES (~0xFFFUL)
|
|
|
|
static inline int agaw_to_level(int agaw)
|
|
{
|
|
return agaw + 2;
|
|
}
|
|
|
|
static inline int agaw_to_width(int agaw)
|
|
{
|
|
return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
|
|
}
|
|
|
|
static inline int width_to_agaw(int width)
|
|
{
|
|
return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
|
|
}
|
|
|
|
static inline unsigned int level_to_offset_bits(int level)
|
|
{
|
|
return (level - 1) * LEVEL_STRIDE;
|
|
}
|
|
|
|
static inline int pfn_level_offset(unsigned long pfn, int level)
|
|
{
|
|
return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
|
|
}
|
|
|
|
static inline unsigned long level_mask(int level)
|
|
{
|
|
return -1UL << level_to_offset_bits(level);
|
|
}
|
|
|
|
static inline unsigned long level_size(int level)
|
|
{
|
|
return 1UL << level_to_offset_bits(level);
|
|
}
|
|
|
|
static inline unsigned long align_to_level(unsigned long pfn, int level)
|
|
{
|
|
return (pfn + level_size(level) - 1) & level_mask(level);
|
|
}
|
|
|
|
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
|
|
{
|
|
return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
|
|
}
|
|
|
|
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
|
|
are never going to work. */
|
|
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
|
|
{
|
|
return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
|
|
}
|
|
|
|
static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
|
|
{
|
|
return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
|
|
}
|
|
static inline unsigned long page_to_dma_pfn(struct page *pg)
|
|
{
|
|
return mm_to_dma_pfn(page_to_pfn(pg));
|
|
}
|
|
static inline unsigned long virt_to_dma_pfn(void *p)
|
|
{
|
|
return page_to_dma_pfn(virt_to_page(p));
|
|
}
|
|
|
|
/* global iommu list, set NULL for ignored DMAR units */
|
|
static struct intel_iommu **g_iommus;
|
|
|
|
static void __init check_tylersburg_isoch(void);
|
|
static int rwbf_quirk;
|
|
|
|
/*
|
|
* set to 1 to panic kernel if can't successfully enable VT-d
|
|
* (used when kernel is launched w/ TXT)
|
|
*/
|
|
static int force_on = 0;
|
|
|
|
/*
|
|
* 0: Present
|
|
* 1-11: Reserved
|
|
* 12-63: Context Ptr (12 - (haw-1))
|
|
* 64-127: Reserved
|
|
*/
|
|
struct root_entry {
|
|
u64 lo;
|
|
u64 hi;
|
|
};
|
|
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
|
|
|
|
/*
|
|
* Take a root_entry and return the Lower Context Table Pointer (LCTP)
|
|
* if marked present.
|
|
*/
|
|
static phys_addr_t root_entry_lctp(struct root_entry *re)
|
|
{
|
|
if (!(re->lo & 1))
|
|
return 0;
|
|
|
|
return re->lo & VTD_PAGE_MASK;
|
|
}
|
|
|
|
/*
|
|
* Take a root_entry and return the Upper Context Table Pointer (UCTP)
|
|
* if marked present.
|
|
*/
|
|
static phys_addr_t root_entry_uctp(struct root_entry *re)
|
|
{
|
|
if (!(re->hi & 1))
|
|
return 0;
|
|
|
|
return re->hi & VTD_PAGE_MASK;
|
|
}
|
|
/*
|
|
* low 64 bits:
|
|
* 0: present
|
|
* 1: fault processing disable
|
|
* 2-3: translation type
|
|
* 12-63: address space root
|
|
* high 64 bits:
|
|
* 0-2: address width
|
|
* 3-6: aval
|
|
* 8-23: domain id
|
|
*/
|
|
struct context_entry {
|
|
u64 lo;
|
|
u64 hi;
|
|
};
|
|
|
|
static inline void context_clear_pasid_enable(struct context_entry *context)
|
|
{
|
|
context->lo &= ~(1ULL << 11);
|
|
}
|
|
|
|
static inline bool context_pasid_enabled(struct context_entry *context)
|
|
{
|
|
return !!(context->lo & (1ULL << 11));
|
|
}
|
|
|
|
static inline void context_set_copied(struct context_entry *context)
|
|
{
|
|
context->hi |= (1ull << 3);
|
|
}
|
|
|
|
static inline bool context_copied(struct context_entry *context)
|
|
{
|
|
return !!(context->hi & (1ULL << 3));
|
|
}
|
|
|
|
static inline bool __context_present(struct context_entry *context)
|
|
{
|
|
return (context->lo & 1);
|
|
}
|
|
|
|
static inline bool context_present(struct context_entry *context)
|
|
{
|
|
return context_pasid_enabled(context) ?
|
|
__context_present(context) :
|
|
__context_present(context) && !context_copied(context);
|
|
}
|
|
|
|
static inline void context_set_present(struct context_entry *context)
|
|
{
|
|
context->lo |= 1;
|
|
}
|
|
|
|
static inline void context_set_fault_enable(struct context_entry *context)
|
|
{
|
|
context->lo &= (((u64)-1) << 2) | 1;
|
|
}
|
|
|
|
static inline void context_set_translation_type(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->lo &= (((u64)-1) << 4) | 3;
|
|
context->lo |= (value & 3) << 2;
|
|
}
|
|
|
|
static inline void context_set_address_root(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->lo &= ~VTD_PAGE_MASK;
|
|
context->lo |= value & VTD_PAGE_MASK;
|
|
}
|
|
|
|
static inline void context_set_address_width(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->hi |= value & 7;
|
|
}
|
|
|
|
static inline void context_set_domain_id(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->hi |= (value & ((1 << 16) - 1)) << 8;
|
|
}
|
|
|
|
static inline int context_domain_id(struct context_entry *c)
|
|
{
|
|
return((c->hi >> 8) & 0xffff);
|
|
}
|
|
|
|
static inline void context_clear_entry(struct context_entry *context)
|
|
{
|
|
context->lo = 0;
|
|
context->hi = 0;
|
|
}
|
|
|
|
/*
|
|
* 0: readable
|
|
* 1: writable
|
|
* 2-6: reserved
|
|
* 7: super page
|
|
* 8-10: available
|
|
* 11: snoop behavior
|
|
* 12-63: Host physcial address
|
|
*/
|
|
struct dma_pte {
|
|
u64 val;
|
|
};
|
|
|
|
static inline void dma_clear_pte(struct dma_pte *pte)
|
|
{
|
|
pte->val = 0;
|
|
}
|
|
|
|
static inline u64 dma_pte_addr(struct dma_pte *pte)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
return pte->val & VTD_PAGE_MASK;
|
|
#else
|
|
/* Must have a full atomic 64-bit read */
|
|
return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
|
|
#endif
|
|
}
|
|
|
|
static inline bool dma_pte_present(struct dma_pte *pte)
|
|
{
|
|
return (pte->val & 3) != 0;
|
|
}
|
|
|
|
static inline bool dma_pte_superpage(struct dma_pte *pte)
|
|
{
|
|
return (pte->val & DMA_PTE_LARGE_PAGE);
|
|
}
|
|
|
|
static inline int first_pte_in_page(struct dma_pte *pte)
|
|
{
|
|
return !((unsigned long)pte & ~VTD_PAGE_MASK);
|
|
}
|
|
|
|
/*
|
|
* This domain is a statically identity mapping domain.
|
|
* 1. This domain creats a static 1:1 mapping to all usable memory.
|
|
* 2. It maps to each iommu if successful.
|
|
* 3. Each iommu mapps to this domain if successful.
|
|
*/
|
|
static struct dmar_domain *si_domain;
|
|
static int hw_pass_through = 1;
|
|
|
|
/*
|
|
* Domain represents a virtual machine, more than one devices
|
|
* across iommus may be owned in one domain, e.g. kvm guest.
|
|
*/
|
|
#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
|
|
|
|
/* si_domain contains mulitple devices */
|
|
#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
|
|
|
|
#define for_each_domain_iommu(idx, domain) \
|
|
for (idx = 0; idx < g_num_of_iommus; idx++) \
|
|
if (domain->iommu_refcnt[idx])
|
|
|
|
struct dmar_domain {
|
|
int nid; /* node id */
|
|
|
|
unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
|
|
/* Refcount of devices per iommu */
|
|
|
|
|
|
u16 iommu_did[DMAR_UNITS_SUPPORTED];
|
|
/* Domain ids per IOMMU. Use u16 since
|
|
* domain ids are 16 bit wide according
|
|
* to VT-d spec, section 9.3 */
|
|
|
|
bool has_iotlb_device;
|
|
struct list_head devices; /* all devices' list */
|
|
struct iova_domain iovad; /* iova's that belong to this domain */
|
|
|
|
struct dma_pte *pgd; /* virtual address */
|
|
int gaw; /* max guest address width */
|
|
|
|
/* adjusted guest address width, 0 is level 2 30-bit */
|
|
int agaw;
|
|
|
|
int flags; /* flags to find out type of domain */
|
|
|
|
int iommu_coherency;/* indicate coherency of iommu access */
|
|
int iommu_snooping; /* indicate snooping control feature*/
|
|
int iommu_count; /* reference count of iommu */
|
|
int iommu_superpage;/* Level of superpages supported:
|
|
0 == 4KiB (no superpages), 1 == 2MiB,
|
|
2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
|
|
u64 max_addr; /* maximum mapped address */
|
|
|
|
struct iommu_domain domain; /* generic domain data structure for
|
|
iommu core */
|
|
};
|
|
|
|
/* PCI domain-device relationship */
|
|
struct device_domain_info {
|
|
struct list_head link; /* link to domain siblings */
|
|
struct list_head global; /* link to global list */
|
|
u8 bus; /* PCI bus number */
|
|
u8 devfn; /* PCI devfn number */
|
|
u8 pasid_supported:3;
|
|
u8 pasid_enabled:1;
|
|
u8 pri_supported:1;
|
|
u8 pri_enabled:1;
|
|
u8 ats_supported:1;
|
|
u8 ats_enabled:1;
|
|
u8 ats_qdep;
|
|
struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
|
|
struct intel_iommu *iommu; /* IOMMU used by this device */
|
|
struct dmar_domain *domain; /* pointer to domain */
|
|
};
|
|
|
|
struct dmar_rmrr_unit {
|
|
struct list_head list; /* list of rmrr units */
|
|
struct acpi_dmar_header *hdr; /* ACPI header */
|
|
u64 base_address; /* reserved base address*/
|
|
u64 end_address; /* reserved end address */
|
|
struct dmar_dev_scope *devices; /* target devices */
|
|
int devices_cnt; /* target device count */
|
|
struct iommu_resv_region *resv; /* reserved region handle */
|
|
};
|
|
|
|
struct dmar_atsr_unit {
|
|
struct list_head list; /* list of ATSR units */
|
|
struct acpi_dmar_header *hdr; /* ACPI header */
|
|
struct dmar_dev_scope *devices; /* target devices */
|
|
int devices_cnt; /* target device count */
|
|
u8 include_all:1; /* include all ports */
|
|
};
|
|
|
|
static LIST_HEAD(dmar_atsr_units);
|
|
static LIST_HEAD(dmar_rmrr_units);
|
|
|
|
#define for_each_rmrr_units(rmrr) \
|
|
list_for_each_entry(rmrr, &dmar_rmrr_units, list)
|
|
|
|
static void flush_unmaps_timeout(unsigned long data);
|
|
|
|
struct deferred_flush_entry {
|
|
unsigned long iova_pfn;
|
|
unsigned long nrpages;
|
|
struct dmar_domain *domain;
|
|
struct page *freelist;
|
|
};
|
|
|
|
#define HIGH_WATER_MARK 250
|
|
struct deferred_flush_table {
|
|
int next;
|
|
struct deferred_flush_entry entries[HIGH_WATER_MARK];
|
|
};
|
|
|
|
struct deferred_flush_data {
|
|
spinlock_t lock;
|
|
int timer_on;
|
|
struct timer_list timer;
|
|
long size;
|
|
struct deferred_flush_table *tables;
|
|
};
|
|
|
|
DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
|
|
|
|
/* bitmap for indexing intel_iommus */
|
|
static int g_num_of_iommus;
|
|
|
|
static void domain_exit(struct dmar_domain *domain);
|
|
static void domain_remove_dev_info(struct dmar_domain *domain);
|
|
static void dmar_remove_one_dev_info(struct dmar_domain *domain,
|
|
struct device *dev);
|
|
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
|
|
static void domain_context_clear(struct intel_iommu *iommu,
|
|
struct device *dev);
|
|
static int domain_detach_iommu(struct dmar_domain *domain,
|
|
struct intel_iommu *iommu);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
|
|
int dmar_disabled = 0;
|
|
#else
|
|
int dmar_disabled = 1;
|
|
#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
|
|
|
|
int intel_iommu_enabled = 0;
|
|
EXPORT_SYMBOL_GPL(intel_iommu_enabled);
|
|
|
|
static int dmar_map_gfx = 1;
|
|
static int dmar_forcedac;
|
|
static int intel_iommu_strict;
|
|
static int intel_iommu_superpage = 1;
|
|
static int intel_iommu_ecs = 1;
|
|
static int intel_iommu_pasid28;
|
|
static int iommu_identity_mapping;
|
|
|
|
#define IDENTMAP_ALL 1
|
|
#define IDENTMAP_GFX 2
|
|
#define IDENTMAP_AZALIA 4
|
|
|
|
/* Broadwell and Skylake have broken ECS support — normal so-called "second
|
|
* level" translation of DMA requests-without-PASID doesn't actually happen
|
|
* unless you also set the NESTE bit in an extended context-entry. Which of
|
|
* course means that SVM doesn't work because it's trying to do nested
|
|
* translation of the physical addresses it finds in the process page tables,
|
|
* through the IOVA->phys mapping found in the "second level" page tables.
|
|
*
|
|
* The VT-d specification was retroactively changed to change the definition
|
|
* of the capability bits and pretend that Broadwell/Skylake never happened...
|
|
* but unfortunately the wrong bit was changed. It's ECS which is broken, but
|
|
* for some reason it was the PASID capability bit which was redefined (from
|
|
* bit 28 on BDW/SKL to bit 40 in future).
|
|
*
|
|
* So our test for ECS needs to eschew those implementations which set the old
|
|
* PASID capabiity bit 28, since those are the ones on which ECS is broken.
|
|
* Unless we are working around the 'pasid28' limitations, that is, by putting
|
|
* the device into passthrough mode for normal DMA and thus masking the bug.
|
|
*/
|
|
#define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
|
|
(intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
|
|
/* PASID support is thus enabled if ECS is enabled and *either* of the old
|
|
* or new capability bits are set. */
|
|
#define pasid_enabled(iommu) (ecs_enabled(iommu) && \
|
|
(ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
|
|
|
|
int intel_iommu_gfx_mapped;
|
|
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
|
|
|
|
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
|
|
static DEFINE_SPINLOCK(device_domain_lock);
|
|
static LIST_HEAD(device_domain_list);
|
|
|
|
const struct iommu_ops intel_iommu_ops;
|
|
|
|
static bool translation_pre_enabled(struct intel_iommu *iommu)
|
|
{
|
|
return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
|
|
}
|
|
|
|
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
|
|
{
|
|
iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
|
|
}
|
|
|
|
static void init_translation_status(struct intel_iommu *iommu)
|
|
{
|
|
u32 gsts;
|
|
|
|
gsts = readl(iommu->reg + DMAR_GSTS_REG);
|
|
if (gsts & DMA_GSTS_TES)
|
|
iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
|
|
}
|
|
|
|
/* Convert generic 'struct iommu_domain to private struct dmar_domain */
|
|
static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
|
|
{
|
|
return container_of(dom, struct dmar_domain, domain);
|
|
}
|
|
|
|
static int __init intel_iommu_setup(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
while (*str) {
|
|
if (!strncmp(str, "on", 2)) {
|
|
dmar_disabled = 0;
|
|
pr_info("IOMMU enabled\n");
|
|
} else if (!strncmp(str, "off", 3)) {
|
|
dmar_disabled = 1;
|
|
pr_info("IOMMU disabled\n");
|
|
} else if (!strncmp(str, "igfx_off", 8)) {
|
|
dmar_map_gfx = 0;
|
|
pr_info("Disable GFX device mapping\n");
|
|
} else if (!strncmp(str, "forcedac", 8)) {
|
|
pr_info("Forcing DAC for PCI devices\n");
|
|
dmar_forcedac = 1;
|
|
} else if (!strncmp(str, "strict", 6)) {
|
|
pr_info("Disable batched IOTLB flush\n");
|
|
intel_iommu_strict = 1;
|
|
} else if (!strncmp(str, "sp_off", 6)) {
|
|
pr_info("Disable supported super page\n");
|
|
intel_iommu_superpage = 0;
|
|
} else if (!strncmp(str, "ecs_off", 7)) {
|
|
printk(KERN_INFO
|
|
"Intel-IOMMU: disable extended context table support\n");
|
|
intel_iommu_ecs = 0;
|
|
} else if (!strncmp(str, "pasid28", 7)) {
|
|
printk(KERN_INFO
|
|
"Intel-IOMMU: enable pre-production PASID support\n");
|
|
intel_iommu_pasid28 = 1;
|
|
iommu_identity_mapping |= IDENTMAP_GFX;
|
|
}
|
|
|
|
str += strcspn(str, ",");
|
|
while (*str == ',')
|
|
str++;
|
|
}
|
|
return 0;
|
|
}
|
|
__setup("intel_iommu=", intel_iommu_setup);
|
|
|
|
static struct kmem_cache *iommu_domain_cache;
|
|
static struct kmem_cache *iommu_devinfo_cache;
|
|
|
|
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
|
|
{
|
|
struct dmar_domain **domains;
|
|
int idx = did >> 8;
|
|
|
|
domains = iommu->domains[idx];
|
|
if (!domains)
|
|
return NULL;
|
|
|
|
return domains[did & 0xff];
|
|
}
|
|
|
|
static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
|
|
struct dmar_domain *domain)
|
|
{
|
|
struct dmar_domain **domains;
|
|
int idx = did >> 8;
|
|
|
|
if (!iommu->domains[idx]) {
|
|
size_t size = 256 * sizeof(struct dmar_domain *);
|
|
iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
|
|
}
|
|
|
|
domains = iommu->domains[idx];
|
|
if (WARN_ON(!domains))
|
|
return;
|
|
else
|
|
domains[did & 0xff] = domain;
|
|
}
|
|
|
|
static inline void *alloc_pgtable_page(int node)
|
|
{
|
|
struct page *page;
|
|
void *vaddr = NULL;
|
|
|
|
page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
|
|
if (page)
|
|
vaddr = page_address(page);
|
|
return vaddr;
|
|
}
|
|
|
|
static inline void free_pgtable_page(void *vaddr)
|
|
{
|
|
free_page((unsigned long)vaddr);
|
|
}
|
|
|
|
static inline void *alloc_domain_mem(void)
|
|
{
|
|
return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
|
|
}
|
|
|
|
static void free_domain_mem(void *vaddr)
|
|
{
|
|
kmem_cache_free(iommu_domain_cache, vaddr);
|
|
}
|
|
|
|
static inline void * alloc_devinfo_mem(void)
|
|
{
|
|
return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
|
|
}
|
|
|
|
static inline void free_devinfo_mem(void *vaddr)
|
|
{
|
|
kmem_cache_free(iommu_devinfo_cache, vaddr);
|
|
}
|
|
|
|
static inline int domain_type_is_vm(struct dmar_domain *domain)
|
|
{
|
|
return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
|
|
}
|
|
|
|
static inline int domain_type_is_si(struct dmar_domain *domain)
|
|
{
|
|
return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
|
|
}
|
|
|
|
static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
|
|
{
|
|
return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
|
|
DOMAIN_FLAG_STATIC_IDENTITY);
|
|
}
|
|
|
|
static inline int domain_pfn_supported(struct dmar_domain *domain,
|
|
unsigned long pfn)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
|
|
|
|
return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
|
|
}
|
|
|
|
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
|
|
{
|
|
unsigned long sagaw;
|
|
int agaw = -1;
|
|
|
|
sagaw = cap_sagaw(iommu->cap);
|
|
for (agaw = width_to_agaw(max_gaw);
|
|
agaw >= 0; agaw--) {
|
|
if (test_bit(agaw, &sagaw))
|
|
break;
|
|
}
|
|
|
|
return agaw;
|
|
}
|
|
|
|
/*
|
|
* Calculate max SAGAW for each iommu.
|
|
*/
|
|
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
|
|
{
|
|
return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
|
|
}
|
|
|
|
/*
|
|
* calculate agaw for each iommu.
|
|
* "SAGAW" may be different across iommus, use a default agaw, and
|
|
* get a supported less agaw for iommus that don't support the default agaw.
|
|
*/
|
|
int iommu_calculate_agaw(struct intel_iommu *iommu)
|
|
{
|
|
return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
}
|
|
|
|
/* This functionin only returns single iommu in a domain */
|
|
static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
|
|
{
|
|
int iommu_id;
|
|
|
|
/* si_domain and vm domain should not get here. */
|
|
BUG_ON(domain_type_is_vm_or_si(domain));
|
|
for_each_domain_iommu(iommu_id, domain)
|
|
break;
|
|
|
|
if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
|
|
return NULL;
|
|
|
|
return g_iommus[iommu_id];
|
|
}
|
|
|
|
static void domain_update_iommu_coherency(struct dmar_domain *domain)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
bool found = false;
|
|
int i;
|
|
|
|
domain->iommu_coherency = 1;
|
|
|
|
for_each_domain_iommu(i, domain) {
|
|
found = true;
|
|
if (!ecap_coherent(g_iommus[i]->ecap)) {
|
|
domain->iommu_coherency = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (found)
|
|
return;
|
|
|
|
/* No hardware attached; use lowest common denominator */
|
|
rcu_read_lock();
|
|
for_each_active_iommu(iommu, drhd) {
|
|
if (!ecap_coherent(iommu->ecap)) {
|
|
domain->iommu_coherency = 0;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int domain_update_iommu_snooping(struct intel_iommu *skip)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
int ret = 1;
|
|
|
|
rcu_read_lock();
|
|
for_each_active_iommu(iommu, drhd) {
|
|
if (iommu != skip) {
|
|
if (!ecap_sc_support(iommu->ecap)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int domain_update_iommu_superpage(struct intel_iommu *skip)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
int mask = 0xf;
|
|
|
|
if (!intel_iommu_superpage) {
|
|
return 0;
|
|
}
|
|
|
|
/* set iommu_superpage to the smallest common denominator */
|
|
rcu_read_lock();
|
|
for_each_active_iommu(iommu, drhd) {
|
|
if (iommu != skip) {
|
|
mask &= cap_super_page_val(iommu->cap);
|
|
if (!mask)
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return fls(mask);
|
|
}
|
|
|
|
/* Some capabilities may be different across iommus */
|
|
static void domain_update_iommu_cap(struct dmar_domain *domain)
|
|
{
|
|
domain_update_iommu_coherency(domain);
|
|
domain->iommu_snooping = domain_update_iommu_snooping(NULL);
|
|
domain->iommu_superpage = domain_update_iommu_superpage(NULL);
|
|
}
|
|
|
|
static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
|
|
u8 bus, u8 devfn, int alloc)
|
|
{
|
|
struct root_entry *root = &iommu->root_entry[bus];
|
|
struct context_entry *context;
|
|
u64 *entry;
|
|
|
|
entry = &root->lo;
|
|
if (ecs_enabled(iommu)) {
|
|
if (devfn >= 0x80) {
|
|
devfn -= 0x80;
|
|
entry = &root->hi;
|
|
}
|
|
devfn *= 2;
|
|
}
|
|
if (*entry & 1)
|
|
context = phys_to_virt(*entry & VTD_PAGE_MASK);
|
|
else {
|
|
unsigned long phy_addr;
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
context = alloc_pgtable_page(iommu->node);
|
|
if (!context)
|
|
return NULL;
|
|
|
|
__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
|
|
phy_addr = virt_to_phys((void *)context);
|
|
*entry = phy_addr | 1;
|
|
__iommu_flush_cache(iommu, entry, sizeof(*entry));
|
|
}
|
|
return &context[devfn];
|
|
}
|
|
|
|
static int iommu_dummy(struct device *dev)
|
|
{
|
|
return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
|
|
}
|
|
|
|
static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
|
|
{
|
|
struct dmar_drhd_unit *drhd = NULL;
|
|
struct intel_iommu *iommu;
|
|
struct device *tmp;
|
|
struct pci_dev *ptmp, *pdev = NULL;
|
|
u16 segment = 0;
|
|
int i;
|
|
|
|
if (iommu_dummy(dev))
|
|
return NULL;
|
|
|
|
if (dev_is_pci(dev)) {
|
|
struct pci_dev *pf_pdev;
|
|
|
|
pdev = to_pci_dev(dev);
|
|
/* VFs aren't listed in scope tables; we need to look up
|
|
* the PF instead to find the IOMMU. */
|
|
pf_pdev = pci_physfn(pdev);
|
|
dev = &pf_pdev->dev;
|
|
segment = pci_domain_nr(pdev->bus);
|
|
} else if (has_acpi_companion(dev))
|
|
dev = &ACPI_COMPANION(dev)->dev;
|
|
|
|
rcu_read_lock();
|
|
for_each_active_iommu(iommu, drhd) {
|
|
if (pdev && segment != drhd->segment)
|
|
continue;
|
|
|
|
for_each_active_dev_scope(drhd->devices,
|
|
drhd->devices_cnt, i, tmp) {
|
|
if (tmp == dev) {
|
|
/* For a VF use its original BDF# not that of the PF
|
|
* which we used for the IOMMU lookup. Strictly speaking
|
|
* we could do this for all PCI devices; we only need to
|
|
* get the BDF# from the scope table for ACPI matches. */
|
|
if (pdev && pdev->is_virtfn)
|
|
goto got_pdev;
|
|
|
|
*bus = drhd->devices[i].bus;
|
|
*devfn = drhd->devices[i].devfn;
|
|
goto out;
|
|
}
|
|
|
|
if (!pdev || !dev_is_pci(tmp))
|
|
continue;
|
|
|
|
ptmp = to_pci_dev(tmp);
|
|
if (ptmp->subordinate &&
|
|
ptmp->subordinate->number <= pdev->bus->number &&
|
|
ptmp->subordinate->busn_res.end >= pdev->bus->number)
|
|
goto got_pdev;
|
|
}
|
|
|
|
if (pdev && drhd->include_all) {
|
|
got_pdev:
|
|
*bus = pdev->bus->number;
|
|
*devfn = pdev->devfn;
|
|
goto out;
|
|
}
|
|
}
|
|
iommu = NULL;
|
|
out:
|
|
rcu_read_unlock();
|
|
|
|
return iommu;
|
|
}
|
|
|
|
static void domain_flush_cache(struct dmar_domain *domain,
|
|
void *addr, int size)
|
|
{
|
|
if (!domain->iommu_coherency)
|
|
clflush_cache_range(addr, size);
|
|
}
|
|
|
|
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
struct context_entry *context;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
context = iommu_context_addr(iommu, bus, devfn, 0);
|
|
if (context)
|
|
ret = context_present(context);
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
struct context_entry *context;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
context = iommu_context_addr(iommu, bus, devfn, 0);
|
|
if (context) {
|
|
context_clear_entry(context);
|
|
__iommu_flush_cache(iommu, context, sizeof(*context));
|
|
}
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static void free_context_table(struct intel_iommu *iommu)
|
|
{
|
|
int i;
|
|
unsigned long flags;
|
|
struct context_entry *context;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
if (!iommu->root_entry) {
|
|
goto out;
|
|
}
|
|
for (i = 0; i < ROOT_ENTRY_NR; i++) {
|
|
context = iommu_context_addr(iommu, i, 0, 0);
|
|
if (context)
|
|
free_pgtable_page(context);
|
|
|
|
if (!ecs_enabled(iommu))
|
|
continue;
|
|
|
|
context = iommu_context_addr(iommu, i, 0x80, 0);
|
|
if (context)
|
|
free_pgtable_page(context);
|
|
|
|
}
|
|
free_pgtable_page(iommu->root_entry);
|
|
iommu->root_entry = NULL;
|
|
out:
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
|
|
unsigned long pfn, int *target_level)
|
|
{
|
|
struct dma_pte *parent, *pte = NULL;
|
|
int level = agaw_to_level(domain->agaw);
|
|
int offset;
|
|
|
|
BUG_ON(!domain->pgd);
|
|
|
|
if (!domain_pfn_supported(domain, pfn))
|
|
/* Address beyond IOMMU's addressing capabilities. */
|
|
return NULL;
|
|
|
|
parent = domain->pgd;
|
|
|
|
while (1) {
|
|
void *tmp_page;
|
|
|
|
offset = pfn_level_offset(pfn, level);
|
|
pte = &parent[offset];
|
|
if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
|
|
break;
|
|
if (level == *target_level)
|
|
break;
|
|
|
|
if (!dma_pte_present(pte)) {
|
|
uint64_t pteval;
|
|
|
|
tmp_page = alloc_pgtable_page(domain->nid);
|
|
|
|
if (!tmp_page)
|
|
return NULL;
|
|
|
|
domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
|
|
pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
|
|
if (cmpxchg64(&pte->val, 0ULL, pteval))
|
|
/* Someone else set it while we were thinking; use theirs. */
|
|
free_pgtable_page(tmp_page);
|
|
else
|
|
domain_flush_cache(domain, pte, sizeof(*pte));
|
|
}
|
|
if (level == 1)
|
|
break;
|
|
|
|
parent = phys_to_virt(dma_pte_addr(pte));
|
|
level--;
|
|
}
|
|
|
|
if (!*target_level)
|
|
*target_level = level;
|
|
|
|
return pte;
|
|
}
|
|
|
|
|
|
/* return address's pte at specific level */
|
|
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
|
|
unsigned long pfn,
|
|
int level, int *large_page)
|
|
{
|
|
struct dma_pte *parent, *pte = NULL;
|
|
int total = agaw_to_level(domain->agaw);
|
|
int offset;
|
|
|
|
parent = domain->pgd;
|
|
while (level <= total) {
|
|
offset = pfn_level_offset(pfn, total);
|
|
pte = &parent[offset];
|
|
if (level == total)
|
|
return pte;
|
|
|
|
if (!dma_pte_present(pte)) {
|
|
*large_page = total;
|
|
break;
|
|
}
|
|
|
|
if (dma_pte_superpage(pte)) {
|
|
*large_page = total;
|
|
return pte;
|
|
}
|
|
|
|
parent = phys_to_virt(dma_pte_addr(pte));
|
|
total--;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* clear last level pte, a tlb flush should be followed */
|
|
static void dma_pte_clear_range(struct dmar_domain *domain,
|
|
unsigned long start_pfn,
|
|
unsigned long last_pfn)
|
|
{
|
|
unsigned int large_page = 1;
|
|
struct dma_pte *first_pte, *pte;
|
|
|
|
BUG_ON(!domain_pfn_supported(domain, start_pfn));
|
|
BUG_ON(!domain_pfn_supported(domain, last_pfn));
|
|
BUG_ON(start_pfn > last_pfn);
|
|
|
|
/* we don't need lock here; nobody else touches the iova range */
|
|
do {
|
|
large_page = 1;
|
|
first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
|
|
if (!pte) {
|
|
start_pfn = align_to_level(start_pfn + 1, large_page + 1);
|
|
continue;
|
|
}
|
|
do {
|
|
dma_clear_pte(pte);
|
|
start_pfn += lvl_to_nr_pages(large_page);
|
|
pte++;
|
|
} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
|
|
|
|
domain_flush_cache(domain, first_pte,
|
|
(void *)pte - (void *)first_pte);
|
|
|
|
} while (start_pfn && start_pfn <= last_pfn);
|
|
}
|
|
|
|
static void dma_pte_free_level(struct dmar_domain *domain, int level,
|
|
struct dma_pte *pte, unsigned long pfn,
|
|
unsigned long start_pfn, unsigned long last_pfn)
|
|
{
|
|
pfn = max(start_pfn, pfn);
|
|
pte = &pte[pfn_level_offset(pfn, level)];
|
|
|
|
do {
|
|
unsigned long level_pfn;
|
|
struct dma_pte *level_pte;
|
|
|
|
if (!dma_pte_present(pte) || dma_pte_superpage(pte))
|
|
goto next;
|
|
|
|
level_pfn = pfn & level_mask(level);
|
|
level_pte = phys_to_virt(dma_pte_addr(pte));
|
|
|
|
if (level > 2)
|
|
dma_pte_free_level(domain, level - 1, level_pte,
|
|
level_pfn, start_pfn, last_pfn);
|
|
|
|
/* If range covers entire pagetable, free it */
|
|
if (!(start_pfn > level_pfn ||
|
|
last_pfn < level_pfn + level_size(level) - 1)) {
|
|
dma_clear_pte(pte);
|
|
domain_flush_cache(domain, pte, sizeof(*pte));
|
|
free_pgtable_page(level_pte);
|
|
}
|
|
next:
|
|
pfn += level_size(level);
|
|
} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
|
|
}
|
|
|
|
/* clear last level (leaf) ptes and free page table pages. */
|
|
static void dma_pte_free_pagetable(struct dmar_domain *domain,
|
|
unsigned long start_pfn,
|
|
unsigned long last_pfn)
|
|
{
|
|
BUG_ON(!domain_pfn_supported(domain, start_pfn));
|
|
BUG_ON(!domain_pfn_supported(domain, last_pfn));
|
|
BUG_ON(start_pfn > last_pfn);
|
|
|
|
dma_pte_clear_range(domain, start_pfn, last_pfn);
|
|
|
|
/* We don't need lock here; nobody else touches the iova range */
|
|
dma_pte_free_level(domain, agaw_to_level(domain->agaw),
|
|
domain->pgd, 0, start_pfn, last_pfn);
|
|
|
|
/* free pgd */
|
|
if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
|
|
free_pgtable_page(domain->pgd);
|
|
domain->pgd = NULL;
|
|
}
|
|
}
|
|
|
|
/* When a page at a given level is being unlinked from its parent, we don't
|
|
need to *modify* it at all. All we need to do is make a list of all the
|
|
pages which can be freed just as soon as we've flushed the IOTLB and we
|
|
know the hardware page-walk will no longer touch them.
|
|
The 'pte' argument is the *parent* PTE, pointing to the page that is to
|
|
be freed. */
|
|
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
|
|
int level, struct dma_pte *pte,
|
|
struct page *freelist)
|
|
{
|
|
struct page *pg;
|
|
|
|
pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
|
|
pg->freelist = freelist;
|
|
freelist = pg;
|
|
|
|
if (level == 1)
|
|
return freelist;
|
|
|
|
pte = page_address(pg);
|
|
do {
|
|
if (dma_pte_present(pte) && !dma_pte_superpage(pte))
|
|
freelist = dma_pte_list_pagetables(domain, level - 1,
|
|
pte, freelist);
|
|
pte++;
|
|
} while (!first_pte_in_page(pte));
|
|
|
|
return freelist;
|
|
}
|
|
|
|
static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
|
|
struct dma_pte *pte, unsigned long pfn,
|
|
unsigned long start_pfn,
|
|
unsigned long last_pfn,
|
|
struct page *freelist)
|
|
{
|
|
struct dma_pte *first_pte = NULL, *last_pte = NULL;
|
|
|
|
pfn = max(start_pfn, pfn);
|
|
pte = &pte[pfn_level_offset(pfn, level)];
|
|
|
|
do {
|
|
unsigned long level_pfn;
|
|
|
|
if (!dma_pte_present(pte))
|
|
goto next;
|
|
|
|
level_pfn = pfn & level_mask(level);
|
|
|
|
/* If range covers entire pagetable, free it */
|
|
if (start_pfn <= level_pfn &&
|
|
last_pfn >= level_pfn + level_size(level) - 1) {
|
|
/* These suborbinate page tables are going away entirely. Don't
|
|
bother to clear them; we're just going to *free* them. */
|
|
if (level > 1 && !dma_pte_superpage(pte))
|
|
freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
|
|
|
|
dma_clear_pte(pte);
|
|
if (!first_pte)
|
|
first_pte = pte;
|
|
last_pte = pte;
|
|
} else if (level > 1) {
|
|
/* Recurse down into a level that isn't *entirely* obsolete */
|
|
freelist = dma_pte_clear_level(domain, level - 1,
|
|
phys_to_virt(dma_pte_addr(pte)),
|
|
level_pfn, start_pfn, last_pfn,
|
|
freelist);
|
|
}
|
|
next:
|
|
pfn += level_size(level);
|
|
} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
|
|
|
|
if (first_pte)
|
|
domain_flush_cache(domain, first_pte,
|
|
(void *)++last_pte - (void *)first_pte);
|
|
|
|
return freelist;
|
|
}
|
|
|
|
/* We can't just free the pages because the IOMMU may still be walking
|
|
the page tables, and may have cached the intermediate levels. The
|
|
pages can only be freed after the IOTLB flush has been done. */
|
|
static struct page *domain_unmap(struct dmar_domain *domain,
|
|
unsigned long start_pfn,
|
|
unsigned long last_pfn)
|
|
{
|
|
struct page *freelist = NULL;
|
|
|
|
BUG_ON(!domain_pfn_supported(domain, start_pfn));
|
|
BUG_ON(!domain_pfn_supported(domain, last_pfn));
|
|
BUG_ON(start_pfn > last_pfn);
|
|
|
|
/* we don't need lock here; nobody else touches the iova range */
|
|
freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
|
|
domain->pgd, 0, start_pfn, last_pfn, NULL);
|
|
|
|
/* free pgd */
|
|
if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
|
|
struct page *pgd_page = virt_to_page(domain->pgd);
|
|
pgd_page->freelist = freelist;
|
|
freelist = pgd_page;
|
|
|
|
domain->pgd = NULL;
|
|
}
|
|
|
|
return freelist;
|
|
}
|
|
|
|
static void dma_free_pagelist(struct page *freelist)
|
|
{
|
|
struct page *pg;
|
|
|
|
while ((pg = freelist)) {
|
|
freelist = pg->freelist;
|
|
free_pgtable_page(page_address(pg));
|
|
}
|
|
}
|
|
|
|
/* iommu handling */
|
|
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
|
|
{
|
|
struct root_entry *root;
|
|
unsigned long flags;
|
|
|
|
root = (struct root_entry *)alloc_pgtable_page(iommu->node);
|
|
if (!root) {
|
|
pr_err("Allocating root entry for %s failed\n",
|
|
iommu->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
__iommu_flush_cache(iommu, root, ROOT_SIZE);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
iommu->root_entry = root;
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_set_root_entry(struct intel_iommu *iommu)
|
|
{
|
|
u64 addr;
|
|
u32 sts;
|
|
unsigned long flag;
|
|
|
|
addr = virt_to_phys(iommu->root_entry);
|
|
if (ecs_enabled(iommu))
|
|
addr |= DMA_RTADDR_RTT;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
|
|
|
|
writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_RTPS), sts);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
static void iommu_flush_write_buffer(struct intel_iommu *iommu)
|
|
{
|
|
u32 val;
|
|
unsigned long flag;
|
|
|
|
if (!rwbf_quirk && !cap_rwbf(iommu->cap))
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (!(val & DMA_GSTS_WBFS)), val);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
/* return value determine if we need a write buffer flush */
|
|
static void __iommu_flush_context(struct intel_iommu *iommu,
|
|
u16 did, u16 source_id, u8 function_mask,
|
|
u64 type)
|
|
{
|
|
u64 val = 0;
|
|
unsigned long flag;
|
|
|
|
switch (type) {
|
|
case DMA_CCMD_GLOBAL_INVL:
|
|
val = DMA_CCMD_GLOBAL_INVL;
|
|
break;
|
|
case DMA_CCMD_DOMAIN_INVL:
|
|
val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
|
|
break;
|
|
case DMA_CCMD_DEVICE_INVL:
|
|
val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
|
|
| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
val |= DMA_CCMD_ICC;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
|
|
dmar_readq, (!(val & DMA_CCMD_ICC)), val);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
/* return value determine if we need a write buffer flush */
|
|
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
|
|
u64 addr, unsigned int size_order, u64 type)
|
|
{
|
|
int tlb_offset = ecap_iotlb_offset(iommu->ecap);
|
|
u64 val = 0, val_iva = 0;
|
|
unsigned long flag;
|
|
|
|
switch (type) {
|
|
case DMA_TLB_GLOBAL_FLUSH:
|
|
/* global flush doesn't need set IVA_REG */
|
|
val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
|
|
break;
|
|
case DMA_TLB_DSI_FLUSH:
|
|
val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
|
|
break;
|
|
case DMA_TLB_PSI_FLUSH:
|
|
val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
|
|
/* IH bit is passed in as part of address */
|
|
val_iva = size_order | addr;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
/* Note: set drain read/write */
|
|
#if 0
|
|
/*
|
|
* This is probably to be super secure.. Looks like we can
|
|
* ignore it without any impact.
|
|
*/
|
|
if (cap_read_drain(iommu->cap))
|
|
val |= DMA_TLB_READ_DRAIN;
|
|
#endif
|
|
if (cap_write_drain(iommu->cap))
|
|
val |= DMA_TLB_WRITE_DRAIN;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
/* Note: Only uses first TLB reg currently */
|
|
if (val_iva)
|
|
dmar_writeq(iommu->reg + tlb_offset, val_iva);
|
|
dmar_writeq(iommu->reg + tlb_offset + 8, val);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, tlb_offset + 8,
|
|
dmar_readq, (!(val & DMA_TLB_IVT)), val);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
/* check IOTLB invalidation granularity */
|
|
if (DMA_TLB_IAIG(val) == 0)
|
|
pr_err("Flush IOTLB failed\n");
|
|
if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
|
|
pr_debug("TLB flush request %Lx, actual %Lx\n",
|
|
(unsigned long long)DMA_TLB_IIRG(type),
|
|
(unsigned long long)DMA_TLB_IAIG(val));
|
|
}
|
|
|
|
static struct device_domain_info *
|
|
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
|
|
u8 bus, u8 devfn)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
assert_spin_locked(&device_domain_lock);
|
|
|
|
if (!iommu->qi)
|
|
return NULL;
|
|
|
|
list_for_each_entry(info, &domain->devices, link)
|
|
if (info->iommu == iommu && info->bus == bus &&
|
|
info->devfn == devfn) {
|
|
if (info->ats_supported && info->dev)
|
|
return info;
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void domain_update_iotlb(struct dmar_domain *domain)
|
|
{
|
|
struct device_domain_info *info;
|
|
bool has_iotlb_device = false;
|
|
|
|
assert_spin_locked(&device_domain_lock);
|
|
|
|
list_for_each_entry(info, &domain->devices, link) {
|
|
struct pci_dev *pdev;
|
|
|
|
if (!info->dev || !dev_is_pci(info->dev))
|
|
continue;
|
|
|
|
pdev = to_pci_dev(info->dev);
|
|
if (pdev->ats_enabled) {
|
|
has_iotlb_device = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
domain->has_iotlb_device = has_iotlb_device;
|
|
}
|
|
|
|
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
assert_spin_locked(&device_domain_lock);
|
|
|
|
if (!info || !dev_is_pci(info->dev))
|
|
return;
|
|
|
|
pdev = to_pci_dev(info->dev);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
/* The PCIe spec, in its wisdom, declares that the behaviour of
|
|
the device if you enable PASID support after ATS support is
|
|
undefined. So always enable PASID support on devices which
|
|
have it, even if we can't yet know if we're ever going to
|
|
use it. */
|
|
if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
|
|
info->pasid_enabled = 1;
|
|
|
|
if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
|
|
info->pri_enabled = 1;
|
|
#endif
|
|
if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
|
|
info->ats_enabled = 1;
|
|
domain_update_iotlb(info->domain);
|
|
info->ats_qdep = pci_ats_queue_depth(pdev);
|
|
}
|
|
}
|
|
|
|
static void iommu_disable_dev_iotlb(struct device_domain_info *info)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
assert_spin_locked(&device_domain_lock);
|
|
|
|
if (!dev_is_pci(info->dev))
|
|
return;
|
|
|
|
pdev = to_pci_dev(info->dev);
|
|
|
|
if (info->ats_enabled) {
|
|
pci_disable_ats(pdev);
|
|
info->ats_enabled = 0;
|
|
domain_update_iotlb(info->domain);
|
|
}
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
if (info->pri_enabled) {
|
|
pci_disable_pri(pdev);
|
|
info->pri_enabled = 0;
|
|
}
|
|
if (info->pasid_enabled) {
|
|
pci_disable_pasid(pdev);
|
|
info->pasid_enabled = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
|
|
u64 addr, unsigned mask)
|
|
{
|
|
u16 sid, qdep;
|
|
unsigned long flags;
|
|
struct device_domain_info *info;
|
|
|
|
if (!domain->has_iotlb_device)
|
|
return;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry(info, &domain->devices, link) {
|
|
if (!info->ats_enabled)
|
|
continue;
|
|
|
|
sid = info->bus << 8 | info->devfn;
|
|
qdep = info->ats_qdep;
|
|
qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
|
|
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
|
|
struct dmar_domain *domain,
|
|
unsigned long pfn, unsigned int pages,
|
|
int ih, int map)
|
|
{
|
|
unsigned int mask = ilog2(__roundup_pow_of_two(pages));
|
|
uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
|
|
u16 did = domain->iommu_did[iommu->seq_id];
|
|
|
|
BUG_ON(pages == 0);
|
|
|
|
if (ih)
|
|
ih = 1 << 6;
|
|
/*
|
|
* Fallback to domain selective flush if no PSI support or the size is
|
|
* too big.
|
|
* PSI requires page size to be 2 ^ x, and the base address is naturally
|
|
* aligned to the size
|
|
*/
|
|
if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
|
|
iommu->flush.flush_iotlb(iommu, did, 0, 0,
|
|
DMA_TLB_DSI_FLUSH);
|
|
else
|
|
iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
|
|
DMA_TLB_PSI_FLUSH);
|
|
|
|
/*
|
|
* In caching mode, changes of pages from non-present to present require
|
|
* flush. However, device IOTLB doesn't need to be flushed in this case.
|
|
*/
|
|
if (!cap_caching_mode(iommu->cap) || !map)
|
|
iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
|
|
addr, mask);
|
|
}
|
|
|
|
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
|
|
{
|
|
u32 pmen;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
pmen = readl(iommu->reg + DMAR_PMEN_REG);
|
|
pmen &= ~DMA_PMEN_EPM;
|
|
writel(pmen, iommu->reg + DMAR_PMEN_REG);
|
|
|
|
/* wait for the protected region status bit to clear */
|
|
IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
|
|
readl, !(pmen & DMA_PMEN_PRS), pmen);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
static void iommu_enable_translation(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
iommu->gcmd |= DMA_GCMD_TE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_TES), sts);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
static void iommu_disable_translation(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flag;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
iommu->gcmd &= ~DMA_GCMD_TE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (!(sts & DMA_GSTS_TES)), sts);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
|
|
static int iommu_init_domains(struct intel_iommu *iommu)
|
|
{
|
|
u32 ndomains, nlongs;
|
|
size_t size;
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
pr_debug("%s: Number of Domains supported <%d>\n",
|
|
iommu->name, ndomains);
|
|
nlongs = BITS_TO_LONGS(ndomains);
|
|
|
|
spin_lock_init(&iommu->lock);
|
|
|
|
iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
|
|
if (!iommu->domain_ids) {
|
|
pr_err("%s: Allocating domain id array failed\n",
|
|
iommu->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
|
|
iommu->domains = kzalloc(size, GFP_KERNEL);
|
|
|
|
if (iommu->domains) {
|
|
size = 256 * sizeof(struct dmar_domain *);
|
|
iommu->domains[0] = kzalloc(size, GFP_KERNEL);
|
|
}
|
|
|
|
if (!iommu->domains || !iommu->domains[0]) {
|
|
pr_err("%s: Allocating domain array failed\n",
|
|
iommu->name);
|
|
kfree(iommu->domain_ids);
|
|
kfree(iommu->domains);
|
|
iommu->domain_ids = NULL;
|
|
iommu->domains = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* If Caching mode is set, then invalid translations are tagged
|
|
* with domain-id 0, hence we need to pre-allocate it. We also
|
|
* use domain-id 0 as a marker for non-allocated domain-id, so
|
|
* make sure it is not used for a real domain.
|
|
*/
|
|
set_bit(0, iommu->domain_ids);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void disable_dmar_iommu(struct intel_iommu *iommu)
|
|
{
|
|
struct device_domain_info *info, *tmp;
|
|
unsigned long flags;
|
|
|
|
if (!iommu->domains || !iommu->domain_ids)
|
|
return;
|
|
|
|
again:
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
|
|
struct dmar_domain *domain;
|
|
|
|
if (info->iommu != iommu)
|
|
continue;
|
|
|
|
if (!info->dev || !info->domain)
|
|
continue;
|
|
|
|
domain = info->domain;
|
|
|
|
__dmar_remove_one_dev_info(info);
|
|
|
|
if (!domain_type_is_vm_or_si(domain)) {
|
|
/*
|
|
* The domain_exit() function can't be called under
|
|
* device_domain_lock, as it takes this lock itself.
|
|
* So release the lock here and re-run the loop
|
|
* afterwards.
|
|
*/
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
domain_exit(domain);
|
|
goto again;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
if (iommu->gcmd & DMA_GCMD_TE)
|
|
iommu_disable_translation(iommu);
|
|
}
|
|
|
|
static void free_dmar_iommu(struct intel_iommu *iommu)
|
|
{
|
|
if ((iommu->domains) && (iommu->domain_ids)) {
|
|
int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
|
|
int i;
|
|
|
|
for (i = 0; i < elems; i++)
|
|
kfree(iommu->domains[i]);
|
|
kfree(iommu->domains);
|
|
kfree(iommu->domain_ids);
|
|
iommu->domains = NULL;
|
|
iommu->domain_ids = NULL;
|
|
}
|
|
|
|
g_iommus[iommu->seq_id] = NULL;
|
|
|
|
/* free context mapping */
|
|
free_context_table(iommu);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
if (pasid_enabled(iommu)) {
|
|
if (ecap_prs(iommu->ecap))
|
|
intel_svm_finish_prq(iommu);
|
|
intel_svm_free_pasid_tables(iommu);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static struct dmar_domain *alloc_domain(int flags)
|
|
{
|
|
struct dmar_domain *domain;
|
|
|
|
domain = alloc_domain_mem();
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
memset(domain, 0, sizeof(*domain));
|
|
domain->nid = -1;
|
|
domain->flags = flags;
|
|
domain->has_iotlb_device = false;
|
|
INIT_LIST_HEAD(&domain->devices);
|
|
|
|
return domain;
|
|
}
|
|
|
|
/* Must be called with iommu->lock */
|
|
static int domain_attach_iommu(struct dmar_domain *domain,
|
|
struct intel_iommu *iommu)
|
|
{
|
|
unsigned long ndomains;
|
|
int num;
|
|
|
|
assert_spin_locked(&device_domain_lock);
|
|
assert_spin_locked(&iommu->lock);
|
|
|
|
domain->iommu_refcnt[iommu->seq_id] += 1;
|
|
domain->iommu_count += 1;
|
|
if (domain->iommu_refcnt[iommu->seq_id] == 1) {
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
num = find_first_zero_bit(iommu->domain_ids, ndomains);
|
|
|
|
if (num >= ndomains) {
|
|
pr_err("%s: No free domain ids\n", iommu->name);
|
|
domain->iommu_refcnt[iommu->seq_id] -= 1;
|
|
domain->iommu_count -= 1;
|
|
return -ENOSPC;
|
|
}
|
|
|
|
set_bit(num, iommu->domain_ids);
|
|
set_iommu_domain(iommu, num, domain);
|
|
|
|
domain->iommu_did[iommu->seq_id] = num;
|
|
domain->nid = iommu->node;
|
|
|
|
domain_update_iommu_cap(domain);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int domain_detach_iommu(struct dmar_domain *domain,
|
|
struct intel_iommu *iommu)
|
|
{
|
|
int num, count = INT_MAX;
|
|
|
|
assert_spin_locked(&device_domain_lock);
|
|
assert_spin_locked(&iommu->lock);
|
|
|
|
domain->iommu_refcnt[iommu->seq_id] -= 1;
|
|
count = --domain->iommu_count;
|
|
if (domain->iommu_refcnt[iommu->seq_id] == 0) {
|
|
num = domain->iommu_did[iommu->seq_id];
|
|
clear_bit(num, iommu->domain_ids);
|
|
set_iommu_domain(iommu, num, NULL);
|
|
|
|
domain_update_iommu_cap(domain);
|
|
domain->iommu_did[iommu->seq_id] = 0;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct iova_domain reserved_iova_list;
|
|
static struct lock_class_key reserved_rbtree_key;
|
|
|
|
static int dmar_init_reserved_ranges(void)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
struct iova *iova;
|
|
int i;
|
|
|
|
init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
|
|
DMA_32BIT_PFN);
|
|
|
|
lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
|
|
&reserved_rbtree_key);
|
|
|
|
/* IOAPIC ranges shouldn't be accessed by DMA */
|
|
iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
|
|
IOVA_PFN(IOAPIC_RANGE_END));
|
|
if (!iova) {
|
|
pr_err("Reserve IOAPIC range failed\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Reserve all PCI MMIO to avoid peer-to-peer access */
|
|
for_each_pci_dev(pdev) {
|
|
struct resource *r;
|
|
|
|
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
|
|
r = &pdev->resource[i];
|
|
if (!r->flags || !(r->flags & IORESOURCE_MEM))
|
|
continue;
|
|
iova = reserve_iova(&reserved_iova_list,
|
|
IOVA_PFN(r->start),
|
|
IOVA_PFN(r->end));
|
|
if (!iova) {
|
|
pr_err("Reserve iova failed\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void domain_reserve_special_ranges(struct dmar_domain *domain)
|
|
{
|
|
copy_reserved_iova(&reserved_iova_list, &domain->iovad);
|
|
}
|
|
|
|
static inline int guestwidth_to_adjustwidth(int gaw)
|
|
{
|
|
int agaw;
|
|
int r = (gaw - 12) % 9;
|
|
|
|
if (r == 0)
|
|
agaw = gaw;
|
|
else
|
|
agaw = gaw + 9 - r;
|
|
if (agaw > 64)
|
|
agaw = 64;
|
|
return agaw;
|
|
}
|
|
|
|
static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
|
|
int guest_width)
|
|
{
|
|
int adjust_width, agaw;
|
|
unsigned long sagaw;
|
|
|
|
init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
|
|
DMA_32BIT_PFN);
|
|
domain_reserve_special_ranges(domain);
|
|
|
|
/* calculate AGAW */
|
|
if (guest_width > cap_mgaw(iommu->cap))
|
|
guest_width = cap_mgaw(iommu->cap);
|
|
domain->gaw = guest_width;
|
|
adjust_width = guestwidth_to_adjustwidth(guest_width);
|
|
agaw = width_to_agaw(adjust_width);
|
|
sagaw = cap_sagaw(iommu->cap);
|
|
if (!test_bit(agaw, &sagaw)) {
|
|
/* hardware doesn't support it, choose a bigger one */
|
|
pr_debug("Hardware doesn't support agaw %d\n", agaw);
|
|
agaw = find_next_bit(&sagaw, 5, agaw);
|
|
if (agaw >= 5)
|
|
return -ENODEV;
|
|
}
|
|
domain->agaw = agaw;
|
|
|
|
if (ecap_coherent(iommu->ecap))
|
|
domain->iommu_coherency = 1;
|
|
else
|
|
domain->iommu_coherency = 0;
|
|
|
|
if (ecap_sc_support(iommu->ecap))
|
|
domain->iommu_snooping = 1;
|
|
else
|
|
domain->iommu_snooping = 0;
|
|
|
|
if (intel_iommu_superpage)
|
|
domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
|
|
else
|
|
domain->iommu_superpage = 0;
|
|
|
|
domain->nid = iommu->node;
|
|
|
|
/* always allocate the top pgd */
|
|
domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
|
|
if (!domain->pgd)
|
|
return -ENOMEM;
|
|
__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static void domain_exit(struct dmar_domain *domain)
|
|
{
|
|
struct page *freelist = NULL;
|
|
|
|
/* Domain 0 is reserved, so dont process it */
|
|
if (!domain)
|
|
return;
|
|
|
|
/* Flush any lazy unmaps that may reference this domain */
|
|
if (!intel_iommu_strict) {
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
flush_unmaps_timeout(cpu);
|
|
}
|
|
|
|
/* Remove associated devices and clear attached or cached domains */
|
|
rcu_read_lock();
|
|
domain_remove_dev_info(domain);
|
|
rcu_read_unlock();
|
|
|
|
/* destroy iovas */
|
|
put_iova_domain(&domain->iovad);
|
|
|
|
freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
|
|
|
|
dma_free_pagelist(freelist);
|
|
|
|
free_domain_mem(domain);
|
|
}
|
|
|
|
static int domain_context_mapping_one(struct dmar_domain *domain,
|
|
struct intel_iommu *iommu,
|
|
u8 bus, u8 devfn)
|
|
{
|
|
u16 did = domain->iommu_did[iommu->seq_id];
|
|
int translation = CONTEXT_TT_MULTI_LEVEL;
|
|
struct device_domain_info *info = NULL;
|
|
struct context_entry *context;
|
|
unsigned long flags;
|
|
struct dma_pte *pgd;
|
|
int ret, agaw;
|
|
|
|
WARN_ON(did == 0);
|
|
|
|
if (hw_pass_through && domain_type_is_si(domain))
|
|
translation = CONTEXT_TT_PASS_THROUGH;
|
|
|
|
pr_debug("Set context mapping for %02x:%02x.%d\n",
|
|
bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
|
|
|
|
BUG_ON(!domain->pgd);
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
spin_lock(&iommu->lock);
|
|
|
|
ret = -ENOMEM;
|
|
context = iommu_context_addr(iommu, bus, devfn, 1);
|
|
if (!context)
|
|
goto out_unlock;
|
|
|
|
ret = 0;
|
|
if (context_present(context))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* For kdump cases, old valid entries may be cached due to the
|
|
* in-flight DMA and copied pgtable, but there is no unmapping
|
|
* behaviour for them, thus we need an explicit cache flush for
|
|
* the newly-mapped device. For kdump, at this point, the device
|
|
* is supposed to finish reset at its driver probe stage, so no
|
|
* in-flight DMA will exist, and we don't need to worry anymore
|
|
* hereafter.
|
|
*/
|
|
if (context_copied(context)) {
|
|
u16 did_old = context_domain_id(context);
|
|
|
|
if (did_old >= 0 && did_old < cap_ndoms(iommu->cap))
|
|
iommu->flush.flush_context(iommu, did_old,
|
|
(((u16)bus) << 8) | devfn,
|
|
DMA_CCMD_MASK_NOBIT,
|
|
DMA_CCMD_DEVICE_INVL);
|
|
}
|
|
|
|
pgd = domain->pgd;
|
|
|
|
context_clear_entry(context);
|
|
context_set_domain_id(context, did);
|
|
|
|
/*
|
|
* Skip top levels of page tables for iommu which has less agaw
|
|
* than default. Unnecessary for PT mode.
|
|
*/
|
|
if (translation != CONTEXT_TT_PASS_THROUGH) {
|
|
for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
|
|
ret = -ENOMEM;
|
|
pgd = phys_to_virt(dma_pte_addr(pgd));
|
|
if (!dma_pte_present(pgd))
|
|
goto out_unlock;
|
|
}
|
|
|
|
info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
|
|
if (info && info->ats_supported)
|
|
translation = CONTEXT_TT_DEV_IOTLB;
|
|
else
|
|
translation = CONTEXT_TT_MULTI_LEVEL;
|
|
|
|
context_set_address_root(context, virt_to_phys(pgd));
|
|
context_set_address_width(context, iommu->agaw);
|
|
} else {
|
|
/*
|
|
* In pass through mode, AW must be programmed to
|
|
* indicate the largest AGAW value supported by
|
|
* hardware. And ASR is ignored by hardware.
|
|
*/
|
|
context_set_address_width(context, iommu->msagaw);
|
|
}
|
|
|
|
context_set_translation_type(context, translation);
|
|
context_set_fault_enable(context);
|
|
context_set_present(context);
|
|
domain_flush_cache(domain, context, sizeof(*context));
|
|
|
|
/*
|
|
* It's a non-present to present mapping. If hardware doesn't cache
|
|
* non-present entry we only need to flush the write-buffer. If the
|
|
* _does_ cache non-present entries, then it does so in the special
|
|
* domain #0, which we have to flush:
|
|
*/
|
|
if (cap_caching_mode(iommu->cap)) {
|
|
iommu->flush.flush_context(iommu, 0,
|
|
(((u16)bus) << 8) | devfn,
|
|
DMA_CCMD_MASK_NOBIT,
|
|
DMA_CCMD_DEVICE_INVL);
|
|
iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
|
|
} else {
|
|
iommu_flush_write_buffer(iommu);
|
|
}
|
|
iommu_enable_dev_iotlb(info);
|
|
|
|
ret = 0;
|
|
|
|
out_unlock:
|
|
spin_unlock(&iommu->lock);
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct domain_context_mapping_data {
|
|
struct dmar_domain *domain;
|
|
struct intel_iommu *iommu;
|
|
};
|
|
|
|
static int domain_context_mapping_cb(struct pci_dev *pdev,
|
|
u16 alias, void *opaque)
|
|
{
|
|
struct domain_context_mapping_data *data = opaque;
|
|
|
|
return domain_context_mapping_one(data->domain, data->iommu,
|
|
PCI_BUS_NUM(alias), alias & 0xff);
|
|
}
|
|
|
|
static int
|
|
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
u8 bus, devfn;
|
|
struct domain_context_mapping_data data;
|
|
|
|
iommu = device_to_iommu(dev, &bus, &devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
if (!dev_is_pci(dev))
|
|
return domain_context_mapping_one(domain, iommu, bus, devfn);
|
|
|
|
data.domain = domain;
|
|
data.iommu = iommu;
|
|
|
|
return pci_for_each_dma_alias(to_pci_dev(dev),
|
|
&domain_context_mapping_cb, &data);
|
|
}
|
|
|
|
static int domain_context_mapped_cb(struct pci_dev *pdev,
|
|
u16 alias, void *opaque)
|
|
{
|
|
struct intel_iommu *iommu = opaque;
|
|
|
|
return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
|
|
}
|
|
|
|
static int domain_context_mapped(struct device *dev)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
u8 bus, devfn;
|
|
|
|
iommu = device_to_iommu(dev, &bus, &devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
if (!dev_is_pci(dev))
|
|
return device_context_mapped(iommu, bus, devfn);
|
|
|
|
return !pci_for_each_dma_alias(to_pci_dev(dev),
|
|
domain_context_mapped_cb, iommu);
|
|
}
|
|
|
|
/* Returns a number of VTD pages, but aligned to MM page size */
|
|
static inline unsigned long aligned_nrpages(unsigned long host_addr,
|
|
size_t size)
|
|
{
|
|
host_addr &= ~PAGE_MASK;
|
|
return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
|
|
}
|
|
|
|
/* Return largest possible superpage level for a given mapping */
|
|
static inline int hardware_largepage_caps(struct dmar_domain *domain,
|
|
unsigned long iov_pfn,
|
|
unsigned long phy_pfn,
|
|
unsigned long pages)
|
|
{
|
|
int support, level = 1;
|
|
unsigned long pfnmerge;
|
|
|
|
support = domain->iommu_superpage;
|
|
|
|
/* To use a large page, the virtual *and* physical addresses
|
|
must be aligned to 2MiB/1GiB/etc. Lower bits set in either
|
|
of them will mean we have to use smaller pages. So just
|
|
merge them and check both at once. */
|
|
pfnmerge = iov_pfn | phy_pfn;
|
|
|
|
while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
|
|
pages >>= VTD_STRIDE_SHIFT;
|
|
if (!pages)
|
|
break;
|
|
pfnmerge >>= VTD_STRIDE_SHIFT;
|
|
level++;
|
|
support--;
|
|
}
|
|
return level;
|
|
}
|
|
|
|
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
|
|
struct scatterlist *sg, unsigned long phys_pfn,
|
|
unsigned long nr_pages, int prot)
|
|
{
|
|
struct dma_pte *first_pte = NULL, *pte = NULL;
|
|
phys_addr_t uninitialized_var(pteval);
|
|
unsigned long sg_res = 0;
|
|
unsigned int largepage_lvl = 0;
|
|
unsigned long lvl_pages = 0;
|
|
|
|
BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
|
|
|
|
if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
|
|
return -EINVAL;
|
|
|
|
prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
|
|
|
|
if (!sg) {
|
|
sg_res = nr_pages;
|
|
pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
|
|
}
|
|
|
|
while (nr_pages > 0) {
|
|
uint64_t tmp;
|
|
|
|
if (!sg_res) {
|
|
sg_res = aligned_nrpages(sg->offset, sg->length);
|
|
sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
|
|
sg->dma_length = sg->length;
|
|
pteval = page_to_phys(sg_page(sg)) | prot;
|
|
phys_pfn = pteval >> VTD_PAGE_SHIFT;
|
|
}
|
|
|
|
if (!pte) {
|
|
largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
|
|
|
|
first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
/* It is large page*/
|
|
if (largepage_lvl > 1) {
|
|
unsigned long nr_superpages, end_pfn;
|
|
|
|
pteval |= DMA_PTE_LARGE_PAGE;
|
|
lvl_pages = lvl_to_nr_pages(largepage_lvl);
|
|
|
|
nr_superpages = sg_res / lvl_pages;
|
|
end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
|
|
|
|
/*
|
|
* Ensure that old small page tables are
|
|
* removed to make room for superpage(s).
|
|
*/
|
|
dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
|
|
} else {
|
|
pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
|
|
}
|
|
|
|
}
|
|
/* We don't need lock here, nobody else
|
|
* touches the iova range
|
|
*/
|
|
tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
|
|
if (tmp) {
|
|
static int dumps = 5;
|
|
pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
|
|
iov_pfn, tmp, (unsigned long long)pteval);
|
|
if (dumps) {
|
|
dumps--;
|
|
debug_dma_dump_mappings(NULL);
|
|
}
|
|
WARN_ON(1);
|
|
}
|
|
|
|
lvl_pages = lvl_to_nr_pages(largepage_lvl);
|
|
|
|
BUG_ON(nr_pages < lvl_pages);
|
|
BUG_ON(sg_res < lvl_pages);
|
|
|
|
nr_pages -= lvl_pages;
|
|
iov_pfn += lvl_pages;
|
|
phys_pfn += lvl_pages;
|
|
pteval += lvl_pages * VTD_PAGE_SIZE;
|
|
sg_res -= lvl_pages;
|
|
|
|
/* If the next PTE would be the first in a new page, then we
|
|
need to flush the cache on the entries we've just written.
|
|
And then we'll need to recalculate 'pte', so clear it and
|
|
let it get set again in the if (!pte) block above.
|
|
|
|
If we're done (!nr_pages) we need to flush the cache too.
|
|
|
|
Also if we've been setting superpages, we may need to
|
|
recalculate 'pte' and switch back to smaller pages for the
|
|
end of the mapping, if the trailing size is not enough to
|
|
use another superpage (i.e. sg_res < lvl_pages). */
|
|
pte++;
|
|
if (!nr_pages || first_pte_in_page(pte) ||
|
|
(largepage_lvl > 1 && sg_res < lvl_pages)) {
|
|
domain_flush_cache(domain, first_pte,
|
|
(void *)pte - (void *)first_pte);
|
|
pte = NULL;
|
|
}
|
|
|
|
if (!sg_res && nr_pages)
|
|
sg = sg_next(sg);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
|
|
struct scatterlist *sg, unsigned long nr_pages,
|
|
int prot)
|
|
{
|
|
return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
|
|
}
|
|
|
|
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
|
|
unsigned long phys_pfn, unsigned long nr_pages,
|
|
int prot)
|
|
{
|
|
return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
|
|
}
|
|
|
|
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
if (!iommu)
|
|
return;
|
|
|
|
clear_context_table(iommu, bus, devfn);
|
|
iommu->flush.flush_context(iommu, 0, 0, 0,
|
|
DMA_CCMD_GLOBAL_INVL);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
|
|
}
|
|
|
|
static inline void unlink_domain_info(struct device_domain_info *info)
|
|
{
|
|
assert_spin_locked(&device_domain_lock);
|
|
list_del(&info->link);
|
|
list_del(&info->global);
|
|
if (info->dev)
|
|
info->dev->archdata.iommu = NULL;
|
|
}
|
|
|
|
static void domain_remove_dev_info(struct dmar_domain *domain)
|
|
{
|
|
struct device_domain_info *info, *tmp;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry_safe(info, tmp, &domain->devices, link)
|
|
__dmar_remove_one_dev_info(info);
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* find_domain
|
|
* Note: we use struct device->archdata.iommu stores the info
|
|
*/
|
|
static struct dmar_domain *find_domain(struct device *dev)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
/* No lock here, assumes no domain exit in normal case */
|
|
info = dev->archdata.iommu;
|
|
if (info)
|
|
return info->domain;
|
|
return NULL;
|
|
}
|
|
|
|
static inline struct device_domain_info *
|
|
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
list_for_each_entry(info, &device_domain_list, global)
|
|
if (info->iommu->segment == segment && info->bus == bus &&
|
|
info->devfn == devfn)
|
|
return info;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
|
|
int bus, int devfn,
|
|
struct device *dev,
|
|
struct dmar_domain *domain)
|
|
{
|
|
struct dmar_domain *found = NULL;
|
|
struct device_domain_info *info;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
info = alloc_devinfo_mem();
|
|
if (!info)
|
|
return NULL;
|
|
|
|
info->bus = bus;
|
|
info->devfn = devfn;
|
|
info->ats_supported = info->pasid_supported = info->pri_supported = 0;
|
|
info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
|
|
info->ats_qdep = 0;
|
|
info->dev = dev;
|
|
info->domain = domain;
|
|
info->iommu = iommu;
|
|
|
|
if (dev && dev_is_pci(dev)) {
|
|
struct pci_dev *pdev = to_pci_dev(info->dev);
|
|
|
|
if (ecap_dev_iotlb_support(iommu->ecap) &&
|
|
pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
|
|
dmar_find_matched_atsr_unit(pdev))
|
|
info->ats_supported = 1;
|
|
|
|
if (ecs_enabled(iommu)) {
|
|
if (pasid_enabled(iommu)) {
|
|
int features = pci_pasid_features(pdev);
|
|
if (features >= 0)
|
|
info->pasid_supported = features | 1;
|
|
}
|
|
|
|
if (info->ats_supported && ecap_prs(iommu->ecap) &&
|
|
pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
|
|
info->pri_supported = 1;
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
if (dev)
|
|
found = find_domain(dev);
|
|
|
|
if (!found) {
|
|
struct device_domain_info *info2;
|
|
info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
|
|
if (info2) {
|
|
found = info2->domain;
|
|
info2->dev = dev;
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
free_devinfo_mem(info);
|
|
/* Caller must free the original domain */
|
|
return found;
|
|
}
|
|
|
|
spin_lock(&iommu->lock);
|
|
ret = domain_attach_iommu(domain, iommu);
|
|
spin_unlock(&iommu->lock);
|
|
|
|
if (ret) {
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
free_devinfo_mem(info);
|
|
return NULL;
|
|
}
|
|
|
|
list_add(&info->link, &domain->devices);
|
|
list_add(&info->global, &device_domain_list);
|
|
if (dev)
|
|
dev->archdata.iommu = info;
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
if (dev && domain_context_mapping(domain, dev)) {
|
|
pr_err("Domain context map for %s failed\n", dev_name(dev));
|
|
dmar_remove_one_dev_info(domain, dev);
|
|
return NULL;
|
|
}
|
|
|
|
return domain;
|
|
}
|
|
|
|
static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
|
|
{
|
|
*(u16 *)opaque = alias;
|
|
return 0;
|
|
}
|
|
|
|
static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
|
|
{
|
|
struct device_domain_info *info = NULL;
|
|
struct dmar_domain *domain = NULL;
|
|
struct intel_iommu *iommu;
|
|
u16 req_id, dma_alias;
|
|
unsigned long flags;
|
|
u8 bus, devfn;
|
|
|
|
iommu = device_to_iommu(dev, &bus, &devfn);
|
|
if (!iommu)
|
|
return NULL;
|
|
|
|
req_id = ((u16)bus << 8) | devfn;
|
|
|
|
if (dev_is_pci(dev)) {
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
|
|
PCI_BUS_NUM(dma_alias),
|
|
dma_alias & 0xff);
|
|
if (info) {
|
|
iommu = info->iommu;
|
|
domain = info->domain;
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
/* DMA alias already has a domain, use it */
|
|
if (info)
|
|
goto out;
|
|
}
|
|
|
|
/* Allocate and initialize new domain for the device */
|
|
domain = alloc_domain(0);
|
|
if (!domain)
|
|
return NULL;
|
|
if (domain_init(domain, iommu, gaw)) {
|
|
domain_exit(domain);
|
|
return NULL;
|
|
}
|
|
|
|
out:
|
|
|
|
return domain;
|
|
}
|
|
|
|
static struct dmar_domain *set_domain_for_dev(struct device *dev,
|
|
struct dmar_domain *domain)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
struct dmar_domain *tmp;
|
|
u16 req_id, dma_alias;
|
|
u8 bus, devfn;
|
|
|
|
iommu = device_to_iommu(dev, &bus, &devfn);
|
|
if (!iommu)
|
|
return NULL;
|
|
|
|
req_id = ((u16)bus << 8) | devfn;
|
|
|
|
if (dev_is_pci(dev)) {
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
|
|
|
|
/* register PCI DMA alias device */
|
|
if (req_id != dma_alias) {
|
|
tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
|
|
dma_alias & 0xff, NULL, domain);
|
|
|
|
if (!tmp || tmp != domain)
|
|
return tmp;
|
|
}
|
|
}
|
|
|
|
tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
|
|
if (!tmp || tmp != domain)
|
|
return tmp;
|
|
|
|
return domain;
|
|
}
|
|
|
|
static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
|
|
{
|
|
struct dmar_domain *domain, *tmp;
|
|
|
|
domain = find_domain(dev);
|
|
if (domain)
|
|
goto out;
|
|
|
|
domain = find_or_alloc_domain(dev, gaw);
|
|
if (!domain)
|
|
goto out;
|
|
|
|
tmp = set_domain_for_dev(dev, domain);
|
|
if (!tmp || domain != tmp) {
|
|
domain_exit(domain);
|
|
domain = tmp;
|
|
}
|
|
|
|
out:
|
|
|
|
return domain;
|
|
}
|
|
|
|
static int iommu_domain_identity_map(struct dmar_domain *domain,
|
|
unsigned long long start,
|
|
unsigned long long end)
|
|
{
|
|
unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
|
|
unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
|
|
|
|
if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
|
|
dma_to_mm_pfn(last_vpfn))) {
|
|
pr_err("Reserving iova failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pr_debug("Mapping reserved region %llx-%llx\n", start, end);
|
|
/*
|
|
* RMRR range might have overlap with physical memory range,
|
|
* clear it first
|
|
*/
|
|
dma_pte_clear_range(domain, first_vpfn, last_vpfn);
|
|
|
|
return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
|
|
last_vpfn - first_vpfn + 1,
|
|
DMA_PTE_READ|DMA_PTE_WRITE);
|
|
}
|
|
|
|
static int domain_prepare_identity_map(struct device *dev,
|
|
struct dmar_domain *domain,
|
|
unsigned long long start,
|
|
unsigned long long end)
|
|
{
|
|
/* For _hardware_ passthrough, don't bother. But for software
|
|
passthrough, we do it anyway -- it may indicate a memory
|
|
range which is reserved in E820, so which didn't get set
|
|
up to start with in si_domain */
|
|
if (domain == si_domain && hw_pass_through) {
|
|
pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
|
|
dev_name(dev), start, end);
|
|
return 0;
|
|
}
|
|
|
|
pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
|
|
dev_name(dev), start, end);
|
|
|
|
if (end < start) {
|
|
WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
return -EIO;
|
|
}
|
|
|
|
if (end >> agaw_to_width(domain->agaw)) {
|
|
WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
agaw_to_width(domain->agaw),
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
return -EIO;
|
|
}
|
|
|
|
return iommu_domain_identity_map(domain, start, end);
|
|
}
|
|
|
|
static int iommu_prepare_identity_map(struct device *dev,
|
|
unsigned long long start,
|
|
unsigned long long end)
|
|
{
|
|
struct dmar_domain *domain;
|
|
int ret;
|
|
|
|
domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
if (!domain)
|
|
return -ENOMEM;
|
|
|
|
ret = domain_prepare_identity_map(dev, domain, start, end);
|
|
if (ret)
|
|
domain_exit(domain);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
|
|
struct device *dev)
|
|
{
|
|
if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return 0;
|
|
return iommu_prepare_identity_map(dev, rmrr->base_address,
|
|
rmrr->end_address);
|
|
}
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
|
|
static inline void iommu_prepare_isa(void)
|
|
{
|
|
struct pci_dev *pdev;
|
|
int ret;
|
|
|
|
pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
|
|
if (!pdev)
|
|
return;
|
|
|
|
pr_info("Prepare 0-16MiB unity mapping for LPC\n");
|
|
ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
|
|
|
|
if (ret)
|
|
pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
|
|
|
|
pci_dev_put(pdev);
|
|
}
|
|
#else
|
|
static inline void iommu_prepare_isa(void)
|
|
{
|
|
return;
|
|
}
|
|
#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
|
|
|
|
static int md_domain_init(struct dmar_domain *domain, int guest_width);
|
|
|
|
static int __init si_domain_init(int hw)
|
|
{
|
|
int nid, ret = 0;
|
|
|
|
si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
|
|
if (!si_domain)
|
|
return -EFAULT;
|
|
|
|
if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
|
|
domain_exit(si_domain);
|
|
return -EFAULT;
|
|
}
|
|
|
|
pr_debug("Identity mapping domain allocated\n");
|
|
|
|
if (hw)
|
|
return 0;
|
|
|
|
for_each_online_node(nid) {
|
|
unsigned long start_pfn, end_pfn;
|
|
int i;
|
|
|
|
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
|
|
ret = iommu_domain_identity_map(si_domain,
|
|
PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int identity_mapping(struct device *dev)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
if (likely(!iommu_identity_mapping))
|
|
return 0;
|
|
|
|
info = dev->archdata.iommu;
|
|
if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
|
|
return (info->domain == si_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
|
|
{
|
|
struct dmar_domain *ndomain;
|
|
struct intel_iommu *iommu;
|
|
u8 bus, devfn;
|
|
|
|
iommu = device_to_iommu(dev, &bus, &devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
|
|
if (ndomain != domain)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool device_has_rmrr(struct device *dev)
|
|
{
|
|
struct dmar_rmrr_unit *rmrr;
|
|
struct device *tmp;
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
for_each_rmrr_units(rmrr) {
|
|
/*
|
|
* Return TRUE if this RMRR contains the device that
|
|
* is passed in.
|
|
*/
|
|
for_each_active_dev_scope(rmrr->devices,
|
|
rmrr->devices_cnt, i, tmp)
|
|
if (tmp == dev) {
|
|
rcu_read_unlock();
|
|
return true;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* There are a couple cases where we need to restrict the functionality of
|
|
* devices associated with RMRRs. The first is when evaluating a device for
|
|
* identity mapping because problems exist when devices are moved in and out
|
|
* of domains and their respective RMRR information is lost. This means that
|
|
* a device with associated RMRRs will never be in a "passthrough" domain.
|
|
* The second is use of the device through the IOMMU API. This interface
|
|
* expects to have full control of the IOVA space for the device. We cannot
|
|
* satisfy both the requirement that RMRR access is maintained and have an
|
|
* unencumbered IOVA space. We also have no ability to quiesce the device's
|
|
* use of the RMRR space or even inform the IOMMU API user of the restriction.
|
|
* We therefore prevent devices associated with an RMRR from participating in
|
|
* the IOMMU API, which eliminates them from device assignment.
|
|
*
|
|
* In both cases we assume that PCI USB devices with RMRRs have them largely
|
|
* for historical reasons and that the RMRR space is not actively used post
|
|
* boot. This exclusion may change if vendors begin to abuse it.
|
|
*
|
|
* The same exception is made for graphics devices, with the requirement that
|
|
* any use of the RMRR regions will be torn down before assigning the device
|
|
* to a guest.
|
|
*/
|
|
static bool device_is_rmrr_locked(struct device *dev)
|
|
{
|
|
if (!device_has_rmrr(dev))
|
|
return false;
|
|
|
|
if (dev_is_pci(dev)) {
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int iommu_should_identity_map(struct device *dev, int startup)
|
|
{
|
|
|
|
if (dev_is_pci(dev)) {
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
if (device_is_rmrr_locked(dev))
|
|
return 0;
|
|
|
|
if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
|
|
return 1;
|
|
|
|
if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
|
|
return 1;
|
|
|
|
if (!(iommu_identity_mapping & IDENTMAP_ALL))
|
|
return 0;
|
|
|
|
/*
|
|
* We want to start off with all devices in the 1:1 domain, and
|
|
* take them out later if we find they can't access all of memory.
|
|
*
|
|
* However, we can't do this for PCI devices behind bridges,
|
|
* because all PCI devices behind the same bridge will end up
|
|
* with the same source-id on their transactions.
|
|
*
|
|
* Practically speaking, we can't change things around for these
|
|
* devices at run-time, because we can't be sure there'll be no
|
|
* DMA transactions in flight for any of their siblings.
|
|
*
|
|
* So PCI devices (unless they're on the root bus) as well as
|
|
* their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
|
|
* the 1:1 domain, just in _case_ one of their siblings turns out
|
|
* not to be able to map all of memory.
|
|
*/
|
|
if (!pci_is_pcie(pdev)) {
|
|
if (!pci_is_root_bus(pdev->bus))
|
|
return 0;
|
|
if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
|
|
return 0;
|
|
} else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
|
|
return 0;
|
|
} else {
|
|
if (device_has_rmrr(dev))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* At boot time, we don't yet know if devices will be 64-bit capable.
|
|
* Assume that they will — if they turn out not to be, then we can
|
|
* take them out of the 1:1 domain later.
|
|
*/
|
|
if (!startup) {
|
|
/*
|
|
* If the device's dma_mask is less than the system's memory
|
|
* size then this is not a candidate for identity mapping.
|
|
*/
|
|
u64 dma_mask = *dev->dma_mask;
|
|
|
|
if (dev->coherent_dma_mask &&
|
|
dev->coherent_dma_mask < dma_mask)
|
|
dma_mask = dev->coherent_dma_mask;
|
|
|
|
return dma_mask >= dma_get_required_mask(dev);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
|
|
{
|
|
int ret;
|
|
|
|
if (!iommu_should_identity_map(dev, 1))
|
|
return 0;
|
|
|
|
ret = domain_add_dev_info(si_domain, dev);
|
|
if (!ret)
|
|
pr_info("%s identity mapping for device %s\n",
|
|
hw ? "Hardware" : "Software", dev_name(dev));
|
|
else if (ret == -ENODEV)
|
|
/* device not associated with an iommu */
|
|
ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int __init iommu_prepare_static_identity_mapping(int hw)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
struct device *dev;
|
|
int i;
|
|
int ret = 0;
|
|
|
|
for_each_pci_dev(pdev) {
|
|
ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
for_each_active_iommu(iommu, drhd)
|
|
for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
|
|
struct acpi_device_physical_node *pn;
|
|
struct acpi_device *adev;
|
|
|
|
if (dev->bus != &acpi_bus_type)
|
|
continue;
|
|
|
|
adev= to_acpi_device(dev);
|
|
mutex_lock(&adev->physical_node_lock);
|
|
list_for_each_entry(pn, &adev->physical_node_list, node) {
|
|
ret = dev_prepare_static_identity_mapping(pn->dev, hw);
|
|
if (ret)
|
|
break;
|
|
}
|
|
mutex_unlock(&adev->physical_node_lock);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_iommu_init_qi(struct intel_iommu *iommu)
|
|
{
|
|
/*
|
|
* Start from the sane iommu hardware state.
|
|
* If the queued invalidation is already initialized by us
|
|
* (for example, while enabling interrupt-remapping) then
|
|
* we got the things already rolling from a sane state.
|
|
*/
|
|
if (!iommu->qi) {
|
|
/*
|
|
* Clear any previous faults.
|
|
*/
|
|
dmar_fault(-1, iommu);
|
|
/*
|
|
* Disable queued invalidation if supported and already enabled
|
|
* before OS handover.
|
|
*/
|
|
dmar_disable_qi(iommu);
|
|
}
|
|
|
|
if (dmar_enable_qi(iommu)) {
|
|
/*
|
|
* Queued Invalidate not enabled, use Register Based Invalidate
|
|
*/
|
|
iommu->flush.flush_context = __iommu_flush_context;
|
|
iommu->flush.flush_iotlb = __iommu_flush_iotlb;
|
|
pr_info("%s: Using Register based invalidation\n",
|
|
iommu->name);
|
|
} else {
|
|
iommu->flush.flush_context = qi_flush_context;
|
|
iommu->flush.flush_iotlb = qi_flush_iotlb;
|
|
pr_info("%s: Using Queued invalidation\n", iommu->name);
|
|
}
|
|
}
|
|
|
|
static int copy_context_table(struct intel_iommu *iommu,
|
|
struct root_entry *old_re,
|
|
struct context_entry **tbl,
|
|
int bus, bool ext)
|
|
{
|
|
int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
|
|
struct context_entry *new_ce = NULL, ce;
|
|
struct context_entry *old_ce = NULL;
|
|
struct root_entry re;
|
|
phys_addr_t old_ce_phys;
|
|
|
|
tbl_idx = ext ? bus * 2 : bus;
|
|
memcpy(&re, old_re, sizeof(re));
|
|
|
|
for (devfn = 0; devfn < 256; devfn++) {
|
|
/* First calculate the correct index */
|
|
idx = (ext ? devfn * 2 : devfn) % 256;
|
|
|
|
if (idx == 0) {
|
|
/* First save what we may have and clean up */
|
|
if (new_ce) {
|
|
tbl[tbl_idx] = new_ce;
|
|
__iommu_flush_cache(iommu, new_ce,
|
|
VTD_PAGE_SIZE);
|
|
pos = 1;
|
|
}
|
|
|
|
if (old_ce)
|
|
iounmap(old_ce);
|
|
|
|
ret = 0;
|
|
if (devfn < 0x80)
|
|
old_ce_phys = root_entry_lctp(&re);
|
|
else
|
|
old_ce_phys = root_entry_uctp(&re);
|
|
|
|
if (!old_ce_phys) {
|
|
if (ext && devfn == 0) {
|
|
/* No LCTP, try UCTP */
|
|
devfn = 0x7f;
|
|
continue;
|
|
} else {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
old_ce = memremap(old_ce_phys, PAGE_SIZE,
|
|
MEMREMAP_WB);
|
|
if (!old_ce)
|
|
goto out;
|
|
|
|
new_ce = alloc_pgtable_page(iommu->node);
|
|
if (!new_ce)
|
|
goto out_unmap;
|
|
|
|
ret = 0;
|
|
}
|
|
|
|
/* Now copy the context entry */
|
|
memcpy(&ce, old_ce + idx, sizeof(ce));
|
|
|
|
if (!__context_present(&ce))
|
|
continue;
|
|
|
|
did = context_domain_id(&ce);
|
|
if (did >= 0 && did < cap_ndoms(iommu->cap))
|
|
set_bit(did, iommu->domain_ids);
|
|
|
|
/*
|
|
* We need a marker for copied context entries. This
|
|
* marker needs to work for the old format as well as
|
|
* for extended context entries.
|
|
*
|
|
* Bit 67 of the context entry is used. In the old
|
|
* format this bit is available to software, in the
|
|
* extended format it is the PGE bit, but PGE is ignored
|
|
* by HW if PASIDs are disabled (and thus still
|
|
* available).
|
|
*
|
|
* So disable PASIDs first and then mark the entry
|
|
* copied. This means that we don't copy PASID
|
|
* translations from the old kernel, but this is fine as
|
|
* faults there are not fatal.
|
|
*/
|
|
context_clear_pasid_enable(&ce);
|
|
context_set_copied(&ce);
|
|
|
|
new_ce[idx] = ce;
|
|
}
|
|
|
|
tbl[tbl_idx + pos] = new_ce;
|
|
|
|
__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
|
|
|
|
out_unmap:
|
|
memunmap(old_ce);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int copy_translation_tables(struct intel_iommu *iommu)
|
|
{
|
|
struct context_entry **ctxt_tbls;
|
|
struct root_entry *old_rt;
|
|
phys_addr_t old_rt_phys;
|
|
int ctxt_table_entries;
|
|
unsigned long flags;
|
|
u64 rtaddr_reg;
|
|
int bus, ret;
|
|
bool new_ext, ext;
|
|
|
|
rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
|
|
ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
|
|
new_ext = !!ecap_ecs(iommu->ecap);
|
|
|
|
/*
|
|
* The RTT bit can only be changed when translation is disabled,
|
|
* but disabling translation means to open a window for data
|
|
* corruption. So bail out and don't copy anything if we would
|
|
* have to change the bit.
|
|
*/
|
|
if (new_ext != ext)
|
|
return -EINVAL;
|
|
|
|
old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
|
|
if (!old_rt_phys)
|
|
return -EINVAL;
|
|
|
|
old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
|
|
if (!old_rt)
|
|
return -ENOMEM;
|
|
|
|
/* This is too big for the stack - allocate it from slab */
|
|
ctxt_table_entries = ext ? 512 : 256;
|
|
ret = -ENOMEM;
|
|
ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
|
|
if (!ctxt_tbls)
|
|
goto out_unmap;
|
|
|
|
for (bus = 0; bus < 256; bus++) {
|
|
ret = copy_context_table(iommu, &old_rt[bus],
|
|
ctxt_tbls, bus, ext);
|
|
if (ret) {
|
|
pr_err("%s: Failed to copy context table for bus %d\n",
|
|
iommu->name, bus);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
/* Context tables are copied, now write them to the root_entry table */
|
|
for (bus = 0; bus < 256; bus++) {
|
|
int idx = ext ? bus * 2 : bus;
|
|
u64 val;
|
|
|
|
if (ctxt_tbls[idx]) {
|
|
val = virt_to_phys(ctxt_tbls[idx]) | 1;
|
|
iommu->root_entry[bus].lo = val;
|
|
}
|
|
|
|
if (!ext || !ctxt_tbls[idx + 1])
|
|
continue;
|
|
|
|
val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
|
|
iommu->root_entry[bus].hi = val;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
kfree(ctxt_tbls);
|
|
|
|
__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
|
|
|
|
ret = 0;
|
|
|
|
out_unmap:
|
|
memunmap(old_rt);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init init_dmars(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct dmar_rmrr_unit *rmrr;
|
|
bool copied_tables = false;
|
|
struct device *dev;
|
|
struct intel_iommu *iommu;
|
|
int i, ret, cpu;
|
|
|
|
/*
|
|
* for each drhd
|
|
* allocate root
|
|
* initialize and program root entry to not present
|
|
* endfor
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
/*
|
|
* lock not needed as this is only incremented in the single
|
|
* threaded kernel __init code path all other access are read
|
|
* only
|
|
*/
|
|
if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
|
|
g_num_of_iommus++;
|
|
continue;
|
|
}
|
|
pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
|
|
}
|
|
|
|
/* Preallocate enough resources for IOMMU hot-addition */
|
|
if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
|
|
g_num_of_iommus = DMAR_UNITS_SUPPORTED;
|
|
|
|
g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
|
|
GFP_KERNEL);
|
|
if (!g_iommus) {
|
|
pr_err("Allocating global iommu array failed\n");
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
|
|
cpu);
|
|
|
|
dfd->tables = kzalloc(g_num_of_iommus *
|
|
sizeof(struct deferred_flush_table),
|
|
GFP_KERNEL);
|
|
if (!dfd->tables) {
|
|
ret = -ENOMEM;
|
|
goto free_g_iommus;
|
|
}
|
|
|
|
spin_lock_init(&dfd->lock);
|
|
setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
|
|
}
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
g_iommus[iommu->seq_id] = iommu;
|
|
|
|
intel_iommu_init_qi(iommu);
|
|
|
|
ret = iommu_init_domains(iommu);
|
|
if (ret)
|
|
goto free_iommu;
|
|
|
|
init_translation_status(iommu);
|
|
|
|
if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
|
|
iommu_disable_translation(iommu);
|
|
clear_translation_pre_enabled(iommu);
|
|
pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
|
|
iommu->name);
|
|
}
|
|
|
|
/*
|
|
* TBD:
|
|
* we could share the same root & context tables
|
|
* among all IOMMU's. Need to Split it later.
|
|
*/
|
|
ret = iommu_alloc_root_entry(iommu);
|
|
if (ret)
|
|
goto free_iommu;
|
|
|
|
if (translation_pre_enabled(iommu)) {
|
|
pr_info("Translation already enabled - trying to copy translation structures\n");
|
|
|
|
ret = copy_translation_tables(iommu);
|
|
if (ret) {
|
|
/*
|
|
* We found the IOMMU with translation
|
|
* enabled - but failed to copy over the
|
|
* old root-entry table. Try to proceed
|
|
* by disabling translation now and
|
|
* allocating a clean root-entry table.
|
|
* This might cause DMAR faults, but
|
|
* probably the dump will still succeed.
|
|
*/
|
|
pr_err("Failed to copy translation tables from previous kernel for %s\n",
|
|
iommu->name);
|
|
iommu_disable_translation(iommu);
|
|
clear_translation_pre_enabled(iommu);
|
|
} else {
|
|
pr_info("Copied translation tables from previous kernel for %s\n",
|
|
iommu->name);
|
|
copied_tables = true;
|
|
}
|
|
}
|
|
|
|
if (!ecap_pass_through(iommu->ecap))
|
|
hw_pass_through = 0;
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
if (pasid_enabled(iommu))
|
|
intel_svm_alloc_pasid_tables(iommu);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Now that qi is enabled on all iommus, set the root entry and flush
|
|
* caches. This is required on some Intel X58 chipsets, otherwise the
|
|
* flush_context function will loop forever and the boot hangs.
|
|
*/
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu_flush_write_buffer(iommu);
|
|
iommu_set_root_entry(iommu);
|
|
iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
|
|
}
|
|
|
|
if (iommu_pass_through)
|
|
iommu_identity_mapping |= IDENTMAP_ALL;
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
|
|
iommu_identity_mapping |= IDENTMAP_GFX;
|
|
#endif
|
|
|
|
check_tylersburg_isoch();
|
|
|
|
if (iommu_identity_mapping) {
|
|
ret = si_domain_init(hw_pass_through);
|
|
if (ret)
|
|
goto free_iommu;
|
|
}
|
|
|
|
|
|
/*
|
|
* If we copied translations from a previous kernel in the kdump
|
|
* case, we can not assign the devices to domains now, as that
|
|
* would eliminate the old mappings. So skip this part and defer
|
|
* the assignment to device driver initialization time.
|
|
*/
|
|
if (copied_tables)
|
|
goto domains_done;
|
|
|
|
/*
|
|
* If pass through is not set or not enabled, setup context entries for
|
|
* identity mappings for rmrr, gfx, and isa and may fall back to static
|
|
* identity mapping if iommu_identity_mapping is set.
|
|
*/
|
|
if (iommu_identity_mapping) {
|
|
ret = iommu_prepare_static_identity_mapping(hw_pass_through);
|
|
if (ret) {
|
|
pr_crit("Failed to setup IOMMU pass-through\n");
|
|
goto free_iommu;
|
|
}
|
|
}
|
|
/*
|
|
* For each rmrr
|
|
* for each dev attached to rmrr
|
|
* do
|
|
* locate drhd for dev, alloc domain for dev
|
|
* allocate free domain
|
|
* allocate page table entries for rmrr
|
|
* if context not allocated for bus
|
|
* allocate and init context
|
|
* set present in root table for this bus
|
|
* init context with domain, translation etc
|
|
* endfor
|
|
* endfor
|
|
*/
|
|
pr_info("Setting RMRR:\n");
|
|
for_each_rmrr_units(rmrr) {
|
|
/* some BIOS lists non-exist devices in DMAR table. */
|
|
for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
|
|
i, dev) {
|
|
ret = iommu_prepare_rmrr_dev(rmrr, dev);
|
|
if (ret)
|
|
pr_err("Mapping reserved region failed\n");
|
|
}
|
|
}
|
|
|
|
iommu_prepare_isa();
|
|
|
|
domains_done:
|
|
|
|
/*
|
|
* for each drhd
|
|
* enable fault log
|
|
* global invalidate context cache
|
|
* global invalidate iotlb
|
|
* enable translation
|
|
*/
|
|
for_each_iommu(iommu, drhd) {
|
|
if (drhd->ignored) {
|
|
/*
|
|
* we always have to disable PMRs or DMA may fail on
|
|
* this device
|
|
*/
|
|
if (force_on)
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
continue;
|
|
}
|
|
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
|
|
ret = intel_svm_enable_prq(iommu);
|
|
if (ret)
|
|
goto free_iommu;
|
|
}
|
|
#endif
|
|
ret = dmar_set_interrupt(iommu);
|
|
if (ret)
|
|
goto free_iommu;
|
|
|
|
if (!translation_pre_enabled(iommu))
|
|
iommu_enable_translation(iommu);
|
|
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_iommu:
|
|
for_each_active_iommu(iommu, drhd) {
|
|
disable_dmar_iommu(iommu);
|
|
free_dmar_iommu(iommu);
|
|
}
|
|
free_g_iommus:
|
|
for_each_possible_cpu(cpu)
|
|
kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
|
|
kfree(g_iommus);
|
|
error:
|
|
return ret;
|
|
}
|
|
|
|
/* This takes a number of _MM_ pages, not VTD pages */
|
|
static unsigned long intel_alloc_iova(struct device *dev,
|
|
struct dmar_domain *domain,
|
|
unsigned long nrpages, uint64_t dma_mask)
|
|
{
|
|
unsigned long iova_pfn = 0;
|
|
|
|
/* Restrict dma_mask to the width that the iommu can handle */
|
|
dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
|
|
/* Ensure we reserve the whole size-aligned region */
|
|
nrpages = __roundup_pow_of_two(nrpages);
|
|
|
|
if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
|
|
/*
|
|
* First try to allocate an io virtual address in
|
|
* DMA_BIT_MASK(32) and if that fails then try allocating
|
|
* from higher range
|
|
*/
|
|
iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
|
|
IOVA_PFN(DMA_BIT_MASK(32)));
|
|
if (iova_pfn)
|
|
return iova_pfn;
|
|
}
|
|
iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
|
|
if (unlikely(!iova_pfn)) {
|
|
pr_err("Allocating %ld-page iova for %s failed",
|
|
nrpages, dev_name(dev));
|
|
return 0;
|
|
}
|
|
|
|
return iova_pfn;
|
|
}
|
|
|
|
static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
|
|
{
|
|
struct dmar_domain *domain, *tmp;
|
|
struct dmar_rmrr_unit *rmrr;
|
|
struct device *i_dev;
|
|
int i, ret;
|
|
|
|
domain = find_domain(dev);
|
|
if (domain)
|
|
goto out;
|
|
|
|
domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
if (!domain)
|
|
goto out;
|
|
|
|
/* We have a new domain - setup possible RMRRs for the device */
|
|
rcu_read_lock();
|
|
for_each_rmrr_units(rmrr) {
|
|
for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
|
|
i, i_dev) {
|
|
if (i_dev != dev)
|
|
continue;
|
|
|
|
ret = domain_prepare_identity_map(dev, domain,
|
|
rmrr->base_address,
|
|
rmrr->end_address);
|
|
if (ret)
|
|
dev_err(dev, "Mapping reserved region failed\n");
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
tmp = set_domain_for_dev(dev, domain);
|
|
if (!tmp || domain != tmp) {
|
|
domain_exit(domain);
|
|
domain = tmp;
|
|
}
|
|
|
|
out:
|
|
|
|
if (!domain)
|
|
pr_err("Allocating domain for %s failed\n", dev_name(dev));
|
|
|
|
|
|
return domain;
|
|
}
|
|
|
|
static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
/* No lock here, assumes no domain exit in normal case */
|
|
info = dev->archdata.iommu;
|
|
if (likely(info))
|
|
return info->domain;
|
|
|
|
return __get_valid_domain_for_dev(dev);
|
|
}
|
|
|
|
/* Check if the dev needs to go through non-identity map and unmap process.*/
|
|
static int iommu_no_mapping(struct device *dev)
|
|
{
|
|
int found;
|
|
|
|
if (iommu_dummy(dev))
|
|
return 1;
|
|
|
|
if (!iommu_identity_mapping)
|
|
return 0;
|
|
|
|
found = identity_mapping(dev);
|
|
if (found) {
|
|
if (iommu_should_identity_map(dev, 0))
|
|
return 1;
|
|
else {
|
|
/*
|
|
* 32 bit DMA is removed from si_domain and fall back
|
|
* to non-identity mapping.
|
|
*/
|
|
dmar_remove_one_dev_info(si_domain, dev);
|
|
pr_info("32bit %s uses non-identity mapping\n",
|
|
dev_name(dev));
|
|
return 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* In case of a detached 64 bit DMA device from vm, the device
|
|
* is put into si_domain for identity mapping.
|
|
*/
|
|
if (iommu_should_identity_map(dev, 0)) {
|
|
int ret;
|
|
ret = domain_add_dev_info(si_domain, dev);
|
|
if (!ret) {
|
|
pr_info("64bit %s uses identity mapping\n",
|
|
dev_name(dev));
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
|
|
size_t size, int dir, u64 dma_mask)
|
|
{
|
|
struct dmar_domain *domain;
|
|
phys_addr_t start_paddr;
|
|
unsigned long iova_pfn;
|
|
int prot = 0;
|
|
int ret;
|
|
struct intel_iommu *iommu;
|
|
unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
if (iommu_no_mapping(dev))
|
|
return paddr;
|
|
|
|
domain = get_valid_domain_for_dev(dev);
|
|
if (!domain)
|
|
return 0;
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
size = aligned_nrpages(paddr, size);
|
|
|
|
iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
|
|
if (!iova_pfn)
|
|
goto error;
|
|
|
|
/*
|
|
* Check if DMAR supports zero-length reads on write only
|
|
* mappings..
|
|
*/
|
|
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
|
|
!cap_zlr(iommu->cap))
|
|
prot |= DMA_PTE_READ;
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
prot |= DMA_PTE_WRITE;
|
|
/*
|
|
* paddr - (paddr + size) might be partial page, we should map the whole
|
|
* page. Note: if two part of one page are separately mapped, we
|
|
* might have two guest_addr mapping to the same host paddr, but this
|
|
* is not a big problem
|
|
*/
|
|
ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
|
|
mm_to_dma_pfn(paddr_pfn), size, prot);
|
|
if (ret)
|
|
goto error;
|
|
|
|
/* it's a non-present to present mapping. Only flush if caching mode */
|
|
if (cap_caching_mode(iommu->cap))
|
|
iommu_flush_iotlb_psi(iommu, domain,
|
|
mm_to_dma_pfn(iova_pfn),
|
|
size, 0, 1);
|
|
else
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
|
|
start_paddr += paddr & ~PAGE_MASK;
|
|
return start_paddr;
|
|
|
|
error:
|
|
if (iova_pfn)
|
|
free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
|
|
pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
|
|
dev_name(dev), size, (unsigned long long)paddr, dir);
|
|
return 0;
|
|
}
|
|
|
|
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
return __intel_map_single(dev, page_to_phys(page) + offset, size,
|
|
dir, *dev->dma_mask);
|
|
}
|
|
|
|
static void flush_unmaps(struct deferred_flush_data *flush_data)
|
|
{
|
|
int i, j;
|
|
|
|
flush_data->timer_on = 0;
|
|
|
|
/* just flush them all */
|
|
for (i = 0; i < g_num_of_iommus; i++) {
|
|
struct intel_iommu *iommu = g_iommus[i];
|
|
struct deferred_flush_table *flush_table =
|
|
&flush_data->tables[i];
|
|
if (!iommu)
|
|
continue;
|
|
|
|
if (!flush_table->next)
|
|
continue;
|
|
|
|
/* In caching mode, global flushes turn emulation expensive */
|
|
if (!cap_caching_mode(iommu->cap))
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
|
|
DMA_TLB_GLOBAL_FLUSH);
|
|
for (j = 0; j < flush_table->next; j++) {
|
|
unsigned long mask;
|
|
struct deferred_flush_entry *entry =
|
|
&flush_table->entries[j];
|
|
unsigned long iova_pfn = entry->iova_pfn;
|
|
unsigned long nrpages = entry->nrpages;
|
|
struct dmar_domain *domain = entry->domain;
|
|
struct page *freelist = entry->freelist;
|
|
|
|
/* On real hardware multiple invalidations are expensive */
|
|
if (cap_caching_mode(iommu->cap))
|
|
iommu_flush_iotlb_psi(iommu, domain,
|
|
mm_to_dma_pfn(iova_pfn),
|
|
nrpages, !freelist, 0);
|
|
else {
|
|
mask = ilog2(nrpages);
|
|
iommu_flush_dev_iotlb(domain,
|
|
(uint64_t)iova_pfn << PAGE_SHIFT, mask);
|
|
}
|
|
free_iova_fast(&domain->iovad, iova_pfn, nrpages);
|
|
if (freelist)
|
|
dma_free_pagelist(freelist);
|
|
}
|
|
flush_table->next = 0;
|
|
}
|
|
|
|
flush_data->size = 0;
|
|
}
|
|
|
|
static void flush_unmaps_timeout(unsigned long cpuid)
|
|
{
|
|
struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&flush_data->lock, flags);
|
|
flush_unmaps(flush_data);
|
|
spin_unlock_irqrestore(&flush_data->lock, flags);
|
|
}
|
|
|
|
static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
|
|
unsigned long nrpages, struct page *freelist)
|
|
{
|
|
unsigned long flags;
|
|
int entry_id, iommu_id;
|
|
struct intel_iommu *iommu;
|
|
struct deferred_flush_entry *entry;
|
|
struct deferred_flush_data *flush_data;
|
|
unsigned int cpuid;
|
|
|
|
cpuid = get_cpu();
|
|
flush_data = per_cpu_ptr(&deferred_flush, cpuid);
|
|
|
|
/* Flush all CPUs' entries to avoid deferring too much. If
|
|
* this becomes a bottleneck, can just flush us, and rely on
|
|
* flush timer for the rest.
|
|
*/
|
|
if (flush_data->size == HIGH_WATER_MARK) {
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu)
|
|
flush_unmaps_timeout(cpu);
|
|
}
|
|
|
|
spin_lock_irqsave(&flush_data->lock, flags);
|
|
|
|
iommu = domain_get_iommu(dom);
|
|
iommu_id = iommu->seq_id;
|
|
|
|
entry_id = flush_data->tables[iommu_id].next;
|
|
++(flush_data->tables[iommu_id].next);
|
|
|
|
entry = &flush_data->tables[iommu_id].entries[entry_id];
|
|
entry->domain = dom;
|
|
entry->iova_pfn = iova_pfn;
|
|
entry->nrpages = nrpages;
|
|
entry->freelist = freelist;
|
|
|
|
if (!flush_data->timer_on) {
|
|
mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
|
|
flush_data->timer_on = 1;
|
|
}
|
|
flush_data->size++;
|
|
spin_unlock_irqrestore(&flush_data->lock, flags);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
|
|
{
|
|
struct dmar_domain *domain;
|
|
unsigned long start_pfn, last_pfn;
|
|
unsigned long nrpages;
|
|
unsigned long iova_pfn;
|
|
struct intel_iommu *iommu;
|
|
struct page *freelist;
|
|
|
|
if (iommu_no_mapping(dev))
|
|
return;
|
|
|
|
domain = find_domain(dev);
|
|
BUG_ON(!domain);
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
|
|
iova_pfn = IOVA_PFN(dev_addr);
|
|
|
|
nrpages = aligned_nrpages(dev_addr, size);
|
|
start_pfn = mm_to_dma_pfn(iova_pfn);
|
|
last_pfn = start_pfn + nrpages - 1;
|
|
|
|
pr_debug("Device %s unmapping: pfn %lx-%lx\n",
|
|
dev_name(dev), start_pfn, last_pfn);
|
|
|
|
freelist = domain_unmap(domain, start_pfn, last_pfn);
|
|
|
|
if (intel_iommu_strict) {
|
|
iommu_flush_iotlb_psi(iommu, domain, start_pfn,
|
|
nrpages, !freelist, 0);
|
|
/* free iova */
|
|
free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
|
|
dma_free_pagelist(freelist);
|
|
} else {
|
|
add_unmap(domain, iova_pfn, nrpages, freelist);
|
|
/*
|
|
* queue up the release of the unmap to save the 1/6th of the
|
|
* cpu used up by the iotlb flush operation...
|
|
*/
|
|
}
|
|
}
|
|
|
|
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
intel_unmap(dev, dev_addr, size);
|
|
}
|
|
|
|
static void *intel_alloc_coherent(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags,
|
|
unsigned long attrs)
|
|
{
|
|
struct page *page = NULL;
|
|
int order;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
order = get_order(size);
|
|
|
|
if (!iommu_no_mapping(dev))
|
|
flags &= ~(GFP_DMA | GFP_DMA32);
|
|
else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
|
|
if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
|
|
flags |= GFP_DMA;
|
|
else
|
|
flags |= GFP_DMA32;
|
|
}
|
|
|
|
if (gfpflags_allow_blocking(flags)) {
|
|
unsigned int count = size >> PAGE_SHIFT;
|
|
|
|
page = dma_alloc_from_contiguous(dev, count, order, flags);
|
|
if (page && iommu_no_mapping(dev) &&
|
|
page_to_phys(page) + size > dev->coherent_dma_mask) {
|
|
dma_release_from_contiguous(dev, page, count);
|
|
page = NULL;
|
|
}
|
|
}
|
|
|
|
if (!page)
|
|
page = alloc_pages(flags, order);
|
|
if (!page)
|
|
return NULL;
|
|
memset(page_address(page), 0, size);
|
|
|
|
*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
|
|
DMA_BIDIRECTIONAL,
|
|
dev->coherent_dma_mask);
|
|
if (*dma_handle)
|
|
return page_address(page);
|
|
if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
|
|
__free_pages(page, order);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
|
|
dma_addr_t dma_handle, unsigned long attrs)
|
|
{
|
|
int order;
|
|
struct page *page = virt_to_page(vaddr);
|
|
|
|
size = PAGE_ALIGN(size);
|
|
order = get_order(size);
|
|
|
|
intel_unmap(dev, dma_handle, size);
|
|
if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
|
|
__free_pages(page, order);
|
|
}
|
|
|
|
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nelems, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
|
|
unsigned long nrpages = 0;
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
|
|
}
|
|
|
|
intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
|
|
}
|
|
|
|
static int intel_nontranslate_map_sg(struct device *hddev,
|
|
struct scatterlist *sglist, int nelems, int dir)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
BUG_ON(!sg_page(sg));
|
|
sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
|
|
sg->dma_length = sg->length;
|
|
}
|
|
return nelems;
|
|
}
|
|
|
|
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
int i;
|
|
struct dmar_domain *domain;
|
|
size_t size = 0;
|
|
int prot = 0;
|
|
unsigned long iova_pfn;
|
|
int ret;
|
|
struct scatterlist *sg;
|
|
unsigned long start_vpfn;
|
|
struct intel_iommu *iommu;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
if (iommu_no_mapping(dev))
|
|
return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
|
|
|
|
domain = get_valid_domain_for_dev(dev);
|
|
if (!domain)
|
|
return 0;
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
|
|
for_each_sg(sglist, sg, nelems, i)
|
|
size += aligned_nrpages(sg->offset, sg->length);
|
|
|
|
iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
|
|
*dev->dma_mask);
|
|
if (!iova_pfn) {
|
|
sglist->dma_length = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if DMAR supports zero-length reads on write only
|
|
* mappings..
|
|
*/
|
|
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
|
|
!cap_zlr(iommu->cap))
|
|
prot |= DMA_PTE_READ;
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
prot |= DMA_PTE_WRITE;
|
|
|
|
start_vpfn = mm_to_dma_pfn(iova_pfn);
|
|
|
|
ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
|
|
if (unlikely(ret)) {
|
|
dma_pte_free_pagetable(domain, start_vpfn,
|
|
start_vpfn + size - 1);
|
|
free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
|
|
return 0;
|
|
}
|
|
|
|
/* it's a non-present to present mapping. Only flush if caching mode */
|
|
if (cap_caching_mode(iommu->cap))
|
|
iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
|
|
else
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
return nelems;
|
|
}
|
|
|
|
static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
return !dma_addr;
|
|
}
|
|
|
|
struct dma_map_ops intel_dma_ops = {
|
|
.alloc = intel_alloc_coherent,
|
|
.free = intel_free_coherent,
|
|
.map_sg = intel_map_sg,
|
|
.unmap_sg = intel_unmap_sg,
|
|
.map_page = intel_map_page,
|
|
.unmap_page = intel_unmap_page,
|
|
.mapping_error = intel_mapping_error,
|
|
};
|
|
|
|
static inline int iommu_domain_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_domain_cache = kmem_cache_create("iommu_domain",
|
|
sizeof(struct dmar_domain),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
|
|
NULL);
|
|
if (!iommu_domain_cache) {
|
|
pr_err("Couldn't create iommu_domain cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int iommu_devinfo_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
|
|
sizeof(struct device_domain_info),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
if (!iommu_devinfo_cache) {
|
|
pr_err("Couldn't create devinfo cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init iommu_init_mempool(void)
|
|
{
|
|
int ret;
|
|
ret = iova_cache_get();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = iommu_domain_cache_init();
|
|
if (ret)
|
|
goto domain_error;
|
|
|
|
ret = iommu_devinfo_cache_init();
|
|
if (!ret)
|
|
return ret;
|
|
|
|
kmem_cache_destroy(iommu_domain_cache);
|
|
domain_error:
|
|
iova_cache_put();
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void __init iommu_exit_mempool(void)
|
|
{
|
|
kmem_cache_destroy(iommu_devinfo_cache);
|
|
kmem_cache_destroy(iommu_domain_cache);
|
|
iova_cache_put();
|
|
}
|
|
|
|
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
u32 vtbar;
|
|
int rc;
|
|
|
|
/* We know that this device on this chipset has its own IOMMU.
|
|
* If we find it under a different IOMMU, then the BIOS is lying
|
|
* to us. Hope that the IOMMU for this device is actually
|
|
* disabled, and it needs no translation...
|
|
*/
|
|
rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
|
|
if (rc) {
|
|
/* "can't" happen */
|
|
dev_info(&pdev->dev, "failed to run vt-d quirk\n");
|
|
return;
|
|
}
|
|
vtbar &= 0xffff0000;
|
|
|
|
/* we know that the this iommu should be at offset 0xa000 from vtbar */
|
|
drhd = dmar_find_matched_drhd_unit(pdev);
|
|
if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
|
|
TAINT_FIRMWARE_WORKAROUND,
|
|
"BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
|
|
pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
|
|
}
|
|
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
|
|
|
|
static void __init init_no_remapping_devices(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct device *dev;
|
|
int i;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (!drhd->include_all) {
|
|
for_each_active_dev_scope(drhd->devices,
|
|
drhd->devices_cnt, i, dev)
|
|
break;
|
|
/* ignore DMAR unit if no devices exist */
|
|
if (i == drhd->devices_cnt)
|
|
drhd->ignored = 1;
|
|
}
|
|
}
|
|
|
|
for_each_active_drhd_unit(drhd) {
|
|
if (drhd->include_all)
|
|
continue;
|
|
|
|
for_each_active_dev_scope(drhd->devices,
|
|
drhd->devices_cnt, i, dev)
|
|
if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
|
|
break;
|
|
if (i < drhd->devices_cnt)
|
|
continue;
|
|
|
|
/* This IOMMU has *only* gfx devices. Either bypass it or
|
|
set the gfx_mapped flag, as appropriate */
|
|
if (dmar_map_gfx) {
|
|
intel_iommu_gfx_mapped = 1;
|
|
} else {
|
|
drhd->ignored = 1;
|
|
for_each_active_dev_scope(drhd->devices,
|
|
drhd->devices_cnt, i, dev)
|
|
dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
static int init_iommu_hw(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
|
|
for_each_active_iommu(iommu, drhd)
|
|
if (iommu->qi)
|
|
dmar_reenable_qi(iommu);
|
|
|
|
for_each_iommu(iommu, drhd) {
|
|
if (drhd->ignored) {
|
|
/*
|
|
* we always have to disable PMRs or DMA may fail on
|
|
* this device
|
|
*/
|
|
if (force_on)
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
continue;
|
|
}
|
|
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
iommu_set_root_entry(iommu);
|
|
|
|
iommu->flush.flush_context(iommu, 0, 0, 0,
|
|
DMA_CCMD_GLOBAL_INVL);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
|
|
iommu_enable_translation(iommu);
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_flush_all(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu->flush.flush_context(iommu, 0, 0, 0,
|
|
DMA_CCMD_GLOBAL_INVL);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
|
|
DMA_TLB_GLOBAL_FLUSH);
|
|
}
|
|
}
|
|
|
|
static int iommu_suspend(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
unsigned long flag;
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
|
|
GFP_ATOMIC);
|
|
if (!iommu->iommu_state)
|
|
goto nomem;
|
|
}
|
|
|
|
iommu_flush_all();
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu_disable_translation(iommu);
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
|
|
iommu->iommu_state[SR_DMAR_FECTL_REG] =
|
|
readl(iommu->reg + DMAR_FECTL_REG);
|
|
iommu->iommu_state[SR_DMAR_FEDATA_REG] =
|
|
readl(iommu->reg + DMAR_FEDATA_REG);
|
|
iommu->iommu_state[SR_DMAR_FEADDR_REG] =
|
|
readl(iommu->reg + DMAR_FEADDR_REG);
|
|
iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
|
|
readl(iommu->reg + DMAR_FEUADDR_REG);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
return 0;
|
|
|
|
nomem:
|
|
for_each_active_iommu(iommu, drhd)
|
|
kfree(iommu->iommu_state);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void iommu_resume(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu = NULL;
|
|
unsigned long flag;
|
|
|
|
if (init_iommu_hw()) {
|
|
if (force_on)
|
|
panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
|
|
else
|
|
WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
|
|
return;
|
|
}
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
|
|
writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
|
|
iommu->reg + DMAR_FECTL_REG);
|
|
writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
|
|
iommu->reg + DMAR_FEDATA_REG);
|
|
writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
|
|
iommu->reg + DMAR_FEADDR_REG);
|
|
writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
|
|
iommu->reg + DMAR_FEUADDR_REG);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
for_each_active_iommu(iommu, drhd)
|
|
kfree(iommu->iommu_state);
|
|
}
|
|
|
|
static struct syscore_ops iommu_syscore_ops = {
|
|
.resume = iommu_resume,
|
|
.suspend = iommu_suspend,
|
|
};
|
|
|
|
static void __init init_iommu_pm_ops(void)
|
|
{
|
|
register_syscore_ops(&iommu_syscore_ops);
|
|
}
|
|
|
|
#else
|
|
static inline void init_iommu_pm_ops(void) {}
|
|
#endif /* CONFIG_PM */
|
|
|
|
|
|
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
|
|
{
|
|
struct acpi_dmar_reserved_memory *rmrr;
|
|
int prot = DMA_PTE_READ|DMA_PTE_WRITE;
|
|
struct dmar_rmrr_unit *rmrru;
|
|
size_t length;
|
|
|
|
rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
|
|
if (!rmrru)
|
|
goto out;
|
|
|
|
rmrru->hdr = header;
|
|
rmrr = (struct acpi_dmar_reserved_memory *)header;
|
|
rmrru->base_address = rmrr->base_address;
|
|
rmrru->end_address = rmrr->end_address;
|
|
|
|
length = rmrr->end_address - rmrr->base_address + 1;
|
|
rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
|
|
IOMMU_RESV_DIRECT);
|
|
if (!rmrru->resv)
|
|
goto free_rmrru;
|
|
|
|
rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
|
|
((void *)rmrr) + rmrr->header.length,
|
|
&rmrru->devices_cnt);
|
|
if (rmrru->devices_cnt && rmrru->devices == NULL)
|
|
goto free_all;
|
|
|
|
list_add(&rmrru->list, &dmar_rmrr_units);
|
|
|
|
return 0;
|
|
free_all:
|
|
kfree(rmrru->resv);
|
|
free_rmrru:
|
|
kfree(rmrru);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
|
|
{
|
|
struct dmar_atsr_unit *atsru;
|
|
struct acpi_dmar_atsr *tmp;
|
|
|
|
list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
|
|
tmp = (struct acpi_dmar_atsr *)atsru->hdr;
|
|
if (atsr->segment != tmp->segment)
|
|
continue;
|
|
if (atsr->header.length != tmp->header.length)
|
|
continue;
|
|
if (memcmp(atsr, tmp, atsr->header.length) == 0)
|
|
return atsru;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
|
|
{
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct dmar_atsr_unit *atsru;
|
|
|
|
if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
|
|
return 0;
|
|
|
|
atsr = container_of(hdr, struct acpi_dmar_atsr, header);
|
|
atsru = dmar_find_atsr(atsr);
|
|
if (atsru)
|
|
return 0;
|
|
|
|
atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
|
|
if (!atsru)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* If memory is allocated from slab by ACPI _DSM method, we need to
|
|
* copy the memory content because the memory buffer will be freed
|
|
* on return.
|
|
*/
|
|
atsru->hdr = (void *)(atsru + 1);
|
|
memcpy(atsru->hdr, hdr, hdr->length);
|
|
atsru->include_all = atsr->flags & 0x1;
|
|
if (!atsru->include_all) {
|
|
atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
|
|
(void *)atsr + atsr->header.length,
|
|
&atsru->devices_cnt);
|
|
if (atsru->devices_cnt && atsru->devices == NULL) {
|
|
kfree(atsru);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
list_add_rcu(&atsru->list, &dmar_atsr_units);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
|
|
{
|
|
dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
|
|
kfree(atsru);
|
|
}
|
|
|
|
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
|
|
{
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct dmar_atsr_unit *atsru;
|
|
|
|
atsr = container_of(hdr, struct acpi_dmar_atsr, header);
|
|
atsru = dmar_find_atsr(atsr);
|
|
if (atsru) {
|
|
list_del_rcu(&atsru->list);
|
|
synchronize_rcu();
|
|
intel_iommu_free_atsr(atsru);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
|
|
{
|
|
int i;
|
|
struct device *dev;
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct dmar_atsr_unit *atsru;
|
|
|
|
atsr = container_of(hdr, struct acpi_dmar_atsr, header);
|
|
atsru = dmar_find_atsr(atsr);
|
|
if (!atsru)
|
|
return 0;
|
|
|
|
if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
|
|
for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
|
|
i, dev)
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
|
|
{
|
|
int sp, ret = 0;
|
|
struct intel_iommu *iommu = dmaru->iommu;
|
|
|
|
if (g_iommus[iommu->seq_id])
|
|
return 0;
|
|
|
|
if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
|
|
pr_warn("%s: Doesn't support hardware pass through.\n",
|
|
iommu->name);
|
|
return -ENXIO;
|
|
}
|
|
if (!ecap_sc_support(iommu->ecap) &&
|
|
domain_update_iommu_snooping(iommu)) {
|
|
pr_warn("%s: Doesn't support snooping.\n",
|
|
iommu->name);
|
|
return -ENXIO;
|
|
}
|
|
sp = domain_update_iommu_superpage(iommu) - 1;
|
|
if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
|
|
pr_warn("%s: Doesn't support large page.\n",
|
|
iommu->name);
|
|
return -ENXIO;
|
|
}
|
|
|
|
/*
|
|
* Disable translation if already enabled prior to OS handover.
|
|
*/
|
|
if (iommu->gcmd & DMA_GCMD_TE)
|
|
iommu_disable_translation(iommu);
|
|
|
|
g_iommus[iommu->seq_id] = iommu;
|
|
ret = iommu_init_domains(iommu);
|
|
if (ret == 0)
|
|
ret = iommu_alloc_root_entry(iommu);
|
|
if (ret)
|
|
goto out;
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
if (pasid_enabled(iommu))
|
|
intel_svm_alloc_pasid_tables(iommu);
|
|
#endif
|
|
|
|
if (dmaru->ignored) {
|
|
/*
|
|
* we always have to disable PMRs or DMA may fail on this device
|
|
*/
|
|
if (force_on)
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
return 0;
|
|
}
|
|
|
|
intel_iommu_init_qi(iommu);
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
|
|
ret = intel_svm_enable_prq(iommu);
|
|
if (ret)
|
|
goto disable_iommu;
|
|
}
|
|
#endif
|
|
ret = dmar_set_interrupt(iommu);
|
|
if (ret)
|
|
goto disable_iommu;
|
|
|
|
iommu_set_root_entry(iommu);
|
|
iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
|
|
iommu_enable_translation(iommu);
|
|
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
return 0;
|
|
|
|
disable_iommu:
|
|
disable_dmar_iommu(iommu);
|
|
out:
|
|
free_dmar_iommu(iommu);
|
|
return ret;
|
|
}
|
|
|
|
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
|
|
{
|
|
int ret = 0;
|
|
struct intel_iommu *iommu = dmaru->iommu;
|
|
|
|
if (!intel_iommu_enabled)
|
|
return 0;
|
|
if (iommu == NULL)
|
|
return -EINVAL;
|
|
|
|
if (insert) {
|
|
ret = intel_iommu_add(dmaru);
|
|
} else {
|
|
disable_dmar_iommu(iommu);
|
|
free_dmar_iommu(iommu);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void intel_iommu_free_dmars(void)
|
|
{
|
|
struct dmar_rmrr_unit *rmrru, *rmrr_n;
|
|
struct dmar_atsr_unit *atsru, *atsr_n;
|
|
|
|
list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
|
|
list_del(&rmrru->list);
|
|
dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
|
|
kfree(rmrru->resv);
|
|
kfree(rmrru);
|
|
}
|
|
|
|
list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
|
|
list_del(&atsru->list);
|
|
intel_iommu_free_atsr(atsru);
|
|
}
|
|
}
|
|
|
|
int dmar_find_matched_atsr_unit(struct pci_dev *dev)
|
|
{
|
|
int i, ret = 1;
|
|
struct pci_bus *bus;
|
|
struct pci_dev *bridge = NULL;
|
|
struct device *tmp;
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct dmar_atsr_unit *atsru;
|
|
|
|
dev = pci_physfn(dev);
|
|
for (bus = dev->bus; bus; bus = bus->parent) {
|
|
bridge = bus->self;
|
|
/* If it's an integrated device, allow ATS */
|
|
if (!bridge)
|
|
return 1;
|
|
/* Connected via non-PCIe: no ATS */
|
|
if (!pci_is_pcie(bridge) ||
|
|
pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
|
|
return 0;
|
|
/* If we found the root port, look it up in the ATSR */
|
|
if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
|
|
break;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
|
|
atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
|
|
if (atsr->segment != pci_domain_nr(dev->bus))
|
|
continue;
|
|
|
|
for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
|
|
if (tmp == &bridge->dev)
|
|
goto out;
|
|
|
|
if (atsru->include_all)
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
|
|
{
|
|
int ret = 0;
|
|
struct dmar_rmrr_unit *rmrru;
|
|
struct dmar_atsr_unit *atsru;
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct acpi_dmar_reserved_memory *rmrr;
|
|
|
|
if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
|
|
return 0;
|
|
|
|
list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
|
|
rmrr = container_of(rmrru->hdr,
|
|
struct acpi_dmar_reserved_memory, header);
|
|
if (info->event == BUS_NOTIFY_ADD_DEVICE) {
|
|
ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
|
|
((void *)rmrr) + rmrr->header.length,
|
|
rmrr->segment, rmrru->devices,
|
|
rmrru->devices_cnt);
|
|
if(ret < 0)
|
|
return ret;
|
|
} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
|
|
dmar_remove_dev_scope(info, rmrr->segment,
|
|
rmrru->devices, rmrru->devices_cnt);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(atsru, &dmar_atsr_units, list) {
|
|
if (atsru->include_all)
|
|
continue;
|
|
|
|
atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
|
|
if (info->event == BUS_NOTIFY_ADD_DEVICE) {
|
|
ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
|
|
(void *)atsr + atsr->header.length,
|
|
atsr->segment, atsru->devices,
|
|
atsru->devices_cnt);
|
|
if (ret > 0)
|
|
break;
|
|
else if(ret < 0)
|
|
return ret;
|
|
} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
|
|
if (dmar_remove_dev_scope(info, atsr->segment,
|
|
atsru->devices, atsru->devices_cnt))
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Here we only respond to action of unbound device from driver.
|
|
*
|
|
* Added device is not attached to its DMAR domain here yet. That will happen
|
|
* when mapping the device to iova.
|
|
*/
|
|
static int device_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct device *dev = data;
|
|
struct dmar_domain *domain;
|
|
|
|
if (iommu_dummy(dev))
|
|
return 0;
|
|
|
|
if (action != BUS_NOTIFY_REMOVED_DEVICE)
|
|
return 0;
|
|
|
|
domain = find_domain(dev);
|
|
if (!domain)
|
|
return 0;
|
|
|
|
dmar_remove_one_dev_info(domain, dev);
|
|
if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
|
|
domain_exit(domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block device_nb = {
|
|
.notifier_call = device_notifier,
|
|
};
|
|
|
|
static int intel_iommu_memory_notifier(struct notifier_block *nb,
|
|
unsigned long val, void *v)
|
|
{
|
|
struct memory_notify *mhp = v;
|
|
unsigned long long start, end;
|
|
unsigned long start_vpfn, last_vpfn;
|
|
|
|
switch (val) {
|
|
case MEM_GOING_ONLINE:
|
|
start = mhp->start_pfn << PAGE_SHIFT;
|
|
end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
|
|
if (iommu_domain_identity_map(si_domain, start, end)) {
|
|
pr_warn("Failed to build identity map for [%llx-%llx]\n",
|
|
start, end);
|
|
return NOTIFY_BAD;
|
|
}
|
|
break;
|
|
|
|
case MEM_OFFLINE:
|
|
case MEM_CANCEL_ONLINE:
|
|
start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
|
|
last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
|
|
while (start_vpfn <= last_vpfn) {
|
|
struct iova *iova;
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
struct page *freelist;
|
|
|
|
iova = find_iova(&si_domain->iovad, start_vpfn);
|
|
if (iova == NULL) {
|
|
pr_debug("Failed get IOVA for PFN %lx\n",
|
|
start_vpfn);
|
|
break;
|
|
}
|
|
|
|
iova = split_and_remove_iova(&si_domain->iovad, iova,
|
|
start_vpfn, last_vpfn);
|
|
if (iova == NULL) {
|
|
pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
|
|
start_vpfn, last_vpfn);
|
|
return NOTIFY_BAD;
|
|
}
|
|
|
|
freelist = domain_unmap(si_domain, iova->pfn_lo,
|
|
iova->pfn_hi);
|
|
|
|
rcu_read_lock();
|
|
for_each_active_iommu(iommu, drhd)
|
|
iommu_flush_iotlb_psi(iommu, si_domain,
|
|
iova->pfn_lo, iova_size(iova),
|
|
!freelist, 0);
|
|
rcu_read_unlock();
|
|
dma_free_pagelist(freelist);
|
|
|
|
start_vpfn = iova->pfn_hi + 1;
|
|
free_iova_mem(iova);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block intel_iommu_memory_nb = {
|
|
.notifier_call = intel_iommu_memory_notifier,
|
|
.priority = 0
|
|
};
|
|
|
|
static void free_all_cpu_cached_iovas(unsigned int cpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < g_num_of_iommus; i++) {
|
|
struct intel_iommu *iommu = g_iommus[i];
|
|
struct dmar_domain *domain;
|
|
int did;
|
|
|
|
if (!iommu)
|
|
continue;
|
|
|
|
for (did = 0; did < cap_ndoms(iommu->cap); did++) {
|
|
domain = get_iommu_domain(iommu, (u16)did);
|
|
|
|
if (!domain)
|
|
continue;
|
|
free_cpu_cached_iovas(cpu, &domain->iovad);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int intel_iommu_cpu_dead(unsigned int cpu)
|
|
{
|
|
free_all_cpu_cached_iovas(cpu);
|
|
flush_unmaps_timeout(cpu);
|
|
return 0;
|
|
}
|
|
|
|
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
|
|
{
|
|
return container_of(dev, struct intel_iommu, iommu.dev);
|
|
}
|
|
|
|
static ssize_t intel_iommu_show_version(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
u32 ver = readl(iommu->reg + DMAR_VER_REG);
|
|
return sprintf(buf, "%d:%d\n",
|
|
DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
|
|
}
|
|
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
|
|
|
|
static ssize_t intel_iommu_show_address(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
return sprintf(buf, "%llx\n", iommu->reg_phys);
|
|
}
|
|
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
|
|
|
|
static ssize_t intel_iommu_show_cap(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
return sprintf(buf, "%llx\n", iommu->cap);
|
|
}
|
|
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
|
|
|
|
static ssize_t intel_iommu_show_ecap(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
return sprintf(buf, "%llx\n", iommu->ecap);
|
|
}
|
|
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
|
|
|
|
static ssize_t intel_iommu_show_ndoms(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
|
|
}
|
|
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
|
|
|
|
static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct intel_iommu *iommu = dev_to_intel_iommu(dev);
|
|
return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
|
|
cap_ndoms(iommu->cap)));
|
|
}
|
|
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
|
|
|
|
static struct attribute *intel_iommu_attrs[] = {
|
|
&dev_attr_version.attr,
|
|
&dev_attr_address.attr,
|
|
&dev_attr_cap.attr,
|
|
&dev_attr_ecap.attr,
|
|
&dev_attr_domains_supported.attr,
|
|
&dev_attr_domains_used.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group intel_iommu_group = {
|
|
.name = "intel-iommu",
|
|
.attrs = intel_iommu_attrs,
|
|
};
|
|
|
|
const struct attribute_group *intel_iommu_groups[] = {
|
|
&intel_iommu_group,
|
|
NULL,
|
|
};
|
|
|
|
int __init intel_iommu_init(void)
|
|
{
|
|
int ret = -ENODEV;
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
|
|
/* VT-d is required for a TXT/tboot launch, so enforce that */
|
|
force_on = tboot_force_iommu();
|
|
|
|
if (iommu_init_mempool()) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize iommu memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
down_write(&dmar_global_lock);
|
|
if (dmar_table_init()) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize DMAR table\n");
|
|
goto out_free_dmar;
|
|
}
|
|
|
|
if (dmar_dev_scope_init() < 0) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize DMAR device scope\n");
|
|
goto out_free_dmar;
|
|
}
|
|
|
|
if (no_iommu || dmar_disabled)
|
|
goto out_free_dmar;
|
|
|
|
if (list_empty(&dmar_rmrr_units))
|
|
pr_info("No RMRR found\n");
|
|
|
|
if (list_empty(&dmar_atsr_units))
|
|
pr_info("No ATSR found\n");
|
|
|
|
if (dmar_init_reserved_ranges()) {
|
|
if (force_on)
|
|
panic("tboot: Failed to reserve iommu ranges\n");
|
|
goto out_free_reserved_range;
|
|
}
|
|
|
|
init_no_remapping_devices();
|
|
|
|
ret = init_dmars();
|
|
if (ret) {
|
|
if (force_on)
|
|
panic("tboot: Failed to initialize DMARs\n");
|
|
pr_err("Initialization failed\n");
|
|
goto out_free_reserved_range;
|
|
}
|
|
up_write(&dmar_global_lock);
|
|
pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
|
|
|
|
#ifdef CONFIG_SWIOTLB
|
|
swiotlb = 0;
|
|
#endif
|
|
dma_ops = &intel_dma_ops;
|
|
|
|
init_iommu_pm_ops();
|
|
|
|
for_each_active_iommu(iommu, drhd) {
|
|
iommu_device_sysfs_add(&iommu->iommu, NULL,
|
|
intel_iommu_groups,
|
|
"%s", iommu->name);
|
|
iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
|
|
iommu_device_register(&iommu->iommu);
|
|
}
|
|
|
|
bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
|
|
bus_register_notifier(&pci_bus_type, &device_nb);
|
|
if (si_domain && !hw_pass_through)
|
|
register_memory_notifier(&intel_iommu_memory_nb);
|
|
cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
|
|
intel_iommu_cpu_dead);
|
|
intel_iommu_enabled = 1;
|
|
|
|
return 0;
|
|
|
|
out_free_reserved_range:
|
|
put_iova_domain(&reserved_iova_list);
|
|
out_free_dmar:
|
|
intel_iommu_free_dmars();
|
|
up_write(&dmar_global_lock);
|
|
iommu_exit_mempool();
|
|
return ret;
|
|
}
|
|
|
|
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
|
|
{
|
|
struct intel_iommu *iommu = opaque;
|
|
|
|
domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NB - intel-iommu lacks any sort of reference counting for the users of
|
|
* dependent devices. If multiple endpoints have intersecting dependent
|
|
* devices, unbinding the driver from any one of them will possibly leave
|
|
* the others unable to operate.
|
|
*/
|
|
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
|
|
{
|
|
if (!iommu || !dev || !dev_is_pci(dev))
|
|
return;
|
|
|
|
pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
|
|
}
|
|
|
|
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
unsigned long flags;
|
|
|
|
assert_spin_locked(&device_domain_lock);
|
|
|
|
if (WARN_ON(!info))
|
|
return;
|
|
|
|
iommu = info->iommu;
|
|
|
|
if (info->dev) {
|
|
iommu_disable_dev_iotlb(info);
|
|
domain_context_clear(iommu, info->dev);
|
|
}
|
|
|
|
unlink_domain_info(info);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
domain_detach_iommu(info->domain, iommu);
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
free_devinfo_mem(info);
|
|
}
|
|
|
|
static void dmar_remove_one_dev_info(struct dmar_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
struct device_domain_info *info;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
info = dev->archdata.iommu;
|
|
__dmar_remove_one_dev_info(info);
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
|
|
static int md_domain_init(struct dmar_domain *domain, int guest_width)
|
|
{
|
|
int adjust_width;
|
|
|
|
init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
|
|
DMA_32BIT_PFN);
|
|
domain_reserve_special_ranges(domain);
|
|
|
|
/* calculate AGAW */
|
|
domain->gaw = guest_width;
|
|
adjust_width = guestwidth_to_adjustwidth(guest_width);
|
|
domain->agaw = width_to_agaw(adjust_width);
|
|
|
|
domain->iommu_coherency = 0;
|
|
domain->iommu_snooping = 0;
|
|
domain->iommu_superpage = 0;
|
|
domain->max_addr = 0;
|
|
|
|
/* always allocate the top pgd */
|
|
domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
|
|
if (!domain->pgd)
|
|
return -ENOMEM;
|
|
domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
|
|
{
|
|
struct dmar_domain *dmar_domain;
|
|
struct iommu_domain *domain;
|
|
|
|
if (type != IOMMU_DOMAIN_UNMANAGED)
|
|
return NULL;
|
|
|
|
dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
|
|
if (!dmar_domain) {
|
|
pr_err("Can't allocate dmar_domain\n");
|
|
return NULL;
|
|
}
|
|
if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
|
|
pr_err("Domain initialization failed\n");
|
|
domain_exit(dmar_domain);
|
|
return NULL;
|
|
}
|
|
domain_update_iommu_cap(dmar_domain);
|
|
|
|
domain = &dmar_domain->domain;
|
|
domain->geometry.aperture_start = 0;
|
|
domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
|
|
domain->geometry.force_aperture = true;
|
|
|
|
return domain;
|
|
}
|
|
|
|
static void intel_iommu_domain_free(struct iommu_domain *domain)
|
|
{
|
|
domain_exit(to_dmar_domain(domain));
|
|
}
|
|
|
|
static int intel_iommu_attach_device(struct iommu_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
struct intel_iommu *iommu;
|
|
int addr_width;
|
|
u8 bus, devfn;
|
|
|
|
if (device_is_rmrr_locked(dev)) {
|
|
dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* normally dev is not mapped */
|
|
if (unlikely(domain_context_mapped(dev))) {
|
|
struct dmar_domain *old_domain;
|
|
|
|
old_domain = find_domain(dev);
|
|
if (old_domain) {
|
|
rcu_read_lock();
|
|
dmar_remove_one_dev_info(old_domain, dev);
|
|
rcu_read_unlock();
|
|
|
|
if (!domain_type_is_vm_or_si(old_domain) &&
|
|
list_empty(&old_domain->devices))
|
|
domain_exit(old_domain);
|
|
}
|
|
}
|
|
|
|
iommu = device_to_iommu(dev, &bus, &devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
/* check if this iommu agaw is sufficient for max mapped address */
|
|
addr_width = agaw_to_width(iommu->agaw);
|
|
if (addr_width > cap_mgaw(iommu->cap))
|
|
addr_width = cap_mgaw(iommu->cap);
|
|
|
|
if (dmar_domain->max_addr > (1LL << addr_width)) {
|
|
pr_err("%s: iommu width (%d) is not "
|
|
"sufficient for the mapped address (%llx)\n",
|
|
__func__, addr_width, dmar_domain->max_addr);
|
|
return -EFAULT;
|
|
}
|
|
dmar_domain->gaw = addr_width;
|
|
|
|
/*
|
|
* Knock out extra levels of page tables if necessary
|
|
*/
|
|
while (iommu->agaw < dmar_domain->agaw) {
|
|
struct dma_pte *pte;
|
|
|
|
pte = dmar_domain->pgd;
|
|
if (dma_pte_present(pte)) {
|
|
dmar_domain->pgd = (struct dma_pte *)
|
|
phys_to_virt(dma_pte_addr(pte));
|
|
free_pgtable_page(pte);
|
|
}
|
|
dmar_domain->agaw--;
|
|
}
|
|
|
|
return domain_add_dev_info(dmar_domain, dev);
|
|
}
|
|
|
|
static void intel_iommu_detach_device(struct iommu_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
|
|
}
|
|
|
|
static int intel_iommu_map(struct iommu_domain *domain,
|
|
unsigned long iova, phys_addr_t hpa,
|
|
size_t size, int iommu_prot)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
u64 max_addr;
|
|
int prot = 0;
|
|
int ret;
|
|
|
|
if (iommu_prot & IOMMU_READ)
|
|
prot |= DMA_PTE_READ;
|
|
if (iommu_prot & IOMMU_WRITE)
|
|
prot |= DMA_PTE_WRITE;
|
|
if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
|
|
prot |= DMA_PTE_SNP;
|
|
|
|
max_addr = iova + size;
|
|
if (dmar_domain->max_addr < max_addr) {
|
|
u64 end;
|
|
|
|
/* check if minimum agaw is sufficient for mapped address */
|
|
end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
|
|
if (end < max_addr) {
|
|
pr_err("%s: iommu width (%d) is not "
|
|
"sufficient for the mapped address (%llx)\n",
|
|
__func__, dmar_domain->gaw, max_addr);
|
|
return -EFAULT;
|
|
}
|
|
dmar_domain->max_addr = max_addr;
|
|
}
|
|
/* Round up size to next multiple of PAGE_SIZE, if it and
|
|
the low bits of hpa would take us onto the next page */
|
|
size = aligned_nrpages(hpa, size);
|
|
ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
|
|
hpa >> VTD_PAGE_SHIFT, size, prot);
|
|
return ret;
|
|
}
|
|
|
|
static size_t intel_iommu_unmap(struct iommu_domain *domain,
|
|
unsigned long iova, size_t size)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
struct page *freelist = NULL;
|
|
struct intel_iommu *iommu;
|
|
unsigned long start_pfn, last_pfn;
|
|
unsigned int npages;
|
|
int iommu_id, level = 0;
|
|
|
|
/* Cope with horrid API which requires us to unmap more than the
|
|
size argument if it happens to be a large-page mapping. */
|
|
BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
|
|
|
|
if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
|
|
size = VTD_PAGE_SIZE << level_to_offset_bits(level);
|
|
|
|
start_pfn = iova >> VTD_PAGE_SHIFT;
|
|
last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
|
|
|
|
freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
|
|
|
|
npages = last_pfn - start_pfn + 1;
|
|
|
|
for_each_domain_iommu(iommu_id, dmar_domain) {
|
|
iommu = g_iommus[iommu_id];
|
|
|
|
iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
|
|
start_pfn, npages, !freelist, 0);
|
|
}
|
|
|
|
dma_free_pagelist(freelist);
|
|
|
|
if (dmar_domain->max_addr == iova + size)
|
|
dmar_domain->max_addr = iova;
|
|
|
|
return size;
|
|
}
|
|
|
|
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
|
|
dma_addr_t iova)
|
|
{
|
|
struct dmar_domain *dmar_domain = to_dmar_domain(domain);
|
|
struct dma_pte *pte;
|
|
int level = 0;
|
|
u64 phys = 0;
|
|
|
|
pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
|
|
if (pte)
|
|
phys = dma_pte_addr(pte);
|
|
|
|
return phys;
|
|
}
|
|
|
|
static bool intel_iommu_capable(enum iommu_cap cap)
|
|
{
|
|
if (cap == IOMMU_CAP_CACHE_COHERENCY)
|
|
return domain_update_iommu_snooping(NULL) == 1;
|
|
if (cap == IOMMU_CAP_INTR_REMAP)
|
|
return irq_remapping_enabled == 1;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int intel_iommu_add_device(struct device *dev)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
struct iommu_group *group;
|
|
u8 bus, devfn;
|
|
|
|
iommu = device_to_iommu(dev, &bus, &devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
iommu_device_link(&iommu->iommu, dev);
|
|
|
|
group = iommu_group_get_for_dev(dev);
|
|
|
|
if (IS_ERR(group))
|
|
return PTR_ERR(group);
|
|
|
|
iommu_group_put(group);
|
|
return 0;
|
|
}
|
|
|
|
static void intel_iommu_remove_device(struct device *dev)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
u8 bus, devfn;
|
|
|
|
iommu = device_to_iommu(dev, &bus, &devfn);
|
|
if (!iommu)
|
|
return;
|
|
|
|
iommu_group_remove_device(dev);
|
|
|
|
iommu_device_unlink(&iommu->iommu, dev);
|
|
}
|
|
|
|
static void intel_iommu_get_resv_regions(struct device *device,
|
|
struct list_head *head)
|
|
{
|
|
struct iommu_resv_region *reg;
|
|
struct dmar_rmrr_unit *rmrr;
|
|
struct device *i_dev;
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
for_each_rmrr_units(rmrr) {
|
|
for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
|
|
i, i_dev) {
|
|
if (i_dev != device)
|
|
continue;
|
|
|
|
list_add_tail(&rmrr->resv->list, head);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
|
|
IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
|
|
0, IOMMU_RESV_MSI);
|
|
if (!reg)
|
|
return;
|
|
list_add_tail(®->list, head);
|
|
}
|
|
|
|
static void intel_iommu_put_resv_regions(struct device *dev,
|
|
struct list_head *head)
|
|
{
|
|
struct iommu_resv_region *entry, *next;
|
|
|
|
list_for_each_entry_safe(entry, next, head, list) {
|
|
if (entry->type == IOMMU_RESV_RESERVED)
|
|
kfree(entry);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU_SVM
|
|
#define MAX_NR_PASID_BITS (20)
|
|
static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
|
|
{
|
|
/*
|
|
* Convert ecap_pss to extend context entry pts encoding, also
|
|
* respect the soft pasid_max value set by the iommu.
|
|
* - number of PASID bits = ecap_pss + 1
|
|
* - number of PASID table entries = 2^(pts + 5)
|
|
* Therefore, pts = ecap_pss - 4
|
|
* e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
|
|
*/
|
|
if (ecap_pss(iommu->ecap) < 5)
|
|
return 0;
|
|
|
|
/* pasid_max is encoded as actual number of entries not the bits */
|
|
return find_first_bit((unsigned long *)&iommu->pasid_max,
|
|
MAX_NR_PASID_BITS) - 5;
|
|
}
|
|
|
|
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
|
|
{
|
|
struct device_domain_info *info;
|
|
struct context_entry *context;
|
|
struct dmar_domain *domain;
|
|
unsigned long flags;
|
|
u64 ctx_lo;
|
|
int ret;
|
|
|
|
domain = get_valid_domain_for_dev(sdev->dev);
|
|
if (!domain)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
spin_lock(&iommu->lock);
|
|
|
|
ret = -EINVAL;
|
|
info = sdev->dev->archdata.iommu;
|
|
if (!info || !info->pasid_supported)
|
|
goto out;
|
|
|
|
context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
|
|
if (WARN_ON(!context))
|
|
goto out;
|
|
|
|
ctx_lo = context[0].lo;
|
|
|
|
sdev->did = domain->iommu_did[iommu->seq_id];
|
|
sdev->sid = PCI_DEVID(info->bus, info->devfn);
|
|
|
|
if (!(ctx_lo & CONTEXT_PASIDE)) {
|
|
context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
|
|
context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
|
|
intel_iommu_get_pts(iommu);
|
|
|
|
wmb();
|
|
/* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
|
|
* extended to permit requests-with-PASID if the PASIDE bit
|
|
* is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
|
|
* however, the PASIDE bit is ignored and requests-with-PASID
|
|
* are unconditionally blocked. Which makes less sense.
|
|
* So convert from CONTEXT_TT_PASS_THROUGH to one of the new
|
|
* "guest mode" translation types depending on whether ATS
|
|
* is available or not. Annoyingly, we can't use the new
|
|
* modes *unless* PASIDE is set. */
|
|
if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
|
|
ctx_lo &= ~CONTEXT_TT_MASK;
|
|
if (info->ats_supported)
|
|
ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
|
|
else
|
|
ctx_lo |= CONTEXT_TT_PT_PASID << 2;
|
|
}
|
|
ctx_lo |= CONTEXT_PASIDE;
|
|
if (iommu->pasid_state_table)
|
|
ctx_lo |= CONTEXT_DINVE;
|
|
if (info->pri_supported)
|
|
ctx_lo |= CONTEXT_PRS;
|
|
context[0].lo = ctx_lo;
|
|
wmb();
|
|
iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
|
|
DMA_CCMD_MASK_NOBIT,
|
|
DMA_CCMD_DEVICE_INVL);
|
|
}
|
|
|
|
/* Enable PASID support in the device, if it wasn't already */
|
|
if (!info->pasid_enabled)
|
|
iommu_enable_dev_iotlb(info);
|
|
|
|
if (info->ats_enabled) {
|
|
sdev->dev_iotlb = 1;
|
|
sdev->qdep = info->ats_qdep;
|
|
if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
|
|
sdev->qdep = 0;
|
|
}
|
|
ret = 0;
|
|
|
|
out:
|
|
spin_unlock(&iommu->lock);
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
u8 bus, devfn;
|
|
|
|
if (iommu_dummy(dev)) {
|
|
dev_warn(dev,
|
|
"No IOMMU translation for device; cannot enable SVM\n");
|
|
return NULL;
|
|
}
|
|
|
|
iommu = device_to_iommu(dev, &bus, &devfn);
|
|
if ((!iommu)) {
|
|
dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!iommu->pasid_table) {
|
|
dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
|
|
return NULL;
|
|
}
|
|
|
|
return iommu;
|
|
}
|
|
#endif /* CONFIG_INTEL_IOMMU_SVM */
|
|
|
|
const struct iommu_ops intel_iommu_ops = {
|
|
.capable = intel_iommu_capable,
|
|
.domain_alloc = intel_iommu_domain_alloc,
|
|
.domain_free = intel_iommu_domain_free,
|
|
.attach_dev = intel_iommu_attach_device,
|
|
.detach_dev = intel_iommu_detach_device,
|
|
.map = intel_iommu_map,
|
|
.unmap = intel_iommu_unmap,
|
|
.map_sg = default_iommu_map_sg,
|
|
.iova_to_phys = intel_iommu_iova_to_phys,
|
|
.add_device = intel_iommu_add_device,
|
|
.remove_device = intel_iommu_remove_device,
|
|
.get_resv_regions = intel_iommu_get_resv_regions,
|
|
.put_resv_regions = intel_iommu_put_resv_regions,
|
|
.device_group = pci_device_group,
|
|
.pgsize_bitmap = INTEL_IOMMU_PGSIZES,
|
|
};
|
|
|
|
static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
|
|
{
|
|
/* G4x/GM45 integrated gfx dmar support is totally busted. */
|
|
pr_info("Disabling IOMMU for graphics on this chipset\n");
|
|
dmar_map_gfx = 0;
|
|
}
|
|
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
|
|
|
|
static void quirk_iommu_rwbf(struct pci_dev *dev)
|
|
{
|
|
/*
|
|
* Mobile 4 Series Chipset neglects to set RWBF capability,
|
|
* but needs it. Same seems to hold for the desktop versions.
|
|
*/
|
|
pr_info("Forcing write-buffer flush capability\n");
|
|
rwbf_quirk = 1;
|
|
}
|
|
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
|
|
|
|
#define GGC 0x52
|
|
#define GGC_MEMORY_SIZE_MASK (0xf << 8)
|
|
#define GGC_MEMORY_SIZE_NONE (0x0 << 8)
|
|
#define GGC_MEMORY_SIZE_1M (0x1 << 8)
|
|
#define GGC_MEMORY_SIZE_2M (0x3 << 8)
|
|
#define GGC_MEMORY_VT_ENABLED (0x8 << 8)
|
|
#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
|
|
#define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
|
|
#define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
|
|
|
|
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
|
|
{
|
|
unsigned short ggc;
|
|
|
|
if (pci_read_config_word(dev, GGC, &ggc))
|
|
return;
|
|
|
|
if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
|
|
pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
|
|
dmar_map_gfx = 0;
|
|
} else if (dmar_map_gfx) {
|
|
/* we have to ensure the gfx device is idle before we flush */
|
|
pr_info("Disabling batched IOTLB flush on Ironlake\n");
|
|
intel_iommu_strict = 1;
|
|
}
|
|
}
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
|
|
|
|
/* On Tylersburg chipsets, some BIOSes have been known to enable the
|
|
ISOCH DMAR unit for the Azalia sound device, but not give it any
|
|
TLB entries, which causes it to deadlock. Check for that. We do
|
|
this in a function called from init_dmars(), instead of in a PCI
|
|
quirk, because we don't want to print the obnoxious "BIOS broken"
|
|
message if VT-d is actually disabled.
|
|
*/
|
|
static void __init check_tylersburg_isoch(void)
|
|
{
|
|
struct pci_dev *pdev;
|
|
uint32_t vtisochctrl;
|
|
|
|
/* If there's no Azalia in the system anyway, forget it. */
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
|
|
if (!pdev)
|
|
return;
|
|
pci_dev_put(pdev);
|
|
|
|
/* System Management Registers. Might be hidden, in which case
|
|
we can't do the sanity check. But that's OK, because the
|
|
known-broken BIOSes _don't_ actually hide it, so far. */
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
|
|
if (!pdev)
|
|
return;
|
|
|
|
if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
|
|
pci_dev_put(pdev);
|
|
return;
|
|
}
|
|
|
|
pci_dev_put(pdev);
|
|
|
|
/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
|
|
if (vtisochctrl & 1)
|
|
return;
|
|
|
|
/* Drop all bits other than the number of TLB entries */
|
|
vtisochctrl &= 0x1c;
|
|
|
|
/* If we have the recommended number of TLB entries (16), fine. */
|
|
if (vtisochctrl == 0x10)
|
|
return;
|
|
|
|
/* Zero TLB entries? You get to ride the short bus to school. */
|
|
if (!vtisochctrl) {
|
|
WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
iommu_identity_mapping |= IDENTMAP_AZALIA;
|
|
return;
|
|
}
|
|
|
|
pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
|
|
vtisochctrl);
|
|
}
|