linux/drivers/scsi/zorro_esp.c

961 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* ESP front-end for Amiga ZORRO SCSI systems.
*
* Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
*
* Copyright (C) 2011,2018 Michael Schmitz (schmitz@debian.org) for
* migration to ESP SCSI core
*
* Copyright (C) 2013 Tuomas Vainikka (tuomas.vainikka@aalto.fi) for
* Blizzard 1230 DMA and probe function fixes
*/
/*
* ZORRO bus code from:
*/
/*
* Detection routine for the NCR53c710 based Amiga SCSI Controllers for Linux.
* Amiga MacroSystemUS WarpEngine SCSI controller.
* Amiga Technologies/DKB A4091 SCSI controller.
*
* Written 1997 by Alan Hourihane <alanh@fairlite.demon.co.uk>
* plus modifications of the 53c7xx.c driver to support the Amiga.
*
* Rewritten to use 53c700.c by Kars de Jong <jongk@linux-m68k.org>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/delay.h>
#include <linux/zorro.h>
#include <linux/slab.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
#include <asm/amigahw.h>
#include <asm/amigaints.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_spi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_tcq.h>
#include "esp_scsi.h"
MODULE_AUTHOR("Michael Schmitz <schmitz@debian.org>");
MODULE_DESCRIPTION("Amiga Zorro NCR5C9x (ESP) driver");
MODULE_LICENSE("GPL");
/* per-board register layout definitions */
/* Blizzard 1230 DMA interface */
struct blz1230_dma_registers {
unsigned char dma_addr; /* DMA address [0x0000] */
unsigned char dmapad2[0x7fff];
unsigned char dma_latch; /* DMA latch [0x8000] */
};
/* Blizzard 1230II DMA interface */
struct blz1230II_dma_registers {
unsigned char dma_addr; /* DMA address [0x0000] */
unsigned char dmapad2[0xf];
unsigned char dma_latch; /* DMA latch [0x0010] */
};
/* Blizzard 2060 DMA interface */
struct blz2060_dma_registers {
unsigned char dma_led_ctrl; /* DMA led control [0x000] */
unsigned char dmapad1[0x0f];
unsigned char dma_addr0; /* DMA address (MSB) [0x010] */
unsigned char dmapad2[0x03];
unsigned char dma_addr1; /* DMA address [0x014] */
unsigned char dmapad3[0x03];
unsigned char dma_addr2; /* DMA address [0x018] */
unsigned char dmapad4[0x03];
unsigned char dma_addr3; /* DMA address (LSB) [0x01c] */
};
/* DMA control bits */
#define DMA_WRITE 0x80000000
/* Cyberstorm DMA interface */
struct cyber_dma_registers {
unsigned char dma_addr0; /* DMA address (MSB) [0x000] */
unsigned char dmapad1[1];
unsigned char dma_addr1; /* DMA address [0x002] */
unsigned char dmapad2[1];
unsigned char dma_addr2; /* DMA address [0x004] */
unsigned char dmapad3[1];
unsigned char dma_addr3; /* DMA address (LSB) [0x006] */
unsigned char dmapad4[0x3fb];
unsigned char cond_reg; /* DMA cond (ro) [0x402] */
#define ctrl_reg cond_reg /* DMA control (wo) [0x402] */
};
/* DMA control bits */
#define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */
#define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */
/* DMA status bits */
#define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */
/* The CyberStorm II DMA interface */
struct cyberII_dma_registers {
unsigned char cond_reg; /* DMA cond (ro) [0x000] */
#define ctrl_reg cond_reg /* DMA control (wo) [0x000] */
unsigned char dmapad4[0x3f];
unsigned char dma_addr0; /* DMA address (MSB) [0x040] */
unsigned char dmapad1[3];
unsigned char dma_addr1; /* DMA address [0x044] */
unsigned char dmapad2[3];
unsigned char dma_addr2; /* DMA address [0x048] */
unsigned char dmapad3[3];
unsigned char dma_addr3; /* DMA address (LSB) [0x04c] */
};
/* Fastlane DMA interface */
struct fastlane_dma_registers {
unsigned char cond_reg; /* DMA status (ro) [0x0000] */
#define ctrl_reg cond_reg /* DMA control (wo) [0x0000] */
char dmapad1[0x3f];
unsigned char clear_strobe; /* DMA clear (wo) [0x0040] */
};
/*
* The controller registers can be found in the Z2 config area at these
* offsets:
*/
#define FASTLANE_ESP_ADDR 0x1000001
/* DMA status bits */
#define FASTLANE_DMA_MINT 0x80
#define FASTLANE_DMA_IACT 0x40
#define FASTLANE_DMA_CREQ 0x20
/* DMA control bits */
#define FASTLANE_DMA_FCODE 0xa0
#define FASTLANE_DMA_MASK 0xf3
#define FASTLANE_DMA_WRITE 0x08 /* 1 = write */
#define FASTLANE_DMA_ENABLE 0x04 /* Enable DMA */
#define FASTLANE_DMA_EDI 0x02 /* Enable DMA IRQ ? */
#define FASTLANE_DMA_ESI 0x01 /* Enable SCSI IRQ */
/*
* private data used for driver
*/
struct zorro_esp_priv {
struct esp *esp; /* our ESP instance - for Scsi_host* */
void __iomem *board_base; /* virtual address (Zorro III board) */
int zorro3; /* board is Zorro III */
unsigned char ctrl_data; /* shadow copy of ctrl_reg */
};
/*
* On all implementations except for the Oktagon, padding between ESP
* registers is three bytes.
* On Oktagon, it is one byte - use a different accessor there.
*
* Oktagon needs PDMA - currently unsupported!
*/
static void zorro_esp_write8(struct esp *esp, u8 val, unsigned long reg)
{
writeb(val, esp->regs + (reg * 4UL));
}
static u8 zorro_esp_read8(struct esp *esp, unsigned long reg)
{
return readb(esp->regs + (reg * 4UL));
}
static int zorro_esp_irq_pending(struct esp *esp)
{
/* check ESP status register; DMA has no status reg. */
if (zorro_esp_read8(esp, ESP_STATUS) & ESP_STAT_INTR)
return 1;
return 0;
}
static int cyber_esp_irq_pending(struct esp *esp)
{
struct cyber_dma_registers __iomem *dregs = esp->dma_regs;
unsigned char dma_status = readb(&dregs->cond_reg);
/* It's important to check the DMA IRQ bit in the correct way! */
return ((zorro_esp_read8(esp, ESP_STATUS) & ESP_STAT_INTR) &&
(dma_status & CYBER_DMA_HNDL_INTR));
}
static int fastlane_esp_irq_pending(struct esp *esp)
{
struct fastlane_dma_registers __iomem *dregs = esp->dma_regs;
unsigned char dma_status;
dma_status = readb(&dregs->cond_reg);
if (dma_status & FASTLANE_DMA_IACT)
return 0; /* not our IRQ */
/* Return non-zero if ESP requested IRQ */
return (
(dma_status & FASTLANE_DMA_CREQ) &&
(!(dma_status & FASTLANE_DMA_MINT)) &&
(zorro_esp_read8(esp, ESP_STATUS) & ESP_STAT_INTR));
}
static u32 zorro_esp_dma_length_limit(struct esp *esp, u32 dma_addr,
u32 dma_len)
{
return dma_len > (1U << 16) ? (1U << 16) : dma_len;
}
static u32 fastlane_esp_dma_length_limit(struct esp *esp, u32 dma_addr,
u32 dma_len)
{
/* The old driver used 0xfffc as limit, so do that here too */
return dma_len > 0xfffc ? 0xfffc : dma_len;
}
static void zorro_esp_reset_dma(struct esp *esp)
{
/* nothing to do here */
}
static void zorro_esp_dma_drain(struct esp *esp)
{
/* nothing to do here */
}
static void zorro_esp_dma_invalidate(struct esp *esp)
{
/* nothing to do here */
}
static void fastlane_esp_dma_invalidate(struct esp *esp)
{
struct zorro_esp_priv *zep = dev_get_drvdata(esp->dev);
struct fastlane_dma_registers __iomem *dregs = esp->dma_regs;
unsigned char *ctrl_data = &zep->ctrl_data;
*ctrl_data = (*ctrl_data & FASTLANE_DMA_MASK);
writeb(0, &dregs->clear_strobe);
z_writel(0, zep->board_base);
}
/* Blizzard 1230/60 SCSI-IV DMA */
static void zorro_esp_send_blz1230_dma_cmd(struct esp *esp, u32 addr,
u32 esp_count, u32 dma_count, int write, u8 cmd)
{
struct blz1230_dma_registers __iomem *dregs = esp->dma_regs;
u8 phase = esp->sreg & ESP_STAT_PMASK;
/*
* Use PIO if transferring message bytes to esp->command_block_dma.
* PIO requires a virtual address, so substitute esp->command_block
* for addr.
*/
if (phase == ESP_MIP && addr == esp->command_block_dma) {
esp_send_pio_cmd(esp, (u32)esp->command_block, esp_count,
dma_count, write, cmd);
return;
}
/* Clear the results of a possible prior esp->ops->send_dma_cmd() */
esp->send_cmd_error = 0;
esp->send_cmd_residual = 0;
if (write)
/* DMA receive */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_FROM_DEVICE);
else
/* DMA send */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_TO_DEVICE);
addr >>= 1;
if (write)
addr &= ~(DMA_WRITE);
else
addr |= DMA_WRITE;
writeb((addr >> 24) & 0xff, &dregs->dma_latch);
writeb((addr >> 24) & 0xff, &dregs->dma_addr);
writeb((addr >> 16) & 0xff, &dregs->dma_addr);
writeb((addr >> 8) & 0xff, &dregs->dma_addr);
writeb(addr & 0xff, &dregs->dma_addr);
scsi_esp_cmd(esp, ESP_CMD_DMA);
zorro_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
zorro_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
scsi_esp_cmd(esp, cmd);
}
/* Blizzard 1230-II DMA */
static void zorro_esp_send_blz1230II_dma_cmd(struct esp *esp, u32 addr,
u32 esp_count, u32 dma_count, int write, u8 cmd)
{
struct blz1230II_dma_registers __iomem *dregs = esp->dma_regs;
u8 phase = esp->sreg & ESP_STAT_PMASK;
/* Use PIO if transferring message bytes to esp->command_block_dma */
if (phase == ESP_MIP && addr == esp->command_block_dma) {
esp_send_pio_cmd(esp, (u32)esp->command_block, esp_count,
dma_count, write, cmd);
return;
}
esp->send_cmd_error = 0;
esp->send_cmd_residual = 0;
if (write)
/* DMA receive */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_FROM_DEVICE);
else
/* DMA send */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_TO_DEVICE);
addr >>= 1;
if (write)
addr &= ~(DMA_WRITE);
else
addr |= DMA_WRITE;
writeb((addr >> 24) & 0xff, &dregs->dma_latch);
writeb((addr >> 16) & 0xff, &dregs->dma_addr);
writeb((addr >> 8) & 0xff, &dregs->dma_addr);
writeb(addr & 0xff, &dregs->dma_addr);
scsi_esp_cmd(esp, ESP_CMD_DMA);
zorro_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
zorro_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
scsi_esp_cmd(esp, cmd);
}
/* Blizzard 2060 DMA */
static void zorro_esp_send_blz2060_dma_cmd(struct esp *esp, u32 addr,
u32 esp_count, u32 dma_count, int write, u8 cmd)
{
struct blz2060_dma_registers __iomem *dregs = esp->dma_regs;
u8 phase = esp->sreg & ESP_STAT_PMASK;
/* Use PIO if transferring message bytes to esp->command_block_dma */
if (phase == ESP_MIP && addr == esp->command_block_dma) {
esp_send_pio_cmd(esp, (u32)esp->command_block, esp_count,
dma_count, write, cmd);
return;
}
esp->send_cmd_error = 0;
esp->send_cmd_residual = 0;
if (write)
/* DMA receive */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_FROM_DEVICE);
else
/* DMA send */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_TO_DEVICE);
addr >>= 1;
if (write)
addr &= ~(DMA_WRITE);
else
addr |= DMA_WRITE;
writeb(addr & 0xff, &dregs->dma_addr3);
writeb((addr >> 8) & 0xff, &dregs->dma_addr2);
writeb((addr >> 16) & 0xff, &dregs->dma_addr1);
writeb((addr >> 24) & 0xff, &dregs->dma_addr0);
scsi_esp_cmd(esp, ESP_CMD_DMA);
zorro_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
zorro_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
scsi_esp_cmd(esp, cmd);
}
/* Cyberstorm I DMA */
static void zorro_esp_send_cyber_dma_cmd(struct esp *esp, u32 addr,
u32 esp_count, u32 dma_count, int write, u8 cmd)
{
struct zorro_esp_priv *zep = dev_get_drvdata(esp->dev);
struct cyber_dma_registers __iomem *dregs = esp->dma_regs;
u8 phase = esp->sreg & ESP_STAT_PMASK;
unsigned char *ctrl_data = &zep->ctrl_data;
/* Use PIO if transferring message bytes to esp->command_block_dma */
if (phase == ESP_MIP && addr == esp->command_block_dma) {
esp_send_pio_cmd(esp, (u32)esp->command_block, esp_count,
dma_count, write, cmd);
return;
}
esp->send_cmd_error = 0;
esp->send_cmd_residual = 0;
zorro_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
zorro_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
if (write) {
/* DMA receive */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_FROM_DEVICE);
addr &= ~(1);
} else {
/* DMA send */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_TO_DEVICE);
addr |= 1;
}
writeb((addr >> 24) & 0xff, &dregs->dma_addr0);
writeb((addr >> 16) & 0xff, &dregs->dma_addr1);
writeb((addr >> 8) & 0xff, &dregs->dma_addr2);
writeb(addr & 0xff, &dregs->dma_addr3);
if (write)
*ctrl_data &= ~(CYBER_DMA_WRITE);
else
*ctrl_data |= CYBER_DMA_WRITE;
*ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
writeb(*ctrl_data, &dregs->ctrl_reg);
scsi_esp_cmd(esp, cmd);
}
/* Cyberstorm II DMA */
static void zorro_esp_send_cyberII_dma_cmd(struct esp *esp, u32 addr,
u32 esp_count, u32 dma_count, int write, u8 cmd)
{
struct cyberII_dma_registers __iomem *dregs = esp->dma_regs;
u8 phase = esp->sreg & ESP_STAT_PMASK;
/* Use PIO if transferring message bytes to esp->command_block_dma */
if (phase == ESP_MIP && addr == esp->command_block_dma) {
esp_send_pio_cmd(esp, (u32)esp->command_block, esp_count,
dma_count, write, cmd);
return;
}
esp->send_cmd_error = 0;
esp->send_cmd_residual = 0;
zorro_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
zorro_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
if (write) {
/* DMA receive */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_FROM_DEVICE);
addr &= ~(1);
} else {
/* DMA send */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_TO_DEVICE);
addr |= 1;
}
writeb((addr >> 24) & 0xff, &dregs->dma_addr0);
writeb((addr >> 16) & 0xff, &dregs->dma_addr1);
writeb((addr >> 8) & 0xff, &dregs->dma_addr2);
writeb(addr & 0xff, &dregs->dma_addr3);
scsi_esp_cmd(esp, cmd);
}
/* Fastlane DMA */
static void zorro_esp_send_fastlane_dma_cmd(struct esp *esp, u32 addr,
u32 esp_count, u32 dma_count, int write, u8 cmd)
{
struct zorro_esp_priv *zep = dev_get_drvdata(esp->dev);
struct fastlane_dma_registers __iomem *dregs = esp->dma_regs;
u8 phase = esp->sreg & ESP_STAT_PMASK;
unsigned char *ctrl_data = &zep->ctrl_data;
/* Use PIO if transferring message bytes to esp->command_block_dma */
if (phase == ESP_MIP && addr == esp->command_block_dma) {
esp_send_pio_cmd(esp, (u32)esp->command_block, esp_count,
dma_count, write, cmd);
return;
}
esp->send_cmd_error = 0;
esp->send_cmd_residual = 0;
zorro_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
zorro_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
if (write) {
/* DMA receive */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_FROM_DEVICE);
addr &= ~(1);
} else {
/* DMA send */
dma_sync_single_for_device(esp->dev, addr, esp_count,
DMA_TO_DEVICE);
addr |= 1;
}
writeb(0, &dregs->clear_strobe);
z_writel(addr, ((addr & 0x00ffffff) + zep->board_base));
if (write) {
*ctrl_data = (*ctrl_data & FASTLANE_DMA_MASK) |
FASTLANE_DMA_ENABLE;
} else {
*ctrl_data = ((*ctrl_data & FASTLANE_DMA_MASK) |
FASTLANE_DMA_ENABLE |
FASTLANE_DMA_WRITE);
}
writeb(*ctrl_data, &dregs->ctrl_reg);
scsi_esp_cmd(esp, cmd);
}
static int zorro_esp_dma_error(struct esp *esp)
{
return esp->send_cmd_error;
}
/* per-board ESP driver ops */
static const struct esp_driver_ops blz1230_esp_ops = {
.esp_write8 = zorro_esp_write8,
.esp_read8 = zorro_esp_read8,
.irq_pending = zorro_esp_irq_pending,
.dma_length_limit = zorro_esp_dma_length_limit,
.reset_dma = zorro_esp_reset_dma,
.dma_drain = zorro_esp_dma_drain,
.dma_invalidate = zorro_esp_dma_invalidate,
.send_dma_cmd = zorro_esp_send_blz1230_dma_cmd,
.dma_error = zorro_esp_dma_error,
};
static const struct esp_driver_ops blz1230II_esp_ops = {
.esp_write8 = zorro_esp_write8,
.esp_read8 = zorro_esp_read8,
.irq_pending = zorro_esp_irq_pending,
.dma_length_limit = zorro_esp_dma_length_limit,
.reset_dma = zorro_esp_reset_dma,
.dma_drain = zorro_esp_dma_drain,
.dma_invalidate = zorro_esp_dma_invalidate,
.send_dma_cmd = zorro_esp_send_blz1230II_dma_cmd,
.dma_error = zorro_esp_dma_error,
};
static const struct esp_driver_ops blz2060_esp_ops = {
.esp_write8 = zorro_esp_write8,
.esp_read8 = zorro_esp_read8,
.irq_pending = zorro_esp_irq_pending,
.dma_length_limit = zorro_esp_dma_length_limit,
.reset_dma = zorro_esp_reset_dma,
.dma_drain = zorro_esp_dma_drain,
.dma_invalidate = zorro_esp_dma_invalidate,
.send_dma_cmd = zorro_esp_send_blz2060_dma_cmd,
.dma_error = zorro_esp_dma_error,
};
static const struct esp_driver_ops cyber_esp_ops = {
.esp_write8 = zorro_esp_write8,
.esp_read8 = zorro_esp_read8,
.irq_pending = cyber_esp_irq_pending,
.dma_length_limit = zorro_esp_dma_length_limit,
.reset_dma = zorro_esp_reset_dma,
.dma_drain = zorro_esp_dma_drain,
.dma_invalidate = zorro_esp_dma_invalidate,
.send_dma_cmd = zorro_esp_send_cyber_dma_cmd,
.dma_error = zorro_esp_dma_error,
};
static const struct esp_driver_ops cyberII_esp_ops = {
.esp_write8 = zorro_esp_write8,
.esp_read8 = zorro_esp_read8,
.irq_pending = zorro_esp_irq_pending,
.dma_length_limit = zorro_esp_dma_length_limit,
.reset_dma = zorro_esp_reset_dma,
.dma_drain = zorro_esp_dma_drain,
.dma_invalidate = zorro_esp_dma_invalidate,
.send_dma_cmd = zorro_esp_send_cyberII_dma_cmd,
.dma_error = zorro_esp_dma_error,
};
static const struct esp_driver_ops fastlane_esp_ops = {
.esp_write8 = zorro_esp_write8,
.esp_read8 = zorro_esp_read8,
.irq_pending = fastlane_esp_irq_pending,
.dma_length_limit = fastlane_esp_dma_length_limit,
.reset_dma = zorro_esp_reset_dma,
.dma_drain = zorro_esp_dma_drain,
.dma_invalidate = fastlane_esp_dma_invalidate,
.send_dma_cmd = zorro_esp_send_fastlane_dma_cmd,
.dma_error = zorro_esp_dma_error,
};
/* Zorro driver config data */
struct zorro_driver_data {
const char *name;
unsigned long offset;
unsigned long dma_offset;
int absolute; /* offset is absolute address */
int scsi_option;
const struct esp_driver_ops *esp_ops;
};
/* board types */
enum {
ZORRO_BLZ1230,
ZORRO_BLZ1230II,
ZORRO_BLZ2060,
ZORRO_CYBER,
ZORRO_CYBERII,
ZORRO_FASTLANE,
};
/* per-board config data */
static const struct zorro_driver_data zorro_esp_boards[] = {
[ZORRO_BLZ1230] = {
.name = "Blizzard 1230",
.offset = 0x8000,
.dma_offset = 0x10000,
.scsi_option = 1,
.esp_ops = &blz1230_esp_ops,
},
[ZORRO_BLZ1230II] = {
.name = "Blizzard 1230II",
.offset = 0x10000,
.dma_offset = 0x10021,
.scsi_option = 1,
.esp_ops = &blz1230II_esp_ops,
},
[ZORRO_BLZ2060] = {
.name = "Blizzard 2060",
.offset = 0x1ff00,
.dma_offset = 0x1ffe0,
.esp_ops = &blz2060_esp_ops,
},
[ZORRO_CYBER] = {
.name = "CyberStormI",
.offset = 0xf400,
.dma_offset = 0xf800,
.esp_ops = &cyber_esp_ops,
},
[ZORRO_CYBERII] = {
.name = "CyberStormII",
.offset = 0x1ff03,
.dma_offset = 0x1ff43,
.scsi_option = 1,
.esp_ops = &cyberII_esp_ops,
},
[ZORRO_FASTLANE] = {
.name = "Fastlane",
.offset = 0x1000001,
.dma_offset = 0x1000041,
.esp_ops = &fastlane_esp_ops,
},
};
static const struct zorro_device_id zorro_esp_zorro_tbl[] = {
{ /* Blizzard 1230 IV */
.id = ZORRO_ID(PHASE5, 0x11, 0),
.driver_data = ZORRO_BLZ1230,
},
{ /* Blizzard 1230 II (Zorro II) or Fastlane (Zorro III) */
.id = ZORRO_ID(PHASE5, 0x0B, 0),
.driver_data = ZORRO_BLZ1230II,
},
{ /* Blizzard 2060 */
.id = ZORRO_ID(PHASE5, 0x18, 0),
.driver_data = ZORRO_BLZ2060,
},
{ /* Cyberstorm */
.id = ZORRO_ID(PHASE5, 0x0C, 0),
.driver_data = ZORRO_CYBER,
},
{ /* Cyberstorm II */
.id = ZORRO_ID(PHASE5, 0x19, 0),
.driver_data = ZORRO_CYBERII,
},
{ 0 }
};
MODULE_DEVICE_TABLE(zorro, zorro_esp_zorro_tbl);
static int zorro_esp_probe(struct zorro_dev *z,
const struct zorro_device_id *ent)
{
struct scsi_host_template *tpnt = &scsi_esp_template;
struct Scsi_Host *host;
struct esp *esp;
const struct zorro_driver_data *zdd;
struct zorro_esp_priv *zep;
unsigned long board, ioaddr, dmaaddr;
int err;
board = zorro_resource_start(z);
zdd = &zorro_esp_boards[ent->driver_data];
pr_info("%s found at address 0x%lx.\n", zdd->name, board);
zep = kzalloc(sizeof(*zep), GFP_KERNEL);
if (!zep) {
pr_err("Can't allocate device private data!\n");
return -ENOMEM;
}
/* let's figure out whether we have a Zorro II or Zorro III board */
if ((z->rom.er_Type & ERT_TYPEMASK) == ERT_ZORROIII) {
if (board > 0xffffff)
zep->zorro3 = 1;
} else {
/*
* Even though most of these boards identify as Zorro II,
* they are in fact CPU expansion slot boards and have full
* access to all of memory. Fix up DMA bitmask here.
*/
z->dev.coherent_dma_mask = DMA_BIT_MASK(32);
}
/*
* If Zorro III and ID matches Fastlane, our device table entry
* contains data for the Blizzard 1230 II board which does share the
* same ID. Fix up device table entry here.
* TODO: Some Cyberstom060 boards also share this ID but would need
* to use the Cyberstorm I driver data ... we catch this by checking
* for presence of ESP chip later, but don't try to fix up yet.
*/
if (zep->zorro3 && ent->driver_data == ZORRO_BLZ1230II) {
pr_info("%s at address 0x%lx is Fastlane Z3, fixing data!\n",
zdd->name, board);
zdd = &zorro_esp_boards[ZORRO_FASTLANE];
}
if (zdd->absolute) {
ioaddr = zdd->offset;
dmaaddr = zdd->dma_offset;
} else {
ioaddr = board + zdd->offset;
dmaaddr = board + zdd->dma_offset;
}
if (!zorro_request_device(z, zdd->name)) {
pr_err("cannot reserve region 0x%lx, abort\n",
board);
err = -EBUSY;
goto fail_free_zep;
}
host = scsi_host_alloc(tpnt, sizeof(struct esp));
if (!host) {
pr_err("No host detected; board configuration problem?\n");
err = -ENOMEM;
goto fail_release_device;
}
host->base = ioaddr;
host->this_id = 7;
esp = shost_priv(host);
esp->host = host;
esp->dev = &z->dev;
esp->scsi_id = host->this_id;
esp->scsi_id_mask = (1 << esp->scsi_id);
esp->cfreq = 40000000;
zep->esp = esp;
dev_set_drvdata(esp->dev, zep);
/* additional setup required for Fastlane */
if (zep->zorro3 && ent->driver_data == ZORRO_BLZ1230II) {
/* map full address space up to ESP base for DMA */
zep->board_base = ioremap(board, FASTLANE_ESP_ADDR - 1);
if (!zep->board_base) {
pr_err("Cannot allocate board address space\n");
err = -ENOMEM;
goto fail_free_host;
}
/* initialize DMA control shadow register */
zep->ctrl_data = (FASTLANE_DMA_FCODE |
FASTLANE_DMA_EDI | FASTLANE_DMA_ESI);
}
esp->ops = zdd->esp_ops;
if (ioaddr > 0xffffff)
esp->regs = ioremap(ioaddr, 0x20);
else
/* ZorroII address space remapped nocache by early startup */
esp->regs = ZTWO_VADDR(ioaddr);
if (!esp->regs) {
err = -ENOMEM;
goto fail_unmap_fastlane;
}
esp->fifo_reg = esp->regs + ESP_FDATA * 4;
/* Check whether a Blizzard 12x0 or CyberstormII really has SCSI */
if (zdd->scsi_option) {
zorro_esp_write8(esp, (ESP_CONFIG1_PENABLE | 7), ESP_CFG1);
if (zorro_esp_read8(esp, ESP_CFG1) != (ESP_CONFIG1_PENABLE|7)) {
err = -ENODEV;
goto fail_unmap_regs;
}
}
if (zep->zorro3) {
/*
* Only Fastlane Z3 for now - add switch for correct struct
* dma_registers size if adding any more
*/
esp->dma_regs = ioremap(dmaaddr,
sizeof(struct fastlane_dma_registers));
} else
/* ZorroII address space remapped nocache by early startup */
esp->dma_regs = ZTWO_VADDR(dmaaddr);
if (!esp->dma_regs) {
err = -ENOMEM;
goto fail_unmap_regs;
}
esp->command_block = dma_alloc_coherent(esp->dev, 16,
&esp->command_block_dma,
GFP_KERNEL);
if (!esp->command_block) {
err = -ENOMEM;
goto fail_unmap_dma_regs;
}
host->irq = IRQ_AMIGA_PORTS;
err = request_irq(host->irq, scsi_esp_intr, IRQF_SHARED,
"Amiga Zorro ESP", esp);
if (err < 0) {
err = -ENODEV;
goto fail_free_command_block;
}
/* register the chip */
err = scsi_esp_register(esp);
if (err) {
err = -ENOMEM;
goto fail_free_irq;
}
return 0;
fail_free_irq:
free_irq(host->irq, esp);
fail_free_command_block:
dma_free_coherent(esp->dev, 16,
esp->command_block,
esp->command_block_dma);
fail_unmap_dma_regs:
if (zep->zorro3)
iounmap(esp->dma_regs);
fail_unmap_regs:
if (ioaddr > 0xffffff)
iounmap(esp->regs);
fail_unmap_fastlane:
if (zep->zorro3)
iounmap(zep->board_base);
fail_free_host:
scsi_host_put(host);
fail_release_device:
zorro_release_device(z);
fail_free_zep:
kfree(zep);
return err;
}
static void zorro_esp_remove(struct zorro_dev *z)
{
struct zorro_esp_priv *zep = dev_get_drvdata(&z->dev);
struct esp *esp = zep->esp;
struct Scsi_Host *host = esp->host;
scsi_esp_unregister(esp);
free_irq(host->irq, esp);
dma_free_coherent(esp->dev, 16,
esp->command_block,
esp->command_block_dma);
if (zep->zorro3) {
iounmap(zep->board_base);
iounmap(esp->dma_regs);
}
if (host->base > 0xffffff)
iounmap(esp->regs);
scsi_host_put(host);
zorro_release_device(z);
kfree(zep);
}
static struct zorro_driver zorro_esp_driver = {
.name = KBUILD_MODNAME,
.id_table = zorro_esp_zorro_tbl,
.probe = zorro_esp_probe,
.remove = zorro_esp_remove,
};
static int __init zorro_esp_scsi_init(void)
{
return zorro_register_driver(&zorro_esp_driver);
}
static void __exit zorro_esp_scsi_exit(void)
{
zorro_unregister_driver(&zorro_esp_driver);
}
module_init(zorro_esp_scsi_init);
module_exit(zorro_esp_scsi_exit);