linux/drivers/gpu/drm/amd/amdgpu/gmc_v9_0.c

1150 lines
31 KiB
C

/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include <drm/drm_cache.h>
#include "amdgpu.h"
#include "gmc_v9_0.h"
#include "amdgpu_atomfirmware.h"
#include "hdp/hdp_4_0_offset.h"
#include "hdp/hdp_4_0_sh_mask.h"
#include "gc/gc_9_0_sh_mask.h"
#include "dce/dce_12_0_offset.h"
#include "dce/dce_12_0_sh_mask.h"
#include "vega10_enum.h"
#include "mmhub/mmhub_1_0_offset.h"
#include "athub/athub_1_0_offset.h"
#include "oss/osssys_4_0_offset.h"
#include "soc15.h"
#include "soc15_common.h"
#include "umc/umc_6_0_sh_mask.h"
#include "gfxhub_v1_0.h"
#include "mmhub_v1_0.h"
#define mmDF_CS_AON0_DramBaseAddress0 0x0044
#define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0
//DF_CS_AON0_DramBaseAddress0
#define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0
#define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1
#define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4
#define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8
#define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc
#define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L
#define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L
#define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L
#define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L
#define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L
/* XXX Move this macro to VEGA10 header file, which is like vid.h for VI.*/
#define AMDGPU_NUM_OF_VMIDS 8
static const u32 golden_settings_vega10_hdp[] =
{
0xf64, 0x0fffffff, 0x00000000,
0xf65, 0x0fffffff, 0x00000000,
0xf66, 0x0fffffff, 0x00000000,
0xf67, 0x0fffffff, 0x00000000,
0xf68, 0x0fffffff, 0x00000000,
0xf6a, 0x0fffffff, 0x00000000,
0xf6b, 0x0fffffff, 0x00000000,
0xf6c, 0x0fffffff, 0x00000000,
0xf6d, 0x0fffffff, 0x00000000,
0xf6e, 0x0fffffff, 0x00000000,
};
static const struct soc15_reg_golden golden_settings_mmhub_1_0_0[] =
{
SOC15_REG_GOLDEN_VALUE(MMHUB, 0, mmDAGB1_WRCLI2, 0x00000007, 0xfe5fe0fa),
SOC15_REG_GOLDEN_VALUE(MMHUB, 0, mmMMEA1_DRAM_WR_CLI2GRP_MAP0, 0x00000030, 0x55555565)
};
static const struct soc15_reg_golden golden_settings_athub_1_0_0[] =
{
SOC15_REG_GOLDEN_VALUE(ATHUB, 0, mmRPB_ARB_CNTL, 0x0000ff00, 0x00000800),
SOC15_REG_GOLDEN_VALUE(ATHUB, 0, mmRPB_ARB_CNTL2, 0x00ff00ff, 0x00080008)
};
/* Ecc related register addresses, (BASE + reg offset) */
/* Universal Memory Controller caps (may be fused). */
/* UMCCH:UmcLocalCap */
#define UMCLOCALCAPS_ADDR0 (0x00014306 + 0x00000000)
#define UMCLOCALCAPS_ADDR1 (0x00014306 + 0x00000800)
#define UMCLOCALCAPS_ADDR2 (0x00014306 + 0x00001000)
#define UMCLOCALCAPS_ADDR3 (0x00014306 + 0x00001800)
#define UMCLOCALCAPS_ADDR4 (0x00054306 + 0x00000000)
#define UMCLOCALCAPS_ADDR5 (0x00054306 + 0x00000800)
#define UMCLOCALCAPS_ADDR6 (0x00054306 + 0x00001000)
#define UMCLOCALCAPS_ADDR7 (0x00054306 + 0x00001800)
#define UMCLOCALCAPS_ADDR8 (0x00094306 + 0x00000000)
#define UMCLOCALCAPS_ADDR9 (0x00094306 + 0x00000800)
#define UMCLOCALCAPS_ADDR10 (0x00094306 + 0x00001000)
#define UMCLOCALCAPS_ADDR11 (0x00094306 + 0x00001800)
#define UMCLOCALCAPS_ADDR12 (0x000d4306 + 0x00000000)
#define UMCLOCALCAPS_ADDR13 (0x000d4306 + 0x00000800)
#define UMCLOCALCAPS_ADDR14 (0x000d4306 + 0x00001000)
#define UMCLOCALCAPS_ADDR15 (0x000d4306 + 0x00001800)
/* Universal Memory Controller Channel config. */
/* UMCCH:UMC_CONFIG */
#define UMCCH_UMC_CONFIG_ADDR0 (0x00014040 + 0x00000000)
#define UMCCH_UMC_CONFIG_ADDR1 (0x00014040 + 0x00000800)
#define UMCCH_UMC_CONFIG_ADDR2 (0x00014040 + 0x00001000)
#define UMCCH_UMC_CONFIG_ADDR3 (0x00014040 + 0x00001800)
#define UMCCH_UMC_CONFIG_ADDR4 (0x00054040 + 0x00000000)
#define UMCCH_UMC_CONFIG_ADDR5 (0x00054040 + 0x00000800)
#define UMCCH_UMC_CONFIG_ADDR6 (0x00054040 + 0x00001000)
#define UMCCH_UMC_CONFIG_ADDR7 (0x00054040 + 0x00001800)
#define UMCCH_UMC_CONFIG_ADDR8 (0x00094040 + 0x00000000)
#define UMCCH_UMC_CONFIG_ADDR9 (0x00094040 + 0x00000800)
#define UMCCH_UMC_CONFIG_ADDR10 (0x00094040 + 0x00001000)
#define UMCCH_UMC_CONFIG_ADDR11 (0x00094040 + 0x00001800)
#define UMCCH_UMC_CONFIG_ADDR12 (0x000d4040 + 0x00000000)
#define UMCCH_UMC_CONFIG_ADDR13 (0x000d4040 + 0x00000800)
#define UMCCH_UMC_CONFIG_ADDR14 (0x000d4040 + 0x00001000)
#define UMCCH_UMC_CONFIG_ADDR15 (0x000d4040 + 0x00001800)
/* Universal Memory Controller Channel Ecc config. */
/* UMCCH:EccCtrl */
#define UMCCH_ECCCTRL_ADDR0 (0x00014053 + 0x00000000)
#define UMCCH_ECCCTRL_ADDR1 (0x00014053 + 0x00000800)
#define UMCCH_ECCCTRL_ADDR2 (0x00014053 + 0x00001000)
#define UMCCH_ECCCTRL_ADDR3 (0x00014053 + 0x00001800)
#define UMCCH_ECCCTRL_ADDR4 (0x00054053 + 0x00000000)
#define UMCCH_ECCCTRL_ADDR5 (0x00054053 + 0x00000800)
#define UMCCH_ECCCTRL_ADDR6 (0x00054053 + 0x00001000)
#define UMCCH_ECCCTRL_ADDR7 (0x00054053 + 0x00001800)
#define UMCCH_ECCCTRL_ADDR8 (0x00094053 + 0x00000000)
#define UMCCH_ECCCTRL_ADDR9 (0x00094053 + 0x00000800)
#define UMCCH_ECCCTRL_ADDR10 (0x00094053 + 0x00001000)
#define UMCCH_ECCCTRL_ADDR11 (0x00094053 + 0x00001800)
#define UMCCH_ECCCTRL_ADDR12 (0x000d4053 + 0x00000000)
#define UMCCH_ECCCTRL_ADDR13 (0x000d4053 + 0x00000800)
#define UMCCH_ECCCTRL_ADDR14 (0x000d4053 + 0x00001000)
#define UMCCH_ECCCTRL_ADDR15 (0x000d4053 + 0x00001800)
static const uint32_t ecc_umclocalcap_addrs[] = {
UMCLOCALCAPS_ADDR0,
UMCLOCALCAPS_ADDR1,
UMCLOCALCAPS_ADDR2,
UMCLOCALCAPS_ADDR3,
UMCLOCALCAPS_ADDR4,
UMCLOCALCAPS_ADDR5,
UMCLOCALCAPS_ADDR6,
UMCLOCALCAPS_ADDR7,
UMCLOCALCAPS_ADDR8,
UMCLOCALCAPS_ADDR9,
UMCLOCALCAPS_ADDR10,
UMCLOCALCAPS_ADDR11,
UMCLOCALCAPS_ADDR12,
UMCLOCALCAPS_ADDR13,
UMCLOCALCAPS_ADDR14,
UMCLOCALCAPS_ADDR15,
};
static const uint32_t ecc_umcch_umc_config_addrs[] = {
UMCCH_UMC_CONFIG_ADDR0,
UMCCH_UMC_CONFIG_ADDR1,
UMCCH_UMC_CONFIG_ADDR2,
UMCCH_UMC_CONFIG_ADDR3,
UMCCH_UMC_CONFIG_ADDR4,
UMCCH_UMC_CONFIG_ADDR5,
UMCCH_UMC_CONFIG_ADDR6,
UMCCH_UMC_CONFIG_ADDR7,
UMCCH_UMC_CONFIG_ADDR8,
UMCCH_UMC_CONFIG_ADDR9,
UMCCH_UMC_CONFIG_ADDR10,
UMCCH_UMC_CONFIG_ADDR11,
UMCCH_UMC_CONFIG_ADDR12,
UMCCH_UMC_CONFIG_ADDR13,
UMCCH_UMC_CONFIG_ADDR14,
UMCCH_UMC_CONFIG_ADDR15,
};
static const uint32_t ecc_umcch_eccctrl_addrs[] = {
UMCCH_ECCCTRL_ADDR0,
UMCCH_ECCCTRL_ADDR1,
UMCCH_ECCCTRL_ADDR2,
UMCCH_ECCCTRL_ADDR3,
UMCCH_ECCCTRL_ADDR4,
UMCCH_ECCCTRL_ADDR5,
UMCCH_ECCCTRL_ADDR6,
UMCCH_ECCCTRL_ADDR7,
UMCCH_ECCCTRL_ADDR8,
UMCCH_ECCCTRL_ADDR9,
UMCCH_ECCCTRL_ADDR10,
UMCCH_ECCCTRL_ADDR11,
UMCCH_ECCCTRL_ADDR12,
UMCCH_ECCCTRL_ADDR13,
UMCCH_ECCCTRL_ADDR14,
UMCCH_ECCCTRL_ADDR15,
};
static int gmc_v9_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
struct amdgpu_vmhub *hub;
u32 tmp, reg, bits, i, j;
bits = VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
for (j = 0; j < AMDGPU_MAX_VMHUBS; j++) {
hub = &adev->vmhub[j];
for (i = 0; i < 16; i++) {
reg = hub->vm_context0_cntl + i;
tmp = RREG32(reg);
tmp &= ~bits;
WREG32(reg, tmp);
}
}
break;
case AMDGPU_IRQ_STATE_ENABLE:
for (j = 0; j < AMDGPU_MAX_VMHUBS; j++) {
hub = &adev->vmhub[j];
for (i = 0; i < 16; i++) {
reg = hub->vm_context0_cntl + i;
tmp = RREG32(reg);
tmp |= bits;
WREG32(reg, tmp);
}
}
default:
break;
}
return 0;
}
static int gmc_v9_0_process_interrupt(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
struct amdgpu_vmhub *hub = &adev->vmhub[entry->vmid_src];
uint32_t status = 0;
u64 addr;
addr = (u64)entry->src_data[0] << 12;
addr |= ((u64)entry->src_data[1] & 0xf) << 44;
if (!amdgpu_sriov_vf(adev)) {
status = RREG32(hub->vm_l2_pro_fault_status);
WREG32_P(hub->vm_l2_pro_fault_cntl, 1, ~1);
}
if (printk_ratelimit()) {
dev_err(adev->dev,
"[%s] VMC page fault (src_id:%u ring:%u vmid:%u pasid:%u)\n",
entry->vmid_src ? "mmhub" : "gfxhub",
entry->src_id, entry->ring_id, entry->vmid,
entry->pasid);
dev_err(adev->dev, " at page 0x%016llx from %d\n",
addr, entry->client_id);
if (!amdgpu_sriov_vf(adev))
dev_err(adev->dev,
"VM_L2_PROTECTION_FAULT_STATUS:0x%08X\n",
status);
}
return 0;
}
static const struct amdgpu_irq_src_funcs gmc_v9_0_irq_funcs = {
.set = gmc_v9_0_vm_fault_interrupt_state,
.process = gmc_v9_0_process_interrupt,
};
static void gmc_v9_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->gmc.vm_fault.num_types = 1;
adev->gmc.vm_fault.funcs = &gmc_v9_0_irq_funcs;
}
static uint32_t gmc_v9_0_get_invalidate_req(unsigned int vmid)
{
u32 req = 0;
/* invalidate using legacy mode on vmid*/
req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ,
PER_VMID_INVALIDATE_REQ, 1 << vmid);
req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, FLUSH_TYPE, 0);
req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PTES, 1);
req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE0, 1);
req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE1, 1);
req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE2, 1);
req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L1_PTES, 1);
req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ,
CLEAR_PROTECTION_FAULT_STATUS_ADDR, 0);
return req;
}
/*
* GART
* VMID 0 is the physical GPU addresses as used by the kernel.
* VMIDs 1-15 are used for userspace clients and are handled
* by the amdgpu vm/hsa code.
*/
/**
* gmc_v9_0_flush_gpu_tlb - gart tlb flush callback
*
* @adev: amdgpu_device pointer
* @vmid: vm instance to flush
*
* Flush the TLB for the requested page table.
*/
static void gmc_v9_0_flush_gpu_tlb(struct amdgpu_device *adev,
uint32_t vmid)
{
/* Use register 17 for GART */
const unsigned eng = 17;
unsigned i, j;
spin_lock(&adev->gmc.invalidate_lock);
for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
struct amdgpu_vmhub *hub = &adev->vmhub[i];
u32 tmp = gmc_v9_0_get_invalidate_req(vmid);
WREG32_NO_KIQ(hub->vm_inv_eng0_req + eng, tmp);
/* Busy wait for ACK.*/
for (j = 0; j < 100; j++) {
tmp = RREG32_NO_KIQ(hub->vm_inv_eng0_ack + eng);
tmp &= 1 << vmid;
if (tmp)
break;
cpu_relax();
}
if (j < 100)
continue;
/* Wait for ACK with a delay.*/
for (j = 0; j < adev->usec_timeout; j++) {
tmp = RREG32_NO_KIQ(hub->vm_inv_eng0_ack + eng);
tmp &= 1 << vmid;
if (tmp)
break;
udelay(1);
}
if (j < adev->usec_timeout)
continue;
DRM_ERROR("Timeout waiting for VM flush ACK!\n");
}
spin_unlock(&adev->gmc.invalidate_lock);
}
static uint64_t gmc_v9_0_emit_flush_gpu_tlb(struct amdgpu_ring *ring,
unsigned vmid, uint64_t pd_addr)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vmhub *hub = &adev->vmhub[ring->funcs->vmhub];
uint32_t req = gmc_v9_0_get_invalidate_req(vmid);
uint64_t flags = AMDGPU_PTE_VALID;
unsigned eng = ring->vm_inv_eng;
amdgpu_gmc_get_vm_pde(adev, -1, &pd_addr, &flags);
pd_addr |= flags;
amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_lo32 + (2 * vmid),
lower_32_bits(pd_addr));
amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_hi32 + (2 * vmid),
upper_32_bits(pd_addr));
amdgpu_ring_emit_wreg(ring, hub->vm_inv_eng0_req + eng, req);
/* wait for the invalidate to complete */
amdgpu_ring_emit_reg_wait(ring, hub->vm_inv_eng0_ack + eng,
1 << vmid, 1 << vmid);
return pd_addr;
}
static void gmc_v9_0_emit_pasid_mapping(struct amdgpu_ring *ring, unsigned vmid,
unsigned pasid)
{
struct amdgpu_device *adev = ring->adev;
uint32_t reg;
if (ring->funcs->vmhub == AMDGPU_GFXHUB)
reg = SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid;
else
reg = SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid;
amdgpu_ring_emit_wreg(ring, reg, pasid);
}
/**
* gmc_v9_0_set_pte_pde - update the page tables using MMIO
*
* @adev: amdgpu_device pointer
* @cpu_pt_addr: cpu address of the page table
* @gpu_page_idx: entry in the page table to update
* @addr: dst addr to write into pte/pde
* @flags: access flags
*
* Update the page tables using the CPU.
*/
static int gmc_v9_0_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
uint32_t gpu_page_idx, uint64_t addr,
uint64_t flags)
{
void __iomem *ptr = (void *)cpu_pt_addr;
uint64_t value;
/*
* PTE format on VEGA 10:
* 63:59 reserved
* 58:57 mtype
* 56 F
* 55 L
* 54 P
* 53 SW
* 52 T
* 50:48 reserved
* 47:12 4k physical page base address
* 11:7 fragment
* 6 write
* 5 read
* 4 exe
* 3 Z
* 2 snooped
* 1 system
* 0 valid
*
* PDE format on VEGA 10:
* 63:59 block fragment size
* 58:55 reserved
* 54 P
* 53:48 reserved
* 47:6 physical base address of PD or PTE
* 5:3 reserved
* 2 C
* 1 system
* 0 valid
*/
/*
* The following is for PTE only. GART does not have PDEs.
*/
value = addr & 0x0000FFFFFFFFF000ULL;
value |= flags;
writeq(value, ptr + (gpu_page_idx * 8));
return 0;
}
static uint64_t gmc_v9_0_get_vm_pte_flags(struct amdgpu_device *adev,
uint32_t flags)
{
uint64_t pte_flag = 0;
if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
pte_flag |= AMDGPU_PTE_EXECUTABLE;
if (flags & AMDGPU_VM_PAGE_READABLE)
pte_flag |= AMDGPU_PTE_READABLE;
if (flags & AMDGPU_VM_PAGE_WRITEABLE)
pte_flag |= AMDGPU_PTE_WRITEABLE;
switch (flags & AMDGPU_VM_MTYPE_MASK) {
case AMDGPU_VM_MTYPE_DEFAULT:
pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_NC);
break;
case AMDGPU_VM_MTYPE_NC:
pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_NC);
break;
case AMDGPU_VM_MTYPE_WC:
pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_WC);
break;
case AMDGPU_VM_MTYPE_CC:
pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_CC);
break;
case AMDGPU_VM_MTYPE_UC:
pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_UC);
break;
default:
pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_NC);
break;
}
if (flags & AMDGPU_VM_PAGE_PRT)
pte_flag |= AMDGPU_PTE_PRT;
return pte_flag;
}
static void gmc_v9_0_get_vm_pde(struct amdgpu_device *adev, int level,
uint64_t *addr, uint64_t *flags)
{
if (!(*flags & AMDGPU_PDE_PTE))
*addr = adev->vm_manager.vram_base_offset + *addr -
adev->gmc.vram_start;
BUG_ON(*addr & 0xFFFF00000000003FULL);
if (!adev->gmc.translate_further)
return;
if (level == AMDGPU_VM_PDB1) {
/* Set the block fragment size */
if (!(*flags & AMDGPU_PDE_PTE))
*flags |= AMDGPU_PDE_BFS(0x9);
} else if (level == AMDGPU_VM_PDB0) {
if (*flags & AMDGPU_PDE_PTE)
*flags &= ~AMDGPU_PDE_PTE;
else
*flags |= AMDGPU_PTE_TF;
}
}
static const struct amdgpu_gmc_funcs gmc_v9_0_gmc_funcs = {
.flush_gpu_tlb = gmc_v9_0_flush_gpu_tlb,
.emit_flush_gpu_tlb = gmc_v9_0_emit_flush_gpu_tlb,
.emit_pasid_mapping = gmc_v9_0_emit_pasid_mapping,
.set_pte_pde = gmc_v9_0_set_pte_pde,
.get_vm_pte_flags = gmc_v9_0_get_vm_pte_flags,
.get_vm_pde = gmc_v9_0_get_vm_pde
};
static void gmc_v9_0_set_gmc_funcs(struct amdgpu_device *adev)
{
if (adev->gmc.gmc_funcs == NULL)
adev->gmc.gmc_funcs = &gmc_v9_0_gmc_funcs;
}
static int gmc_v9_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
gmc_v9_0_set_gmc_funcs(adev);
gmc_v9_0_set_irq_funcs(adev);
adev->gmc.shared_aperture_start = 0x2000000000000000ULL;
adev->gmc.shared_aperture_end =
adev->gmc.shared_aperture_start + (4ULL << 30) - 1;
adev->gmc.private_aperture_start =
adev->gmc.shared_aperture_end + 1;
adev->gmc.private_aperture_end =
adev->gmc.private_aperture_start + (4ULL << 30) - 1;
return 0;
}
static int gmc_v9_0_ecc_available(struct amdgpu_device *adev)
{
uint32_t reg_val;
uint32_t reg_addr;
uint32_t field_val;
size_t i;
uint32_t fv2;
size_t lost_sheep;
DRM_DEBUG("ecc: gmc_v9_0_ecc_available()\n");
lost_sheep = 0;
for (i = 0; i < ARRAY_SIZE(ecc_umclocalcap_addrs); ++i) {
reg_addr = ecc_umclocalcap_addrs[i];
DRM_DEBUG("ecc: "
"UMCCH_UmcLocalCap[%zu]: reg_addr: 0x%08x\n",
i, reg_addr);
reg_val = RREG32(reg_addr);
field_val = REG_GET_FIELD(reg_val, UMCCH0_0_UmcLocalCap,
EccDis);
DRM_DEBUG("ecc: "
"reg_val: 0x%08x, "
"EccDis: 0x%08x, ",
reg_val, field_val);
if (field_val) {
DRM_ERROR("ecc: UmcLocalCap:EccDis is set.\n");
++lost_sheep;
}
}
for (i = 0; i < ARRAY_SIZE(ecc_umcch_umc_config_addrs); ++i) {
reg_addr = ecc_umcch_umc_config_addrs[i];
DRM_DEBUG("ecc: "
"UMCCH0_0_UMC_CONFIG[%zu]: reg_addr: 0x%08x",
i, reg_addr);
reg_val = RREG32(reg_addr);
field_val = REG_GET_FIELD(reg_val, UMCCH0_0_UMC_CONFIG,
DramReady);
DRM_DEBUG("ecc: "
"reg_val: 0x%08x, "
"DramReady: 0x%08x\n",
reg_val, field_val);
if (!field_val) {
DRM_ERROR("ecc: UMC_CONFIG:DramReady is not set.\n");
++lost_sheep;
}
}
for (i = 0; i < ARRAY_SIZE(ecc_umcch_eccctrl_addrs); ++i) {
reg_addr = ecc_umcch_eccctrl_addrs[i];
DRM_DEBUG("ecc: "
"UMCCH_EccCtrl[%zu]: reg_addr: 0x%08x, ",
i, reg_addr);
reg_val = RREG32(reg_addr);
field_val = REG_GET_FIELD(reg_val, UMCCH0_0_EccCtrl,
WrEccEn);
fv2 = REG_GET_FIELD(reg_val, UMCCH0_0_EccCtrl,
RdEccEn);
DRM_DEBUG("ecc: "
"reg_val: 0x%08x, "
"WrEccEn: 0x%08x, "
"RdEccEn: 0x%08x\n",
reg_val, field_val, fv2);
if (!field_val) {
DRM_DEBUG("ecc: WrEccEn is not set\n");
++lost_sheep;
}
if (!fv2) {
DRM_DEBUG("ecc: RdEccEn is not set\n");
++lost_sheep;
}
}
DRM_DEBUG("ecc: lost_sheep: %zu\n", lost_sheep);
return lost_sheep == 0;
}
static int gmc_v9_0_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/*
* The latest engine allocation on gfx9 is:
* Engine 0, 1: idle
* Engine 2, 3: firmware
* Engine 4~13: amdgpu ring, subject to change when ring number changes
* Engine 14~15: idle
* Engine 16: kfd tlb invalidation
* Engine 17: Gart flushes
*/
unsigned vm_inv_eng[AMDGPU_MAX_VMHUBS] = { 4, 4 };
unsigned i;
int r;
for(i = 0; i < adev->num_rings; ++i) {
struct amdgpu_ring *ring = adev->rings[i];
unsigned vmhub = ring->funcs->vmhub;
ring->vm_inv_eng = vm_inv_eng[vmhub]++;
dev_info(adev->dev, "ring %u(%s) uses VM inv eng %u on hub %u\n",
ring->idx, ring->name, ring->vm_inv_eng,
ring->funcs->vmhub);
}
/* Engine 16 is used for KFD and 17 for GART flushes */
for(i = 0; i < AMDGPU_MAX_VMHUBS; ++i)
BUG_ON(vm_inv_eng[i] > 16);
if (adev->asic_type == CHIP_VEGA10 && !amdgpu_sriov_vf(adev)) {
r = gmc_v9_0_ecc_available(adev);
if (r == 1) {
DRM_INFO("ECC is active.\n");
} else if (r == 0) {
DRM_INFO("ECC is not present.\n");
} else {
DRM_ERROR("gmc_v9_0_ecc_available() failed. r: %d\n", r);
return r;
}
}
return amdgpu_irq_get(adev, &adev->gmc.vm_fault, 0);
}
static void gmc_v9_0_vram_gtt_location(struct amdgpu_device *adev,
struct amdgpu_gmc *mc)
{
u64 base = 0;
if (!amdgpu_sriov_vf(adev))
base = mmhub_v1_0_get_fb_location(adev);
amdgpu_device_vram_location(adev, &adev->gmc, base);
amdgpu_device_gart_location(adev, mc);
/* base offset of vram pages */
if (adev->flags & AMD_IS_APU)
adev->vm_manager.vram_base_offset = gfxhub_v1_0_get_mc_fb_offset(adev);
else
adev->vm_manager.vram_base_offset = 0;
}
/**
* gmc_v9_0_mc_init - initialize the memory controller driver params
*
* @adev: amdgpu_device pointer
*
* Look up the amount of vram, vram width, and decide how to place
* vram and gart within the GPU's physical address space.
* Returns 0 for success.
*/
static int gmc_v9_0_mc_init(struct amdgpu_device *adev)
{
int chansize, numchan;
int r;
if (amdgpu_emu_mode != 1)
adev->gmc.vram_width = amdgpu_atomfirmware_get_vram_width(adev);
if (!adev->gmc.vram_width) {
/* hbm memory channel size */
if (adev->flags & AMD_IS_APU)
chansize = 64;
else
chansize = 128;
numchan = adev->df_funcs->get_hbm_channel_number(adev);
adev->gmc.vram_width = numchan * chansize;
}
/* size in MB on si */
adev->gmc.mc_vram_size =
adev->nbio_funcs->get_memsize(adev) * 1024ULL * 1024ULL;
adev->gmc.real_vram_size = adev->gmc.mc_vram_size;
if (!(adev->flags & AMD_IS_APU)) {
r = amdgpu_device_resize_fb_bar(adev);
if (r)
return r;
}
adev->gmc.aper_base = pci_resource_start(adev->pdev, 0);
adev->gmc.aper_size = pci_resource_len(adev->pdev, 0);
#ifdef CONFIG_X86_64
if (adev->flags & AMD_IS_APU) {
adev->gmc.aper_base = gfxhub_v1_0_get_mc_fb_offset(adev);
adev->gmc.aper_size = adev->gmc.real_vram_size;
}
#endif
/* In case the PCI BAR is larger than the actual amount of vram */
adev->gmc.visible_vram_size = adev->gmc.aper_size;
if (adev->gmc.visible_vram_size > adev->gmc.real_vram_size)
adev->gmc.visible_vram_size = adev->gmc.real_vram_size;
/* set the gart size */
if (amdgpu_gart_size == -1) {
switch (adev->asic_type) {
case CHIP_VEGA10: /* all engines support GPUVM */
case CHIP_VEGA12: /* all engines support GPUVM */
default:
adev->gmc.gart_size = 512ULL << 20;
break;
case CHIP_RAVEN: /* DCE SG support */
adev->gmc.gart_size = 1024ULL << 20;
break;
}
} else {
adev->gmc.gart_size = (u64)amdgpu_gart_size << 20;
}
gmc_v9_0_vram_gtt_location(adev, &adev->gmc);
return 0;
}
static int gmc_v9_0_gart_init(struct amdgpu_device *adev)
{
int r;
if (adev->gart.robj) {
WARN(1, "VEGA10 PCIE GART already initialized\n");
return 0;
}
/* Initialize common gart structure */
r = amdgpu_gart_init(adev);
if (r)
return r;
adev->gart.table_size = adev->gart.num_gpu_pages * 8;
adev->gart.gart_pte_flags = AMDGPU_PTE_MTYPE(MTYPE_UC) |
AMDGPU_PTE_EXECUTABLE;
return amdgpu_gart_table_vram_alloc(adev);
}
static int gmc_v9_0_sw_init(void *handle)
{
int r;
int dma_bits;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
gfxhub_v1_0_init(adev);
mmhub_v1_0_init(adev);
spin_lock_init(&adev->gmc.invalidate_lock);
adev->gmc.vram_type = amdgpu_atomfirmware_get_vram_type(adev);
switch (adev->asic_type) {
case CHIP_RAVEN:
if (adev->rev_id == 0x0 || adev->rev_id == 0x1) {
amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 48);
} else {
/* vm_size is 128TB + 512GB for legacy 3-level page support */
amdgpu_vm_adjust_size(adev, 128 * 1024 + 512, 9, 2, 48);
adev->gmc.translate_further =
adev->vm_manager.num_level > 1;
}
break;
case CHIP_VEGA10:
case CHIP_VEGA12:
/*
* To fulfill 4-level page support,
* vm size is 256TB (48bit), maximum size of Vega10,
* block size 512 (9bit)
*/
amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 48);
break;
default:
break;
}
/* This interrupt is VMC page fault.*/
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_VMC, 0,
&adev->gmc.vm_fault);
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_UTCL2, 0,
&adev->gmc.vm_fault);
if (r)
return r;
/* Set the internal MC address mask
* This is the max address of the GPU's
* internal address space.
*/
adev->gmc.mc_mask = 0xffffffffffffULL; /* 48 bit MC */
/*
* It needs to reserve 8M stolen memory for vega10
* TODO: Figure out how to avoid that...
*/
adev->gmc.stolen_size = 8 * 1024 * 1024;
/* set DMA mask + need_dma32 flags.
* PCIE - can handle 44-bits.
* IGP - can handle 44-bits
* PCI - dma32 for legacy pci gart, 44 bits on vega10
*/
adev->need_dma32 = false;
dma_bits = adev->need_dma32 ? 32 : 44;
r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
if (r) {
adev->need_dma32 = true;
dma_bits = 32;
printk(KERN_WARNING "amdgpu: No suitable DMA available.\n");
}
r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
if (r) {
pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
printk(KERN_WARNING "amdgpu: No coherent DMA available.\n");
}
adev->need_swiotlb = drm_get_max_iomem() > ((u64)1 << dma_bits);
r = gmc_v9_0_mc_init(adev);
if (r)
return r;
/* Memory manager */
r = amdgpu_bo_init(adev);
if (r)
return r;
r = gmc_v9_0_gart_init(adev);
if (r)
return r;
/*
* number of VMs
* VMID 0 is reserved for System
* amdgpu graphics/compute will use VMIDs 1-7
* amdkfd will use VMIDs 8-15
*/
adev->vm_manager.id_mgr[AMDGPU_GFXHUB].num_ids = AMDGPU_NUM_OF_VMIDS;
adev->vm_manager.id_mgr[AMDGPU_MMHUB].num_ids = AMDGPU_NUM_OF_VMIDS;
amdgpu_vm_manager_init(adev);
return 0;
}
/**
* gmc_v9_0_gart_fini - vm fini callback
*
* @adev: amdgpu_device pointer
*
* Tears down the driver GART/VM setup (CIK).
*/
static void gmc_v9_0_gart_fini(struct amdgpu_device *adev)
{
amdgpu_gart_table_vram_free(adev);
amdgpu_gart_fini(adev);
}
static int gmc_v9_0_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_gem_force_release(adev);
amdgpu_vm_manager_fini(adev);
gmc_v9_0_gart_fini(adev);
amdgpu_bo_fini(adev);
return 0;
}
static void gmc_v9_0_init_golden_registers(struct amdgpu_device *adev)
{
switch (adev->asic_type) {
case CHIP_VEGA10:
soc15_program_register_sequence(adev,
golden_settings_mmhub_1_0_0,
ARRAY_SIZE(golden_settings_mmhub_1_0_0));
soc15_program_register_sequence(adev,
golden_settings_athub_1_0_0,
ARRAY_SIZE(golden_settings_athub_1_0_0));
break;
case CHIP_VEGA12:
break;
case CHIP_RAVEN:
soc15_program_register_sequence(adev,
golden_settings_athub_1_0_0,
ARRAY_SIZE(golden_settings_athub_1_0_0));
break;
default:
break;
}
}
/**
* gmc_v9_0_gart_enable - gart enable
*
* @adev: amdgpu_device pointer
*/
static int gmc_v9_0_gart_enable(struct amdgpu_device *adev)
{
int r;
bool value;
u32 tmp;
amdgpu_device_program_register_sequence(adev,
golden_settings_vega10_hdp,
ARRAY_SIZE(golden_settings_vega10_hdp));
if (adev->gart.robj == NULL) {
dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
return -EINVAL;
}
r = amdgpu_gart_table_vram_pin(adev);
if (r)
return r;
switch (adev->asic_type) {
case CHIP_RAVEN:
mmhub_v1_0_initialize_power_gating(adev);
mmhub_v1_0_update_power_gating(adev, true);
break;
default:
break;
}
r = gfxhub_v1_0_gart_enable(adev);
if (r)
return r;
r = mmhub_v1_0_gart_enable(adev);
if (r)
return r;
WREG32_FIELD15(HDP, 0, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 1);
tmp = RREG32_SOC15(HDP, 0, mmHDP_HOST_PATH_CNTL);
WREG32_SOC15(HDP, 0, mmHDP_HOST_PATH_CNTL, tmp);
/* After HDP is initialized, flush HDP.*/
adev->nbio_funcs->hdp_flush(adev, NULL);
if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
value = false;
else
value = true;
gfxhub_v1_0_set_fault_enable_default(adev, value);
mmhub_v1_0_set_fault_enable_default(adev, value);
gmc_v9_0_flush_gpu_tlb(adev, 0);
DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
(unsigned)(adev->gmc.gart_size >> 20),
(unsigned long long)adev->gart.table_addr);
adev->gart.ready = true;
return 0;
}
static int gmc_v9_0_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/* The sequence of these two function calls matters.*/
gmc_v9_0_init_golden_registers(adev);
if (adev->mode_info.num_crtc) {
/* Lockout access through VGA aperture*/
WREG32_FIELD15(DCE, 0, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1);
/* disable VGA render */
WREG32_FIELD15(DCE, 0, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0);
}
r = gmc_v9_0_gart_enable(adev);
return r;
}
/**
* gmc_v9_0_gart_disable - gart disable
*
* @adev: amdgpu_device pointer
*
* This disables all VM page table.
*/
static void gmc_v9_0_gart_disable(struct amdgpu_device *adev)
{
gfxhub_v1_0_gart_disable(adev);
mmhub_v1_0_gart_disable(adev);
amdgpu_gart_table_vram_unpin(adev);
}
static int gmc_v9_0_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (amdgpu_sriov_vf(adev)) {
/* full access mode, so don't touch any GMC register */
DRM_DEBUG("For SRIOV client, shouldn't do anything.\n");
return 0;
}
amdgpu_irq_put(adev, &adev->gmc.vm_fault, 0);
gmc_v9_0_gart_disable(adev);
return 0;
}
static int gmc_v9_0_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return gmc_v9_0_hw_fini(adev);
}
static int gmc_v9_0_resume(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = gmc_v9_0_hw_init(adev);
if (r)
return r;
amdgpu_vmid_reset_all(adev);
return 0;
}
static bool gmc_v9_0_is_idle(void *handle)
{
/* MC is always ready in GMC v9.*/
return true;
}
static int gmc_v9_0_wait_for_idle(void *handle)
{
/* There is no need to wait for MC idle in GMC v9.*/
return 0;
}
static int gmc_v9_0_soft_reset(void *handle)
{
/* XXX for emulation.*/
return 0;
}
static int gmc_v9_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return mmhub_v1_0_set_clockgating(adev, state);
}
static void gmc_v9_0_get_clockgating_state(void *handle, u32 *flags)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
mmhub_v1_0_get_clockgating(adev, flags);
}
static int gmc_v9_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
const struct amd_ip_funcs gmc_v9_0_ip_funcs = {
.name = "gmc_v9_0",
.early_init = gmc_v9_0_early_init,
.late_init = gmc_v9_0_late_init,
.sw_init = gmc_v9_0_sw_init,
.sw_fini = gmc_v9_0_sw_fini,
.hw_init = gmc_v9_0_hw_init,
.hw_fini = gmc_v9_0_hw_fini,
.suspend = gmc_v9_0_suspend,
.resume = gmc_v9_0_resume,
.is_idle = gmc_v9_0_is_idle,
.wait_for_idle = gmc_v9_0_wait_for_idle,
.soft_reset = gmc_v9_0_soft_reset,
.set_clockgating_state = gmc_v9_0_set_clockgating_state,
.set_powergating_state = gmc_v9_0_set_powergating_state,
.get_clockgating_state = gmc_v9_0_get_clockgating_state,
};
const struct amdgpu_ip_block_version gmc_v9_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_GMC,
.major = 9,
.minor = 0,
.rev = 0,
.funcs = &gmc_v9_0_ip_funcs,
};