linux/drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramgf100.c

734 lines
21 KiB
C

/*
* Copyright 2013 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "gf100.h"
#include "ramfuc.h"
#include <core/option.h>
#include <subdev/bios.h>
#include <subdev/bios/pll.h>
#include <subdev/bios/rammap.h>
#include <subdev/bios/timing.h>
#include <subdev/clk.h>
#include <subdev/clk/pll.h>
#include <subdev/ltc.h>
struct gf100_ramfuc {
struct ramfuc base;
struct ramfuc_reg r_0x10fe20;
struct ramfuc_reg r_0x10fe24;
struct ramfuc_reg r_0x137320;
struct ramfuc_reg r_0x137330;
struct ramfuc_reg r_0x132000;
struct ramfuc_reg r_0x132004;
struct ramfuc_reg r_0x132100;
struct ramfuc_reg r_0x137390;
struct ramfuc_reg r_0x10f290;
struct ramfuc_reg r_0x10f294;
struct ramfuc_reg r_0x10f298;
struct ramfuc_reg r_0x10f29c;
struct ramfuc_reg r_0x10f2a0;
struct ramfuc_reg r_0x10f300;
struct ramfuc_reg r_0x10f338;
struct ramfuc_reg r_0x10f340;
struct ramfuc_reg r_0x10f344;
struct ramfuc_reg r_0x10f348;
struct ramfuc_reg r_0x10f910;
struct ramfuc_reg r_0x10f914;
struct ramfuc_reg r_0x100b0c;
struct ramfuc_reg r_0x10f050;
struct ramfuc_reg r_0x10f090;
struct ramfuc_reg r_0x10f200;
struct ramfuc_reg r_0x10f210;
struct ramfuc_reg r_0x10f310;
struct ramfuc_reg r_0x10f314;
struct ramfuc_reg r_0x10f610;
struct ramfuc_reg r_0x10f614;
struct ramfuc_reg r_0x10f800;
struct ramfuc_reg r_0x10f808;
struct ramfuc_reg r_0x10f824;
struct ramfuc_reg r_0x10f830;
struct ramfuc_reg r_0x10f988;
struct ramfuc_reg r_0x10f98c;
struct ramfuc_reg r_0x10f990;
struct ramfuc_reg r_0x10f998;
struct ramfuc_reg r_0x10f9b0;
struct ramfuc_reg r_0x10f9b4;
struct ramfuc_reg r_0x10fb04;
struct ramfuc_reg r_0x10fb08;
struct ramfuc_reg r_0x137300;
struct ramfuc_reg r_0x137310;
struct ramfuc_reg r_0x137360;
struct ramfuc_reg r_0x1373ec;
struct ramfuc_reg r_0x1373f0;
struct ramfuc_reg r_0x1373f8;
struct ramfuc_reg r_0x61c140;
struct ramfuc_reg r_0x611200;
struct ramfuc_reg r_0x13d8f4;
};
struct gf100_ram {
struct nvkm_ram base;
struct gf100_ramfuc fuc;
struct nvbios_pll refpll;
struct nvbios_pll mempll;
};
static void
gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic)
{
struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
struct nvkm_fb *fb = nvkm_fb(ram);
struct nvkm_device *device = fb->subdev.device;
u32 part = nvkm_rd32(device, 0x022438), i;
u32 mask = nvkm_rd32(device, 0x022554);
u32 addr = 0x110974;
ram_wr32(fuc, 0x10f910, magic);
ram_wr32(fuc, 0x10f914, magic);
for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
if (mask & (1 << i))
continue;
ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
}
}
static int
gf100_ram_calc(struct nvkm_fb *fb, u32 freq)
{
struct nvkm_clk *clk = nvkm_clk(fb);
struct nvkm_bios *bios = nvkm_bios(fb);
struct gf100_ram *ram = (void *)fb->ram;
struct gf100_ramfuc *fuc = &ram->fuc;
struct nvbios_ramcfg cfg;
u8 ver, cnt, len, strap;
struct {
u32 data;
u8 size;
} rammap, ramcfg, timing;
int ref, div, out;
int from, mode;
int N1, M1, P;
int ret;
/* lookup memory config data relevant to the target frequency */
rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size,
&cnt, &ramcfg.size, &cfg);
if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
nv_error(fb, "invalid/missing rammap entry\n");
return -EINVAL;
}
/* locate specific data set for the attached memory */
strap = nvbios_ramcfg_index(nv_subdev(fb));
if (strap >= cnt) {
nv_error(fb, "invalid ramcfg strap\n");
return -EINVAL;
}
ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
nv_error(fb, "invalid/missing ramcfg entry\n");
return -EINVAL;
}
/* lookup memory timings, if bios says they're present */
strap = nv_ro08(bios, ramcfg.data + 0x01);
if (strap != 0xff) {
timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size,
&cnt, &len);
if (!timing.data || ver != 0x10 || timing.size < 0x19) {
nv_error(fb, "invalid/missing timing entry\n");
return -EINVAL;
}
} else {
timing.data = 0;
}
ret = ram_init(fuc, fb);
if (ret)
return ret;
/* determine current mclk configuration */
from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */
/* determine target mclk configuration */
if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
ref = clk->read(clk, nv_clk_src_sppll0);
else
ref = clk->read(clk, nv_clk_src_sppll1);
div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
out = (ref * 2) / (div + 2);
mode = freq != out;
ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);
if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
ram_nuke(fuc, 0x132000);
ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
}
if (mode == 1) {
ram_nuke(fuc, 0x10fe20);
ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
}
// 0x00020034 // 0x0000000a
ram_wr32(fuc, 0x132100, 0x00000001);
if (mode == 1 && from == 0) {
/* calculate refpll */
ret = gt215_pll_calc(nv_subdev(fb), &ram->refpll,
ram->mempll.refclk, &N1, NULL, &M1, &P);
if (ret <= 0) {
nv_error(fb, "unable to calc refpll\n");
return ret ? ret : -ERANGE;
}
ram_wr32(fuc, 0x10fe20, 0x20010000);
ram_wr32(fuc, 0x137320, 0x00000003);
ram_wr32(fuc, 0x137330, 0x81200006);
ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
ram_wr32(fuc, 0x10fe20, 0x20010001);
ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
/* calculate mempll */
ret = gt215_pll_calc(nv_subdev(fb), &ram->mempll, freq,
&N1, NULL, &M1, &P);
if (ret <= 0) {
nv_error(fb, "unable to calc refpll\n");
return ret ? ret : -ERANGE;
}
ram_wr32(fuc, 0x10fe20, 0x20010005);
ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
ram_wr32(fuc, 0x132000, 0x18010101);
ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
} else
if (mode == 0) {
ram_wr32(fuc, 0x137300, 0x00000003);
}
if (from == 0) {
ram_nuke(fuc, 0x10fb04);
ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
ram_nuke(fuc, 0x10fb08);
ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
ram_wr32(fuc, 0x10f988, 0x2004ff00);
ram_wr32(fuc, 0x10f98c, 0x003fc040);
ram_wr32(fuc, 0x10f990, 0x20012001);
ram_wr32(fuc, 0x10f998, 0x00011a00);
ram_wr32(fuc, 0x13d8f4, 0x00000000);
} else {
ram_wr32(fuc, 0x10f988, 0x20010000);
ram_wr32(fuc, 0x10f98c, 0x00000000);
ram_wr32(fuc, 0x10f990, 0x20012001);
ram_wr32(fuc, 0x10f998, 0x00010a00);
}
if (from == 0) {
// 0x00020039 // 0x000000ba
}
// 0x0002003a // 0x00000002
ram_wr32(fuc, 0x100b0c, 0x00080012);
// 0x00030014 // 0x00000000 // 0x02b5f070
// 0x00030014 // 0x00010000 // 0x02b5f070
ram_wr32(fuc, 0x611200, 0x00003300);
// 0x00020034 // 0x0000000a
// 0x00030020 // 0x00000001 // 0x00000000
ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
ram_wr32(fuc, 0x10f210, 0x00000000);
ram_nsec(fuc, 1000);
if (mode == 0)
gf100_ram_train(fuc, 0x000c1001);
ram_wr32(fuc, 0x10f310, 0x00000001);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f090, 0x00000061);
ram_wr32(fuc, 0x10f090, 0xc000007f);
ram_nsec(fuc, 1000);
if (from == 0) {
ram_wr32(fuc, 0x10f824, 0x00007fd4);
} else {
ram_wr32(fuc, 0x1373ec, 0x00020404);
}
if (mode == 0) {
ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
ram_wr32(fuc, 0x10f830, 0x41500010);
ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
ram_wr32(fuc, 0x10f050, 0xff000090);
ram_wr32(fuc, 0x1373ec, 0x00020f0f);
ram_wr32(fuc, 0x1373f0, 0x00000003);
ram_wr32(fuc, 0x137310, 0x81201616);
ram_wr32(fuc, 0x132100, 0x00000001);
// 0x00020039 // 0x000000ba
ram_wr32(fuc, 0x10f830, 0x00300017);
ram_wr32(fuc, 0x1373f0, 0x00000001);
ram_wr32(fuc, 0x10f824, 0x00007e77);
ram_wr32(fuc, 0x132000, 0x18030001);
ram_wr32(fuc, 0x10f090, 0x4000007e);
ram_nsec(fuc, 2000);
ram_wr32(fuc, 0x10f314, 0x00000001);
ram_wr32(fuc, 0x10f210, 0x80000000);
ram_wr32(fuc, 0x10f338, 0x00300220);
ram_wr32(fuc, 0x10f300, 0x0000011d);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f290, 0x02060505);
ram_wr32(fuc, 0x10f294, 0x34208288);
ram_wr32(fuc, 0x10f298, 0x44050411);
ram_wr32(fuc, 0x10f29c, 0x0000114c);
ram_wr32(fuc, 0x10f2a0, 0x42e10069);
ram_wr32(fuc, 0x10f614, 0x40044f77);
ram_wr32(fuc, 0x10f610, 0x40044f77);
ram_wr32(fuc, 0x10f344, 0x00600009);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f348, 0x00700008);
ram_wr32(fuc, 0x61c140, 0x19240000);
ram_wr32(fuc, 0x10f830, 0x00300017);
gf100_ram_train(fuc, 0x80021001);
gf100_ram_train(fuc, 0x80081001);
ram_wr32(fuc, 0x10f340, 0x00500004);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f830, 0x01300017);
ram_wr32(fuc, 0x10f830, 0x00300017);
// 0x00030020 // 0x00000000 // 0x00000000
// 0x00020034 // 0x0000000b
ram_wr32(fuc, 0x100b0c, 0x00080028);
ram_wr32(fuc, 0x611200, 0x00003330);
} else {
ram_wr32(fuc, 0x10f800, 0x00001800);
ram_wr32(fuc, 0x13d8f4, 0x00000000);
ram_wr32(fuc, 0x1373ec, 0x00020404);
ram_wr32(fuc, 0x1373f0, 0x00000003);
ram_wr32(fuc, 0x10f830, 0x40700010);
ram_wr32(fuc, 0x10f830, 0x40500010);
ram_wr32(fuc, 0x13d8f4, 0x00000000);
ram_wr32(fuc, 0x1373f8, 0x00000000);
ram_wr32(fuc, 0x132100, 0x00000101);
ram_wr32(fuc, 0x137310, 0x89201616);
ram_wr32(fuc, 0x10f050, 0xff000090);
ram_wr32(fuc, 0x1373ec, 0x00030404);
ram_wr32(fuc, 0x1373f0, 0x00000002);
// 0x00020039 // 0x00000011
ram_wr32(fuc, 0x132100, 0x00000001);
ram_wr32(fuc, 0x1373f8, 0x00002000);
ram_nsec(fuc, 2000);
ram_wr32(fuc, 0x10f808, 0x7aaa0050);
ram_wr32(fuc, 0x10f830, 0x00500010);
ram_wr32(fuc, 0x10f200, 0x00ce1000);
ram_wr32(fuc, 0x10f090, 0x4000007e);
ram_nsec(fuc, 2000);
ram_wr32(fuc, 0x10f314, 0x00000001);
ram_wr32(fuc, 0x10f210, 0x80000000);
ram_wr32(fuc, 0x10f338, 0x00300200);
ram_wr32(fuc, 0x10f300, 0x0000084d);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f290, 0x0b343825);
ram_wr32(fuc, 0x10f294, 0x3483028e);
ram_wr32(fuc, 0x10f298, 0x440c0600);
ram_wr32(fuc, 0x10f29c, 0x0000214c);
ram_wr32(fuc, 0x10f2a0, 0x42e20069);
ram_wr32(fuc, 0x10f200, 0x00ce0000);
ram_wr32(fuc, 0x10f614, 0x60044e77);
ram_wr32(fuc, 0x10f610, 0x60044e77);
ram_wr32(fuc, 0x10f340, 0x00500000);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f344, 0x00600228);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f348, 0x00700000);
ram_wr32(fuc, 0x13d8f4, 0x00000000);
ram_wr32(fuc, 0x61c140, 0x09a40000);
gf100_ram_train(fuc, 0x800e1008);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f800, 0x00001804);
// 0x00030020 // 0x00000000 // 0x00000000
// 0x00020034 // 0x0000000b
ram_wr32(fuc, 0x13d8f4, 0x00000000);
ram_wr32(fuc, 0x100b0c, 0x00080028);
ram_wr32(fuc, 0x611200, 0x00003330);
ram_nsec(fuc, 100000);
ram_wr32(fuc, 0x10f9b0, 0x05313f41);
ram_wr32(fuc, 0x10f9b4, 0x00002f50);
gf100_ram_train(fuc, 0x010c1001);
}
ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
// 0x00020016 // 0x00000000
if (mode == 0)
ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
return 0;
}
static int
gf100_ram_prog(struct nvkm_fb *fb)
{
struct nvkm_device *device = nv_device(fb);
struct gf100_ram *ram = (void *)fb->ram;
struct gf100_ramfuc *fuc = &ram->fuc;
ram_exec(fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
return 0;
}
static void
gf100_ram_tidy(struct nvkm_fb *fb)
{
struct gf100_ram *ram = (void *)fb->ram;
struct gf100_ramfuc *fuc = &ram->fuc;
ram_exec(fuc, false);
}
extern const u8 gf100_pte_storage_type_map[256];
void
gf100_ram_put(struct nvkm_fb *fb, struct nvkm_mem **pmem)
{
struct nvkm_ltc *ltc = nvkm_ltc(fb);
struct nvkm_mem *mem = *pmem;
*pmem = NULL;
if (unlikely(mem == NULL))
return;
mutex_lock(&fb->subdev.mutex);
if (mem->tag)
ltc->tags_free(ltc, &mem->tag);
__nv50_ram_put(fb, mem);
mutex_unlock(&fb->subdev.mutex);
kfree(mem);
}
int
gf100_ram_get(struct nvkm_fb *fb, u64 size, u32 align, u32 ncmin,
u32 memtype, struct nvkm_mem **pmem)
{
struct nvkm_mm *mm = &fb->vram;
struct nvkm_mm_node *r;
struct nvkm_mem *mem;
int type = (memtype & 0x0ff);
int back = (memtype & 0x800);
const bool comp = gf100_pte_storage_type_map[type] != type;
int ret;
size >>= 12;
align >>= 12;
ncmin >>= 12;
if (!ncmin)
ncmin = size;
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
if (!mem)
return -ENOMEM;
INIT_LIST_HEAD(&mem->regions);
mem->size = size;
mutex_lock(&fb->subdev.mutex);
if (comp) {
struct nvkm_ltc *ltc = nvkm_ltc(fb);
/* compression only works with lpages */
if (align == (1 << (17 - 12))) {
int n = size >> 5;
ltc->tags_alloc(ltc, n, &mem->tag);
}
if (unlikely(!mem->tag))
type = gf100_pte_storage_type_map[type];
}
mem->memtype = type;
do {
if (back)
ret = nvkm_mm_tail(mm, 0, 1, size, ncmin, align, &r);
else
ret = nvkm_mm_head(mm, 0, 1, size, ncmin, align, &r);
if (ret) {
mutex_unlock(&fb->subdev.mutex);
fb->ram->put(fb, &mem);
return ret;
}
list_add_tail(&r->rl_entry, &mem->regions);
size -= r->length;
} while (size);
mutex_unlock(&fb->subdev.mutex);
r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
mem->offset = (u64)r->offset << 12;
*pmem = mem;
return 0;
}
int
gf100_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, u32 maskaddr, int size,
void **pobject)
{
struct nvkm_fb *fb = nvkm_fb(parent);
struct nvkm_device *device = fb->subdev.device;
struct nvkm_bios *bios = device->bios;
struct nvkm_ram *ram;
const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
u32 parts = nvkm_rd32(device, 0x022438);
u32 pmask = nvkm_rd32(device, maskaddr);
u32 bsize = nvkm_rd32(device, 0x10f20c);
u32 offset, length;
bool uniform = true;
int ret, part;
ret = nvkm_ram_create_(parent, engine, oclass, size, pobject);
ram = *pobject;
if (ret)
return ret;
nv_debug(fb, "0x100800: 0x%08x\n", nvkm_rd32(device, 0x100800));
nv_debug(fb, "parts 0x%08x mask 0x%08x\n", parts, pmask);
ram->type = nvkm_fb_bios_memtype(bios);
ram->ranks = (nvkm_rd32(device, 0x10f200) & 0x00000004) ? 2 : 1;
/* read amount of vram attached to each memory controller */
for (part = 0; part < parts; part++) {
if (!(pmask & (1 << part))) {
u32 size = nvkm_rd32(device, 0x11020c + (part * 0x1000));
if (size != bsize) {
if (size < bsize)
bsize = size;
uniform = false;
}
nv_debug(fb, "%d: mem_amount 0x%08x\n", part, size);
ram->size += (u64)size << 20;
}
}
/* if all controllers have the same amount attached, there's no holes */
if (uniform) {
offset = rsvd_head;
length = (ram->size >> 12) - rsvd_head - rsvd_tail;
ret = nvkm_mm_init(&fb->vram, offset, length, 1);
} else {
/* otherwise, address lowest common amount from 0GiB */
ret = nvkm_mm_init(&fb->vram, rsvd_head,
(bsize << 8) * parts - rsvd_head, 1);
if (ret)
return ret;
/* and the rest starting from (8GiB + common_size) */
offset = (0x0200000000ULL >> 12) + (bsize << 8);
length = (ram->size >> 12) - ((bsize * parts) << 8) - rsvd_tail;
ret = nvkm_mm_init(&fb->vram, offset, length, 1);
if (ret)
nvkm_mm_fini(&fb->vram);
}
if (ret)
return ret;
ram->get = gf100_ram_get;
ram->put = gf100_ram_put;
return 0;
}
static int
gf100_ram_init(struct nvkm_object *object)
{
struct nvkm_fb *fb = (void *)object->parent;
struct nvkm_device *device = fb->subdev.device;
struct gf100_ram *ram = (void *)object;
int ret, i;
ret = nvkm_ram_init(&ram->base);
if (ret)
return ret;
/* prepare for ddr link training, and load training patterns */
switch (ram->base.type) {
case NV_MEM_TYPE_GDDR5: {
static const u8 train0[] = {
0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
};
static const u32 train1[] = {
0x00000000, 0xffffffff,
0x55555555, 0xaaaaaaaa,
0x33333333, 0xcccccccc,
0xf0f0f0f0, 0x0f0f0f0f,
0x00ff00ff, 0xff00ff00,
0x0000ffff, 0xffff0000,
};
for (i = 0; i < 0x30; i++) {
nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8));
nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8));
nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]);
nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]);
nvkm_wr32(device, 0x10f918, train1[i % 12]);
nvkm_wr32(device, 0x10f91c, train1[i % 12]);
nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]);
nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]);
nvkm_wr32(device, 0x10f918, train1[i % 12]);
nvkm_wr32(device, 0x10f91c, train1[i % 12]);
}
} break;
default:
break;
}
return 0;
}
static int
gf100_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct nvkm_bios *bios = nvkm_bios(parent);
struct gf100_ram *ram;
int ret;
ret = gf100_ram_create(parent, engine, oclass, 0x022554, &ram);
*pobject = nv_object(ram);
if (ret)
return ret;
ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
if (ret) {
nv_error(ram, "mclk refpll data not found\n");
return ret;
}
ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
if (ret) {
nv_error(ram, "mclk pll data not found\n");
return ret;
}
switch (ram->base.type) {
case NV_MEM_TYPE_GDDR5:
ram->base.calc = gf100_ram_calc;
ram->base.prog = gf100_ram_prog;
ram->base.tidy = gf100_ram_tidy;
break;
default:
nv_warn(ram, "reclocking of this ram type unsupported\n");
return 0;
}
ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
ram->fuc.r_0x137330 = ramfuc_reg(0x137330);
ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
ram->fuc.r_0x132100 = ramfuc_reg(0x132100);
ram->fuc.r_0x137390 = ramfuc_reg(0x137390);
ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);
ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);
ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
return 0;
}
struct nvkm_oclass
gf100_ram_oclass = {
.handle = 0,
.ofuncs = &(struct nvkm_ofuncs) {
.ctor = gf100_ram_ctor,
.dtor = _nvkm_ram_dtor,
.init = gf100_ram_init,
.fini = _nvkm_ram_fini,
}
};