linux/drivers/gpu/drm/msm/dsi/pll/dsi_pll_14nm.c

1105 lines
29 KiB
C

/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include "dsi_pll.h"
#include "dsi.xml.h"
/*
* DSI PLL 14nm - clock diagram (eg: DSI0):
*
* dsi0n1_postdiv_clk
* |
* |
* +----+ | +----+
* dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
* +----+ | +----+
* | dsi0n1_postdivby2_clk
* | +----+ |
* o---| /2 |--o--|\
* | +----+ | \ +----+
* | | |--| n2 |-- dsi0pll
* o--------------| / +----+
* |/
*/
#define POLL_MAX_READS 15
#define POLL_TIMEOUT_US 1000
#define NUM_PROVIDED_CLKS 2
#define VCO_REF_CLK_RATE 19200000
#define VCO_MIN_RATE 1300000000UL
#define VCO_MAX_RATE 2600000000UL
#define DSI_BYTE_PLL_CLK 0
#define DSI_PIXEL_PLL_CLK 1
#define DSI_PLL_DEFAULT_VCO_POSTDIV 1
struct dsi_pll_input {
u32 fref; /* reference clk */
u32 fdata; /* bit clock rate */
u32 dsiclk_sel; /* Mux configuration (see diagram) */
u32 ssc_en; /* SSC enable/disable */
u32 ldo_en;
/* fixed params */
u32 refclk_dbler_en;
u32 vco_measure_time;
u32 kvco_measure_time;
u32 bandgap_timer;
u32 pll_wakeup_timer;
u32 plllock_cnt;
u32 plllock_rng;
u32 ssc_center;
u32 ssc_adj_period;
u32 ssc_spread;
u32 ssc_freq;
u32 pll_ie_trim;
u32 pll_ip_trim;
u32 pll_iptat_trim;
u32 pll_cpcset_cur;
u32 pll_cpmset_cur;
u32 pll_icpmset;
u32 pll_icpcset;
u32 pll_icpmset_p;
u32 pll_icpmset_m;
u32 pll_icpcset_p;
u32 pll_icpcset_m;
u32 pll_lpf_res1;
u32 pll_lpf_cap1;
u32 pll_lpf_cap2;
u32 pll_c3ctrl;
u32 pll_r3ctrl;
};
struct dsi_pll_output {
u32 pll_txclk_en;
u32 dec_start;
u32 div_frac_start;
u32 ssc_period;
u32 ssc_step_size;
u32 plllock_cmp;
u32 pll_vco_div_ref;
u32 pll_vco_count;
u32 pll_kvco_div_ref;
u32 pll_kvco_count;
u32 pll_misc1;
u32 pll_lpf2_postdiv;
u32 pll_resetsm_cntrl;
u32 pll_resetsm_cntrl2;
u32 pll_resetsm_cntrl5;
u32 pll_kvco_code;
u32 cmn_clk_cfg0;
u32 cmn_clk_cfg1;
u32 cmn_ldo_cntrl;
u32 pll_postdiv;
u32 fcvo;
};
struct pll_14nm_cached_state {
unsigned long vco_rate;
u8 n2postdiv;
u8 n1postdiv;
};
struct dsi_pll_14nm {
struct msm_dsi_pll base;
int id;
struct platform_device *pdev;
void __iomem *phy_cmn_mmio;
void __iomem *mmio;
int vco_delay;
struct dsi_pll_input in;
struct dsi_pll_output out;
/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
spinlock_t postdiv_lock;
u64 vco_current_rate;
u64 vco_ref_clk_rate;
/* private clocks: */
struct clk_hw *hws[NUM_DSI_CLOCKS_MAX];
u32 num_hws;
/* clock-provider: */
struct clk_hw_onecell_data *hw_data;
struct pll_14nm_cached_state cached_state;
enum msm_dsi_phy_usecase uc;
struct dsi_pll_14nm *slave;
};
#define to_pll_14nm(x) container_of(x, struct dsi_pll_14nm, base)
/*
* Private struct for N1/N2 post-divider clocks. These clocks are similar to
* the generic clk_divider class of clocks. The only difference is that it
* also sets the slave DSI PLL's post-dividers if in Dual DSI mode
*/
struct dsi_pll_14nm_postdiv {
struct clk_hw hw;
/* divider params */
u8 shift;
u8 width;
u8 flags; /* same flags as used by clk_divider struct */
struct dsi_pll_14nm *pll;
};
#define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
/*
* Global list of private DSI PLL struct pointers. We need this for Dual DSI
* mode, where the master PLL's clk_ops needs access the slave's private data
*/
static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
u32 nb_tries, u32 timeout_us)
{
bool pll_locked = false;
void __iomem *base = pll_14nm->mmio;
u32 tries, val;
tries = nb_tries;
while (tries--) {
val = pll_read(base +
REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
pll_locked = !!(val & BIT(5));
if (pll_locked)
break;
udelay(timeout_us);
}
if (!pll_locked) {
tries = nb_tries;
while (tries--) {
val = pll_read(base +
REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
pll_locked = !!(val & BIT(0));
if (pll_locked)
break;
udelay(timeout_us);
}
}
DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
return pll_locked;
}
static void dsi_pll_14nm_input_init(struct dsi_pll_14nm *pll)
{
pll->in.fref = pll->vco_ref_clk_rate;
pll->in.fdata = 0;
pll->in.dsiclk_sel = 1; /* Use the /2 path in Mux */
pll->in.ldo_en = 0; /* disabled for now */
/* fixed input */
pll->in.refclk_dbler_en = 0;
pll->in.vco_measure_time = 5;
pll->in.kvco_measure_time = 5;
pll->in.bandgap_timer = 4;
pll->in.pll_wakeup_timer = 5;
pll->in.plllock_cnt = 1;
pll->in.plllock_rng = 0;
/*
* SSC is enabled by default. We might need DT props for configuring
* some SSC params like PPM and center/down spread etc.
*/
pll->in.ssc_en = 1;
pll->in.ssc_center = 0; /* down spread by default */
pll->in.ssc_spread = 5; /* PPM / 1000 */
pll->in.ssc_freq = 31500; /* default recommended */
pll->in.ssc_adj_period = 37;
pll->in.pll_ie_trim = 4;
pll->in.pll_ip_trim = 4;
pll->in.pll_cpcset_cur = 1;
pll->in.pll_cpmset_cur = 1;
pll->in.pll_icpmset = 4;
pll->in.pll_icpcset = 4;
pll->in.pll_icpmset_p = 0;
pll->in.pll_icpmset_m = 0;
pll->in.pll_icpcset_p = 0;
pll->in.pll_icpcset_m = 0;
pll->in.pll_lpf_res1 = 3;
pll->in.pll_lpf_cap1 = 11;
pll->in.pll_lpf_cap2 = 1;
pll->in.pll_iptat_trim = 7;
pll->in.pll_c3ctrl = 2;
pll->in.pll_r3ctrl = 1;
}
#define CEIL(x, y) (((x) + ((y) - 1)) / (y))
static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll)
{
u32 period, ssc_period;
u32 ref, rem;
u64 step_size;
DBG("vco=%lld ref=%lld", pll->vco_current_rate, pll->vco_ref_clk_rate);
ssc_period = pll->in.ssc_freq / 500;
period = (u32)pll->vco_ref_clk_rate / 1000;
ssc_period = CEIL(period, ssc_period);
ssc_period -= 1;
pll->out.ssc_period = ssc_period;
DBG("ssc freq=%d spread=%d period=%d", pll->in.ssc_freq,
pll->in.ssc_spread, pll->out.ssc_period);
step_size = (u32)pll->vco_current_rate;
ref = pll->vco_ref_clk_rate;
ref /= 1000;
step_size = div_u64(step_size, ref);
step_size <<= 20;
step_size = div_u64(step_size, 1000);
step_size *= pll->in.ssc_spread;
step_size = div_u64(step_size, 1000);
step_size *= (pll->in.ssc_adj_period + 1);
rem = 0;
step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
if (rem)
step_size++;
DBG("step_size=%lld", step_size);
step_size &= 0x0ffff; /* take lower 16 bits */
pll->out.ssc_step_size = step_size;
}
static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll)
{
struct dsi_pll_input *pin = &pll->in;
struct dsi_pll_output *pout = &pll->out;
u64 multiplier = BIT(20);
u64 dec_start_multiple, dec_start, pll_comp_val;
u32 duration, div_frac_start;
u64 vco_clk_rate = pll->vco_current_rate;
u64 fref = pll->vco_ref_clk_rate;
DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
dec_start = div_u64(dec_start_multiple, multiplier);
pout->dec_start = (u32)dec_start;
pout->div_frac_start = div_frac_start;
if (pin->plllock_cnt == 0)
duration = 1024;
else if (pin->plllock_cnt == 1)
duration = 256;
else if (pin->plllock_cnt == 2)
duration = 128;
else
duration = 32;
pll_comp_val = duration * dec_start_multiple;
pll_comp_val = div_u64(pll_comp_val, multiplier);
do_div(pll_comp_val, 10);
pout->plllock_cmp = (u32)pll_comp_val;
pout->pll_txclk_en = 1;
pout->cmn_ldo_cntrl = 0x3c;
}
static u32 pll_14nm_kvco_slop(u32 vrate)
{
u32 slop = 0;
if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
slop = 600;
else if (vrate > 1800000000UL && vrate < 2300000000UL)
slop = 400;
else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
slop = 280;
return slop;
}
static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll)
{
struct dsi_pll_input *pin = &pll->in;
struct dsi_pll_output *pout = &pll->out;
u64 vco_clk_rate = pll->vco_current_rate;
u64 fref = pll->vco_ref_clk_rate;
u64 data;
u32 cnt;
data = fref * pin->vco_measure_time;
do_div(data, 1000000);
data &= 0x03ff; /* 10 bits */
data -= 2;
pout->pll_vco_div_ref = data;
data = div_u64(vco_clk_rate, 1000000); /* unit is Mhz */
data *= pin->vco_measure_time;
do_div(data, 10);
pout->pll_vco_count = data;
data = fref * pin->kvco_measure_time;
do_div(data, 1000000);
data &= 0x03ff; /* 10 bits */
data -= 1;
pout->pll_kvco_div_ref = data;
cnt = pll_14nm_kvco_slop(vco_clk_rate);
cnt *= 2;
cnt /= 100;
cnt *= pin->kvco_measure_time;
pout->pll_kvco_count = cnt;
pout->pll_misc1 = 16;
pout->pll_resetsm_cntrl = 48;
pout->pll_resetsm_cntrl2 = pin->bandgap_timer << 3;
pout->pll_resetsm_cntrl5 = pin->pll_wakeup_timer;
pout->pll_kvco_code = 0;
}
static void pll_db_commit_ssc(struct dsi_pll_14nm *pll)
{
void __iomem *base = pll->mmio;
struct dsi_pll_input *pin = &pll->in;
struct dsi_pll_output *pout = &pll->out;
u8 data;
data = pin->ssc_adj_period;
data &= 0x0ff;
pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
data = (pin->ssc_adj_period >> 8);
data &= 0x03;
pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
data = pout->ssc_period;
data &= 0x0ff;
pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
data = (pout->ssc_period >> 8);
data &= 0x0ff;
pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
data = pout->ssc_step_size;
data &= 0x0ff;
pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
data = (pout->ssc_step_size >> 8);
data &= 0x0ff;
pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
data = (pin->ssc_center & 0x01);
data <<= 1;
data |= 0x01; /* enable */
pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
wmb(); /* make sure register committed */
}
static void pll_db_commit_common(struct dsi_pll_14nm *pll,
struct dsi_pll_input *pin,
struct dsi_pll_output *pout)
{
void __iomem *base = pll->mmio;
u8 data;
/* confgiure the non frequency dependent pll registers */
data = 0;
pll_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
data = pout->pll_txclk_en;
pll_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, data);
data = pout->pll_resetsm_cntrl;
pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, data);
data = pout->pll_resetsm_cntrl2;
pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, data);
data = pout->pll_resetsm_cntrl5;
pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, data);
data = pout->pll_vco_div_ref & 0xff;
pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
data = (pout->pll_vco_div_ref >> 8) & 0x3;
pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
data = pout->pll_kvco_div_ref & 0xff;
pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
data = (pout->pll_kvco_div_ref >> 8) & 0x3;
pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
data = pout->pll_misc1;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, data);
data = pin->pll_ie_trim;
pll_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, data);
data = pin->pll_ip_trim;
pll_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, data);
data = pin->pll_cpmset_cur << 3 | pin->pll_cpcset_cur;
pll_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, data);
data = pin->pll_icpcset_p << 3 | pin->pll_icpcset_m;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, data);
data = pin->pll_icpmset_p << 3 | pin->pll_icpcset_m;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, data);
data = pin->pll_icpmset << 3 | pin->pll_icpcset;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, data);
data = pin->pll_lpf_cap2 << 4 | pin->pll_lpf_cap1;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, data);
data = pin->pll_iptat_trim;
pll_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, data);
data = pin->pll_c3ctrl | pin->pll_r3ctrl << 4;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, data);
}
static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
{
void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
/* de assert pll start and apply pll sw reset */
/* stop pll */
pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
/* pll sw reset */
pll_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
wmb(); /* make sure register committed */
pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
wmb(); /* make sure register committed */
}
static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
struct dsi_pll_input *pin,
struct dsi_pll_output *pout)
{
void __iomem *base = pll->mmio;
void __iomem *cmn_base = pll->phy_cmn_mmio;
u8 data;
DBG("DSI%d PLL", pll->id);
data = pout->cmn_ldo_cntrl;
pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
pll_db_commit_common(pll, pin, pout);
pll_14nm_software_reset(pll);
data = pin->dsiclk_sel; /* set dsiclk_sel = 1 */
pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, data);
data = 0xff; /* data, clk, pll normal operation */
pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
/* configure the frequency dependent pll registers */
data = pout->dec_start;
pll_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
data = pout->div_frac_start & 0xff;
pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
data = (pout->div_frac_start >> 8) & 0xff;
pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
data = (pout->div_frac_start >> 16) & 0xf;
pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
data = pout->plllock_cmp & 0xff;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
data = (pout->plllock_cmp >> 8) & 0xff;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
data = (pout->plllock_cmp >> 16) & 0x3;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
data = pin->plllock_cnt << 1 | pin->plllock_rng << 3;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
data = pout->pll_vco_count & 0xff;
pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
data = (pout->pll_vco_count >> 8) & 0xff;
pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
data = pout->pll_kvco_count & 0xff;
pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
data = (pout->pll_kvco_count >> 8) & 0x3;
pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
data = (pout->pll_postdiv - 1) << 4 | pin->pll_lpf_res1;
pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, data);
if (pin->ssc_en)
pll_db_commit_ssc(pll);
wmb(); /* make sure register committed */
}
/*
* VCO clock Callbacks
*/
static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
struct dsi_pll_input *pin = &pll_14nm->in;
struct dsi_pll_output *pout = &pll_14nm->out;
DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->id, rate,
parent_rate);
pll_14nm->vco_current_rate = rate;
pll_14nm->vco_ref_clk_rate = VCO_REF_CLK_RATE;
dsi_pll_14nm_input_init(pll_14nm);
/*
* This configures the post divider internal to the VCO. It's
* fixed to divide by 1 for now.
*
* tx_band = pll_postdiv.
* 0: divided by 1
* 1: divided by 2
* 2: divided by 4
* 3: divided by 8
*/
pout->pll_postdiv = DSI_PLL_DEFAULT_VCO_POSTDIV;
pll_14nm_dec_frac_calc(pll_14nm);
if (pin->ssc_en)
pll_14nm_ssc_calc(pll_14nm);
pll_14nm_calc_vco_count(pll_14nm);
/* commit the slave DSI PLL registers if we're master. Note that we
* don't lock the slave PLL. We just ensure that the PLL/PHY registers
* of the master and slave are identical
*/
if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
pll_db_commit_14nm(pll_14nm_slave, pin, pout);
}
pll_db_commit_14nm(pll_14nm, pin, pout);
return 0;
}
static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
void __iomem *base = pll_14nm->mmio;
u64 vco_rate, multiplier = BIT(20);
u32 div_frac_start;
u32 dec_start;
u64 ref_clk = parent_rate;
dec_start = pll_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
dec_start &= 0x0ff;
DBG("dec_start = %x", dec_start);
div_frac_start = (pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
& 0xf) << 16;
div_frac_start |= (pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
& 0xff) << 8;
div_frac_start |= pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
& 0xff;
DBG("div_frac_start = %x", div_frac_start);
vco_rate = ref_clk * dec_start;
vco_rate += ((ref_clk * div_frac_start) / multiplier);
/*
* Recalculating the rate from dec_start and frac_start doesn't end up
* the rate we originally set. Convert the freq to KHz, round it up and
* convert it back to MHz.
*/
vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
DBG("returning vco rate = %lu", (unsigned long)vco_rate);
return (unsigned long)vco_rate;
}
static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
.round_rate = msm_dsi_pll_helper_clk_round_rate,
.set_rate = dsi_pll_14nm_vco_set_rate,
.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
.prepare = msm_dsi_pll_helper_clk_prepare,
.unprepare = msm_dsi_pll_helper_clk_unprepare,
};
/*
* N1 and N2 post-divider clock callbacks
*/
#define div_mask(width) ((1 << (width)) - 1)
static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
struct dsi_pll_14nm *pll_14nm = postdiv->pll;
void __iomem *base = pll_14nm->phy_cmn_mmio;
u8 shift = postdiv->shift;
u8 width = postdiv->width;
u32 val;
DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, parent_rate);
val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
val &= div_mask(width);
return divider_recalc_rate(hw, parent_rate, val, NULL,
postdiv->flags, width);
}
static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *prate)
{
struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
struct dsi_pll_14nm *pll_14nm = postdiv->pll;
DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, rate);
return divider_round_rate(hw, rate, prate, NULL,
postdiv->width,
postdiv->flags);
}
static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
struct dsi_pll_14nm *pll_14nm = postdiv->pll;
void __iomem *base = pll_14nm->phy_cmn_mmio;
spinlock_t *lock = &pll_14nm->postdiv_lock;
u8 shift = postdiv->shift;
u8 width = postdiv->width;
unsigned int value;
unsigned long flags = 0;
u32 val;
DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->id, rate,
parent_rate);
value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
postdiv->flags);
spin_lock_irqsave(lock, flags);
val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
val &= ~(div_mask(width) << shift);
val |= value << shift;
pll_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
/* If we're master in dual DSI mode, then the slave PLL's post-dividers
* follow the master's post dividers
*/
if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio;
pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
}
spin_unlock_irqrestore(lock, flags);
return 0;
}
static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
.round_rate = dsi_pll_14nm_postdiv_round_rate,
.set_rate = dsi_pll_14nm_postdiv_set_rate,
};
/*
* PLL Callbacks
*/
static int dsi_pll_14nm_enable_seq(struct msm_dsi_pll *pll)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
void __iomem *base = pll_14nm->mmio;
void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
bool locked;
DBG("");
pll_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
POLL_TIMEOUT_US);
if (unlikely(!locked))
dev_err(&pll_14nm->pdev->dev, "DSI PLL lock failed\n");
else
DBG("DSI PLL lock success");
return locked ? 0 : -EINVAL;
}
static void dsi_pll_14nm_disable_seq(struct msm_dsi_pll *pll)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
DBG("");
pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
}
static void dsi_pll_14nm_save_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
u32 data;
data = pll_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
cached_state->n1postdiv = data & 0xf;
cached_state->n2postdiv = (data >> 4) & 0xf;
DBG("DSI%d PLL save state %x %x", pll_14nm->id,
cached_state->n1postdiv, cached_state->n2postdiv);
cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
}
static int dsi_pll_14nm_restore_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
u32 data;
int ret;
ret = dsi_pll_14nm_vco_set_rate(&pll->clk_hw,
cached_state->vco_rate, 0);
if (ret) {
dev_err(&pll_14nm->pdev->dev,
"restore vco rate failed. ret=%d\n", ret);
return ret;
}
data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
DBG("DSI%d PLL restore state %x %x", pll_14nm->id,
cached_state->n1postdiv, cached_state->n2postdiv);
pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
/* also restore post-dividers for slave DSI PLL */
if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio;
pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
}
return 0;
}
static int dsi_pll_14nm_set_usecase(struct msm_dsi_pll *pll,
enum msm_dsi_phy_usecase uc)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
void __iomem *base = pll_14nm->mmio;
u32 clkbuflr_en, bandgap = 0;
switch (uc) {
case MSM_DSI_PHY_STANDALONE:
clkbuflr_en = 0x1;
break;
case MSM_DSI_PHY_MASTER:
clkbuflr_en = 0x3;
pll_14nm->slave = pll_14nm_list[(pll_14nm->id + 1) % DSI_MAX];
break;
case MSM_DSI_PHY_SLAVE:
clkbuflr_en = 0x0;
bandgap = 0x3;
break;
default:
return -EINVAL;
}
pll_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
if (bandgap)
pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
pll_14nm->uc = uc;
return 0;
}
static int dsi_pll_14nm_get_provider(struct msm_dsi_pll *pll,
struct clk **byte_clk_provider,
struct clk **pixel_clk_provider)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
struct clk_hw_onecell_data *hw_data = pll_14nm->hw_data;
if (byte_clk_provider)
*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
if (pixel_clk_provider)
*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
return 0;
}
static void dsi_pll_14nm_destroy(struct msm_dsi_pll *pll)
{
struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
struct platform_device *pdev = pll_14nm->pdev;
int num_hws = pll_14nm->num_hws;
of_clk_del_provider(pdev->dev.of_node);
while (num_hws--)
clk_hw_unregister(pll_14nm->hws[num_hws]);
}
static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
const char *name,
const char *parent_name,
unsigned long flags,
u8 shift)
{
struct dsi_pll_14nm_postdiv *pll_postdiv;
struct device *dev = &pll_14nm->pdev->dev;
struct clk_init_data postdiv_init = {
.parent_names = (const char *[]) { parent_name },
.num_parents = 1,
.name = name,
.flags = flags,
.ops = &clk_ops_dsi_pll_14nm_postdiv,
};
int ret;
pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
if (!pll_postdiv)
return ERR_PTR(-ENOMEM);
pll_postdiv->pll = pll_14nm;
pll_postdiv->shift = shift;
/* both N1 and N2 postdividers are 4 bits wide */
pll_postdiv->width = 4;
/* range of each divider is from 1 to 15 */
pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
pll_postdiv->hw.init = &postdiv_init;
ret = clk_hw_register(dev, &pll_postdiv->hw);
if (ret)
return ERR_PTR(ret);
return &pll_postdiv->hw;
}
static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm)
{
char clk_name[32], parent[32], vco_name[32];
struct clk_init_data vco_init = {
.parent_names = (const char *[]){ "xo" },
.num_parents = 1,
.name = vco_name,
.flags = CLK_IGNORE_UNUSED,
.ops = &clk_ops_dsi_pll_14nm_vco,
};
struct device *dev = &pll_14nm->pdev->dev;
struct clk_hw **hws = pll_14nm->hws;
struct clk_hw_onecell_data *hw_data;
struct clk_hw *hw;
int num = 0;
int ret;
DBG("DSI%d", pll_14nm->id);
hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
GFP_KERNEL);
if (!hw_data)
return -ENOMEM;
snprintf(vco_name, 32, "dsi%dvco_clk", pll_14nm->id);
pll_14nm->base.clk_hw.init = &vco_init;
ret = clk_hw_register(dev, &pll_14nm->base.clk_hw);
if (ret)
return ret;
hws[num++] = &pll_14nm->base.clk_hw;
snprintf(clk_name, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
snprintf(parent, 32, "dsi%dvco_clk", pll_14nm->id);
/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent,
CLK_SET_RATE_PARENT, 0);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%dpllbyte", pll_14nm->id);
snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
/* DSI Byte clock = VCO_CLK / N1 / 8 */
hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
CLK_SET_RATE_PARENT, 1, 8);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
snprintf(clk_name, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id);
snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
/*
* Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
* on the way. Don't let it set parent.
*/
hw = clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 2);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%dpll", pll_14nm->id);
snprintf(parent, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id);
/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
* This is the output of N2 post-divider, bits 4-7 in
* REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
*/
hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent, 0, 4);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
hw_data->hws[DSI_PIXEL_PLL_CLK] = hw;
pll_14nm->num_hws = num;
hw_data->num = NUM_PROVIDED_CLKS;
pll_14nm->hw_data = hw_data;
ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
pll_14nm->hw_data);
if (ret) {
dev_err(dev, "failed to register clk provider: %d\n", ret);
return ret;
}
return 0;
}
struct msm_dsi_pll *msm_dsi_pll_14nm_init(struct platform_device *pdev, int id)
{
struct dsi_pll_14nm *pll_14nm;
struct msm_dsi_pll *pll;
int ret;
if (!pdev)
return ERR_PTR(-ENODEV);
pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
if (!pll_14nm)
return ERR_PTR(-ENOMEM);
DBG("PLL%d", id);
pll_14nm->pdev = pdev;
pll_14nm->id = id;
pll_14nm_list[id] = pll_14nm;
pll_14nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
if (IS_ERR_OR_NULL(pll_14nm->phy_cmn_mmio)) {
dev_err(&pdev->dev, "failed to map CMN PHY base\n");
return ERR_PTR(-ENOMEM);
}
pll_14nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
if (IS_ERR_OR_NULL(pll_14nm->mmio)) {
dev_err(&pdev->dev, "failed to map PLL base\n");
return ERR_PTR(-ENOMEM);
}
spin_lock_init(&pll_14nm->postdiv_lock);
pll = &pll_14nm->base;
pll->min_rate = VCO_MIN_RATE;
pll->max_rate = VCO_MAX_RATE;
pll->get_provider = dsi_pll_14nm_get_provider;
pll->destroy = dsi_pll_14nm_destroy;
pll->disable_seq = dsi_pll_14nm_disable_seq;
pll->save_state = dsi_pll_14nm_save_state;
pll->restore_state = dsi_pll_14nm_restore_state;
pll->set_usecase = dsi_pll_14nm_set_usecase;
pll_14nm->vco_delay = 1;
pll->en_seq_cnt = 1;
pll->enable_seqs[0] = dsi_pll_14nm_enable_seq;
ret = pll_14nm_register(pll_14nm);
if (ret) {
dev_err(&pdev->dev, "failed to register PLL: %d\n", ret);
return ERR_PTR(ret);
}
return pll;
}