linux/drivers/net/ethernet/intel/ice/ice_common.c

3109 lines
88 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice_common.h"
#include "ice_sched.h"
#include "ice_adminq_cmd.h"
#define ICE_PF_RESET_WAIT_COUNT 200
#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
((ICE_RX_OPC_MDID << \
GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
(((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
(((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
(((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
(((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
(((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
/**
* ice_set_mac_type - Sets MAC type
* @hw: pointer to the HW structure
*
* This function sets the MAC type of the adapter based on the
* vendor ID and device ID stored in the hw structure.
*/
static enum ice_status ice_set_mac_type(struct ice_hw *hw)
{
if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
return ICE_ERR_DEVICE_NOT_SUPPORTED;
hw->mac_type = ICE_MAC_GENERIC;
return 0;
}
/**
* ice_dev_onetime_setup - Temporary HW/FW workarounds
* @hw: pointer to the HW structure
*
* This function provides temporary workarounds for certain issues
* that are expected to be fixed in the HW/FW.
*/
void ice_dev_onetime_setup(struct ice_hw *hw)
{
/* configure Rx - set non pxe mode */
wr32(hw, GLLAN_RCTL_0, 0x1);
#define MBX_PF_VT_PFALLOC 0x00231E80
/* set VFs per PF */
wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
}
/**
* ice_clear_pf_cfg - Clear PF configuration
* @hw: pointer to the hardware structure
*
* Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
* configuration, flow director filters, etc.).
*/
enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_manage_mac_read - manage MAC address read command
* @hw: pointer to the hw struct
* @buf: a virtual buffer to hold the manage MAC read response
* @buf_size: Size of the virtual buffer
* @cd: pointer to command details structure or NULL
*
* This function is used to return per PF station MAC address (0x0107).
* NOTE: Upon successful completion of this command, MAC address information
* is returned in user specified buffer. Please interpret user specified
* buffer as "manage_mac_read" response.
* Response such as various MAC addresses are stored in HW struct (port.mac)
* ice_aq_discover_caps is expected to be called before this function is called.
*/
static enum ice_status
ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_manage_mac_read_resp *resp;
struct ice_aqc_manage_mac_read *cmd;
struct ice_aq_desc desc;
enum ice_status status;
u16 flags;
u8 i;
cmd = &desc.params.mac_read;
if (buf_size < sizeof(*resp))
return ICE_ERR_BUF_TOO_SHORT;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (status)
return status;
resp = (struct ice_aqc_manage_mac_read_resp *)buf;
flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
return ICE_ERR_CFG;
}
/* A single port can report up to two (LAN and WoL) addresses */
for (i = 0; i < cmd->num_addr; i++)
if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
ether_addr_copy(hw->port_info->mac.lan_addr,
resp[i].mac_addr);
ether_addr_copy(hw->port_info->mac.perm_addr,
resp[i].mac_addr);
break;
}
return 0;
}
/**
* ice_aq_get_phy_caps - returns PHY capabilities
* @pi: port information structure
* @qual_mods: report qualified modules
* @report_mode: report mode capabilities
* @pcaps: structure for PHY capabilities to be filled
* @cd: pointer to command details structure or NULL
*
* Returns the various PHY capabilities supported on the Port (0x0600)
*/
enum ice_status
ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_phy_caps *cmd;
u16 pcaps_size = sizeof(*pcaps);
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.get_phy;
if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
if (qual_mods)
cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
cmd->param0 |= cpu_to_le16(report_mode);
status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
}
return status;
}
/**
* ice_get_media_type - Gets media type
* @pi: port information structure
*/
static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
{
struct ice_link_status *hw_link_info;
if (!pi)
return ICE_MEDIA_UNKNOWN;
hw_link_info = &pi->phy.link_info;
if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
/* If more than one media type is selected, report unknown */
return ICE_MEDIA_UNKNOWN;
if (hw_link_info->phy_type_low) {
switch (hw_link_info->phy_type_low) {
case ICE_PHY_TYPE_LOW_1000BASE_SX:
case ICE_PHY_TYPE_LOW_1000BASE_LX:
case ICE_PHY_TYPE_LOW_10GBASE_SR:
case ICE_PHY_TYPE_LOW_10GBASE_LR:
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
case ICE_PHY_TYPE_LOW_25GBASE_SR:
case ICE_PHY_TYPE_LOW_25GBASE_LR:
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
case ICE_PHY_TYPE_LOW_50GBASE_SR:
case ICE_PHY_TYPE_LOW_50GBASE_FR:
case ICE_PHY_TYPE_LOW_50GBASE_LR:
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
case ICE_PHY_TYPE_LOW_100GBASE_DR:
return ICE_MEDIA_FIBER;
case ICE_PHY_TYPE_LOW_100BASE_TX:
case ICE_PHY_TYPE_LOW_1000BASE_T:
case ICE_PHY_TYPE_LOW_2500BASE_T:
case ICE_PHY_TYPE_LOW_5GBASE_T:
case ICE_PHY_TYPE_LOW_10GBASE_T:
case ICE_PHY_TYPE_LOW_25GBASE_T:
return ICE_MEDIA_BASET;
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
case ICE_PHY_TYPE_LOW_25GBASE_CR:
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
case ICE_PHY_TYPE_LOW_50GBASE_CP:
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
return ICE_MEDIA_DA;
case ICE_PHY_TYPE_LOW_1000BASE_KX:
case ICE_PHY_TYPE_LOW_2500BASE_KX:
case ICE_PHY_TYPE_LOW_2500BASE_X:
case ICE_PHY_TYPE_LOW_5GBASE_KR:
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
case ICE_PHY_TYPE_LOW_25GBASE_KR:
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
return ICE_MEDIA_BACKPLANE;
}
} else {
switch (hw_link_info->phy_type_high) {
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
return ICE_MEDIA_BACKPLANE;
}
}
return ICE_MEDIA_UNKNOWN;
}
/**
* ice_aq_get_link_info
* @pi: port information structure
* @ena_lse: enable/disable LinkStatusEvent reporting
* @link: pointer to link status structure - optional
* @cd: pointer to command details structure or NULL
*
* Get Link Status (0x607). Returns the link status of the adapter.
*/
enum ice_status
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
struct ice_link_status *link, struct ice_sq_cd *cd)
{
struct ice_link_status *hw_link_info_old, *hw_link_info;
struct ice_aqc_get_link_status_data link_data = { 0 };
struct ice_aqc_get_link_status *resp;
enum ice_media_type *hw_media_type;
struct ice_fc_info *hw_fc_info;
bool tx_pause, rx_pause;
struct ice_aq_desc desc;
enum ice_status status;
u16 cmd_flags;
if (!pi)
return ICE_ERR_PARAM;
hw_link_info_old = &pi->phy.link_info_old;
hw_media_type = &pi->phy.media_type;
hw_link_info = &pi->phy.link_info;
hw_fc_info = &pi->fc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
resp = &desc.params.get_link_status;
resp->cmd_flags = cpu_to_le16(cmd_flags);
resp->lport_num = pi->lport;
status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
cd);
if (status)
return status;
/* save off old link status information */
*hw_link_info_old = *hw_link_info;
/* update current link status information */
hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
hw_link_info->phy_type_high = le64_to_cpu(link_data.phy_type_high);
*hw_media_type = ice_get_media_type(pi);
hw_link_info->link_info = link_data.link_info;
hw_link_info->an_info = link_data.an_info;
hw_link_info->ext_info = link_data.ext_info;
hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
/* update fc info */
tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
if (tx_pause && rx_pause)
hw_fc_info->current_mode = ICE_FC_FULL;
else if (tx_pause)
hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
else if (rx_pause)
hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
else
hw_fc_info->current_mode = ICE_FC_NONE;
hw_link_info->lse_ena =
!!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
/* save link status information */
if (link)
*link = *hw_link_info;
/* flag cleared so calling functions don't call AQ again */
pi->phy.get_link_info = false;
return 0;
}
/**
* ice_init_flex_flags
* @hw: pointer to the hardware structure
* @prof_id: Rx Descriptor Builder profile ID
*
* Function to initialize Rx flex flags
*/
static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
{
u8 idx = 0;
/* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
* flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
* flexiflags1[3:0] - Not used for flag programming
* flexiflags2[7:0] - Tunnel and VLAN types
* 2 invalid fields in last index
*/
switch (prof_id) {
/* Rx flex flags are currently programmed for the NIC profiles only.
* Different flag bit programming configurations can be added per
* profile as needed.
*/
case ICE_RXDID_FLEX_NIC:
case ICE_RXDID_FLEX_NIC_2:
ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_FRG,
ICE_RXFLG_UDP_GRE, ICE_RXFLG_PKT_DSI,
ICE_RXFLG_FIN, idx++);
/* flex flag 1 is not used for flexi-flag programming, skipping
* these four FLG64 bits.
*/
ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_SYN, ICE_RXFLG_RST,
ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++);
ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_DSI,
ICE_RXFLG_PKT_DSI, ICE_RXFLG_EVLAN_x8100,
ICE_RXFLG_EVLAN_x9100, idx++);
ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_VLAN_x8100,
ICE_RXFLG_TNL_VLAN, ICE_RXFLG_TNL_MAC,
ICE_RXFLG_TNL0, idx++);
ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2,
ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx);
break;
default:
ice_debug(hw, ICE_DBG_INIT,
"Flag programming for profile ID %d not supported\n",
prof_id);
}
}
/**
* ice_init_flex_flds
* @hw: pointer to the hardware structure
* @prof_id: Rx Descriptor Builder profile ID
*
* Function to initialize flex descriptors
*/
static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
{
enum ice_flex_rx_mdid mdid;
switch (prof_id) {
case ICE_RXDID_FLEX_NIC:
case ICE_RXDID_FLEX_NIC_2:
ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
ice_init_flex_flags(hw, prof_id);
break;
default:
ice_debug(hw, ICE_DBG_INIT,
"Field init for profile ID %d not supported\n",
prof_id);
}
}
/**
* ice_init_fltr_mgmt_struct - initializes filter management list and locks
* @hw: pointer to the hw struct
*/
static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
{
struct ice_switch_info *sw;
hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
sizeof(*hw->switch_info), GFP_KERNEL);
sw = hw->switch_info;
if (!sw)
return ICE_ERR_NO_MEMORY;
INIT_LIST_HEAD(&sw->vsi_list_map_head);
return ice_init_def_sw_recp(hw);
}
/**
* ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
* @hw: pointer to the hw struct
*/
static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_vsi_list_map_info *v_pos_map;
struct ice_vsi_list_map_info *v_tmp_map;
struct ice_sw_recipe *recps;
u8 i;
list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
list_entry) {
list_del(&v_pos_map->list_entry);
devm_kfree(ice_hw_to_dev(hw), v_pos_map);
}
recps = hw->switch_info->recp_list;
for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
recps[i].root_rid = i;
mutex_destroy(&recps[i].filt_rule_lock);
list_for_each_entry_safe(lst_itr, tmp_entry,
&recps[i].filt_rules, list_entry) {
list_del(&lst_itr->list_entry);
devm_kfree(ice_hw_to_dev(hw), lst_itr);
}
}
ice_rm_all_sw_replay_rule_info(hw);
devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
devm_kfree(ice_hw_to_dev(hw), sw);
}
#define ICE_FW_LOG_DESC_SIZE(n) (sizeof(struct ice_aqc_fw_logging_data) + \
(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
#define ICE_FW_LOG_DESC_SIZE_MAX \
ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
/**
* ice_cfg_fw_log - configure FW logging
* @hw: pointer to the hw struct
* @enable: enable certain FW logging events if true, disable all if false
*
* This function enables/disables the FW logging via Rx CQ events and a UART
* port based on predetermined configurations. FW logging via the Rx CQ can be
* enabled/disabled for individual PF's. However, FW logging via the UART can
* only be enabled/disabled for all PFs on the same device.
*
* To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
* hw->fw_log need to be set accordingly, e.g. based on user-provided input,
* before initializing the device.
*
* When re/configuring FW logging, callers need to update the "cfg" elements of
* the hw->fw_log.evnts array with the desired logging event configurations for
* modules of interest. When disabling FW logging completely, the callers can
* just pass false in the "enable" parameter. On completion, the function will
* update the "cur" element of the hw->fw_log.evnts array with the resulting
* logging event configurations of the modules that are being re/configured. FW
* logging modules that are not part of a reconfiguration operation retain their
* previous states.
*
* Before resetting the device, it is recommended that the driver disables FW
* logging before shutting down the control queue. When disabling FW logging
* ("enable" = false), the latest configurations of FW logging events stored in
* hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
* a device reset.
*
* When enabling FW logging to emit log messages via the Rx CQ during the
* device's initialization phase, a mechanism alternative to interrupt handlers
* needs to be used to extract FW log messages from the Rx CQ periodically and
* to prevent the Rx CQ from being full and stalling other types of control
* messages from FW to SW. Interrupts are typically disabled during the device's
* initialization phase.
*/
static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
{
struct ice_aqc_fw_logging_data *data = NULL;
struct ice_aqc_fw_logging *cmd;
enum ice_status status = 0;
u16 i, chgs = 0, len = 0;
struct ice_aq_desc desc;
u8 actv_evnts = 0;
void *buf = NULL;
if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
return 0;
/* Disable FW logging only when the control queue is still responsive */
if (!enable &&
(!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
return 0;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
cmd = &desc.params.fw_logging;
/* Indicate which controls are valid */
if (hw->fw_log.cq_en)
cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
if (hw->fw_log.uart_en)
cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
if (enable) {
/* Fill in an array of entries with FW logging modules and
* logging events being reconfigured.
*/
for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
u16 val;
/* Keep track of enabled event types */
actv_evnts |= hw->fw_log.evnts[i].cfg;
if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
continue;
if (!data) {
data = devm_kzalloc(ice_hw_to_dev(hw),
ICE_FW_LOG_DESC_SIZE_MAX,
GFP_KERNEL);
if (!data)
return ICE_ERR_NO_MEMORY;
}
val = i << ICE_AQC_FW_LOG_ID_S;
val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
data->entry[chgs++] = cpu_to_le16(val);
}
/* Only enable FW logging if at least one module is specified.
* If FW logging is currently enabled but all modules are not
* enabled to emit log messages, disable FW logging altogether.
*/
if (actv_evnts) {
/* Leave if there is effectively no change */
if (!chgs)
goto out;
if (hw->fw_log.cq_en)
cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
if (hw->fw_log.uart_en)
cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
buf = data;
len = ICE_FW_LOG_DESC_SIZE(chgs);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
}
}
status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
if (!status) {
/* Update the current configuration to reflect events enabled.
* hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
* logging mode is enabled for the device. They do not reflect
* actual modules being enabled to emit log messages. So, their
* values remain unchanged even when all modules are disabled.
*/
u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
hw->fw_log.actv_evnts = actv_evnts;
for (i = 0; i < cnt; i++) {
u16 v, m;
if (!enable) {
/* When disabling all FW logging events as part
* of device's de-initialization, the original
* configurations are retained, and can be used
* to reconfigure FW logging later if the device
* is re-initialized.
*/
hw->fw_log.evnts[i].cur = 0;
continue;
}
v = le16_to_cpu(data->entry[i]);
m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
}
}
out:
if (data)
devm_kfree(ice_hw_to_dev(hw), data);
return status;
}
/**
* ice_output_fw_log
* @hw: pointer to the hw struct
* @desc: pointer to the AQ message descriptor
* @buf: pointer to the buffer accompanying the AQ message
*
* Formats a FW Log message and outputs it via the standard driver logs.
*/
void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
{
ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg Start ]\n");
ice_debug_array(hw, ICE_DBG_AQ_MSG, 16, 1, (u8 *)buf,
le16_to_cpu(desc->datalen));
ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg End ]\n");
}
/**
* ice_get_itr_intrl_gran - determine int/intrl granularity
* @hw: pointer to the hw struct
*
* Determines the itr/intrl granularities based on the maximum aggregate
* bandwidth according to the device's configuration during power-on.
*/
static enum ice_status ice_get_itr_intrl_gran(struct ice_hw *hw)
{
u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
GL_PWR_MODE_CTL_CAR_MAX_BW_S;
switch (max_agg_bw) {
case ICE_MAX_AGG_BW_200G:
case ICE_MAX_AGG_BW_100G:
case ICE_MAX_AGG_BW_50G:
hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
break;
case ICE_MAX_AGG_BW_25G:
hw->itr_gran = ICE_ITR_GRAN_MAX_25;
hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
break;
default:
ice_debug(hw, ICE_DBG_INIT,
"Failed to determine itr/intrl granularity\n");
return ICE_ERR_CFG;
}
return 0;
}
/**
* ice_init_hw - main hardware initialization routine
* @hw: pointer to the hardware structure
*/
enum ice_status ice_init_hw(struct ice_hw *hw)
{
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status;
u16 mac_buf_len;
void *mac_buf;
/* Set MAC type based on DeviceID */
status = ice_set_mac_type(hw);
if (status)
return status;
hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
PF_FUNC_RID_FUNC_NUM_M) >>
PF_FUNC_RID_FUNC_NUM_S;
status = ice_reset(hw, ICE_RESET_PFR);
if (status)
return status;
status = ice_get_itr_intrl_gran(hw);
if (status)
return status;
status = ice_init_all_ctrlq(hw);
if (status)
goto err_unroll_cqinit;
/* Enable FW logging. Not fatal if this fails. */
status = ice_cfg_fw_log(hw, true);
if (status)
ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
status = ice_clear_pf_cfg(hw);
if (status)
goto err_unroll_cqinit;
ice_clear_pxe_mode(hw);
status = ice_init_nvm(hw);
if (status)
goto err_unroll_cqinit;
status = ice_get_caps(hw);
if (status)
goto err_unroll_cqinit;
hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
sizeof(*hw->port_info), GFP_KERNEL);
if (!hw->port_info) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_cqinit;
}
/* set the back pointer to hw */
hw->port_info->hw = hw;
/* Initialize port_info struct with switch configuration data */
status = ice_get_initial_sw_cfg(hw);
if (status)
goto err_unroll_alloc;
hw->evb_veb = true;
/* Query the allocated resources for Tx scheduler */
status = ice_sched_query_res_alloc(hw);
if (status) {
ice_debug(hw, ICE_DBG_SCHED,
"Failed to get scheduler allocated resources\n");
goto err_unroll_alloc;
}
/* Initialize port_info struct with scheduler data */
status = ice_sched_init_port(hw->port_info);
if (status)
goto err_unroll_sched;
pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
if (!pcaps) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_sched;
}
/* Initialize port_info struct with PHY capabilities */
status = ice_aq_get_phy_caps(hw->port_info, false,
ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
devm_kfree(ice_hw_to_dev(hw), pcaps);
if (status)
goto err_unroll_sched;
/* Initialize port_info struct with link information */
status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
if (status)
goto err_unroll_sched;
/* need a valid SW entry point to build a Tx tree */
if (!hw->sw_entry_point_layer) {
ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
status = ICE_ERR_CFG;
goto err_unroll_sched;
}
INIT_LIST_HEAD(&hw->agg_list);
status = ice_init_fltr_mgmt_struct(hw);
if (status)
goto err_unroll_sched;
ice_dev_onetime_setup(hw);
/* Get MAC information */
/* A single port can report up to two (LAN and WoL) addresses */
mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
sizeof(struct ice_aqc_manage_mac_read_resp),
GFP_KERNEL);
mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
if (!mac_buf) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_fltr_mgmt_struct;
}
status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
devm_kfree(ice_hw_to_dev(hw), mac_buf);
if (status)
goto err_unroll_fltr_mgmt_struct;
ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
return 0;
err_unroll_fltr_mgmt_struct:
ice_cleanup_fltr_mgmt_struct(hw);
err_unroll_sched:
ice_sched_cleanup_all(hw);
err_unroll_alloc:
devm_kfree(ice_hw_to_dev(hw), hw->port_info);
err_unroll_cqinit:
ice_shutdown_all_ctrlq(hw);
return status;
}
/**
* ice_deinit_hw - unroll initialization operations done by ice_init_hw
* @hw: pointer to the hardware structure
*/
void ice_deinit_hw(struct ice_hw *hw)
{
ice_cleanup_fltr_mgmt_struct(hw);
ice_sched_cleanup_all(hw);
ice_sched_clear_agg(hw);
if (hw->port_info) {
devm_kfree(ice_hw_to_dev(hw), hw->port_info);
hw->port_info = NULL;
}
/* Attempt to disable FW logging before shutting down control queues */
ice_cfg_fw_log(hw, false);
ice_shutdown_all_ctrlq(hw);
/* Clear VSI contexts if not already cleared */
ice_clear_all_vsi_ctx(hw);
}
/**
* ice_check_reset - Check to see if a global reset is complete
* @hw: pointer to the hardware structure
*/
enum ice_status ice_check_reset(struct ice_hw *hw)
{
u32 cnt, reg = 0, grst_delay;
/* Poll for Device Active state in case a recent CORER, GLOBR,
* or EMPR has occurred. The grst delay value is in 100ms units.
* Add 1sec for outstanding AQ commands that can take a long time.
*/
grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
GLGEN_RSTCTL_GRSTDEL_S) + 10;
for (cnt = 0; cnt < grst_delay; cnt++) {
mdelay(100);
reg = rd32(hw, GLGEN_RSTAT);
if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
break;
}
if (cnt == grst_delay) {
ice_debug(hw, ICE_DBG_INIT,
"Global reset polling failed to complete.\n");
return ICE_ERR_RESET_FAILED;
}
#define ICE_RESET_DONE_MASK (GLNVM_ULD_CORER_DONE_M | \
GLNVM_ULD_GLOBR_DONE_M)
/* Device is Active; check Global Reset processes are done */
for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
if (reg == ICE_RESET_DONE_MASK) {
ice_debug(hw, ICE_DBG_INIT,
"Global reset processes done. %d\n", cnt);
break;
}
mdelay(10);
}
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
ice_debug(hw, ICE_DBG_INIT,
"Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
reg);
return ICE_ERR_RESET_FAILED;
}
return 0;
}
/**
* ice_pf_reset - Reset the PF
* @hw: pointer to the hardware structure
*
* If a global reset has been triggered, this function checks
* for its completion and then issues the PF reset
*/
static enum ice_status ice_pf_reset(struct ice_hw *hw)
{
u32 cnt, reg;
/* If at function entry a global reset was already in progress, i.e.
* state is not 'device active' or any of the reset done bits are not
* set in GLNVM_ULD, there is no need for a PF Reset; poll until the
* global reset is done.
*/
if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
(rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
/* poll on global reset currently in progress until done */
if (ice_check_reset(hw))
return ICE_ERR_RESET_FAILED;
return 0;
}
/* Reset the PF */
reg = rd32(hw, PFGEN_CTRL);
wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
reg = rd32(hw, PFGEN_CTRL);
if (!(reg & PFGEN_CTRL_PFSWR_M))
break;
mdelay(1);
}
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
ice_debug(hw, ICE_DBG_INIT,
"PF reset polling failed to complete.\n");
return ICE_ERR_RESET_FAILED;
}
return 0;
}
/**
* ice_reset - Perform different types of reset
* @hw: pointer to the hardware structure
* @req: reset request
*
* This function triggers a reset as specified by the req parameter.
*
* Note:
* If anything other than a PF reset is triggered, PXE mode is restored.
* This has to be cleared using ice_clear_pxe_mode again, once the AQ
* interface has been restored in the rebuild flow.
*/
enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
{
u32 val = 0;
switch (req) {
case ICE_RESET_PFR:
return ice_pf_reset(hw);
case ICE_RESET_CORER:
ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
val = GLGEN_RTRIG_CORER_M;
break;
case ICE_RESET_GLOBR:
ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
val = GLGEN_RTRIG_GLOBR_M;
break;
default:
return ICE_ERR_PARAM;
}
val |= rd32(hw, GLGEN_RTRIG);
wr32(hw, GLGEN_RTRIG, val);
ice_flush(hw);
/* wait for the FW to be ready */
return ice_check_reset(hw);
}
/**
* ice_copy_rxq_ctx_to_hw
* @hw: pointer to the hardware structure
* @ice_rxq_ctx: pointer to the rxq context
* @rxq_index: the index of the Rx queue
*
* Copies rxq context from dense structure to hw register space
*/
static enum ice_status
ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
{
u8 i;
if (!ice_rxq_ctx)
return ICE_ERR_BAD_PTR;
if (rxq_index > QRX_CTRL_MAX_INDEX)
return ICE_ERR_PARAM;
/* Copy each dword separately to hw */
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
wr32(hw, QRX_CONTEXT(i, rxq_index),
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
}
return 0;
}
/* LAN Rx Queue Context */
static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
{ 0 }
};
/**
* ice_write_rxq_ctx
* @hw: pointer to the hardware structure
* @rlan_ctx: pointer to the rxq context
* @rxq_index: the index of the Rx queue
*
* Converts rxq context from sparse to dense structure and then writes
* it to hw register space
*/
enum ice_status
ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
u32 rxq_index)
{
u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
}
/* LAN Tx Queue Context */
const struct ice_ctx_ele ice_tlan_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 110, 171),
{ 0 }
};
/**
* ice_debug_cq
* @hw: pointer to the hardware structure
* @mask: debug mask
* @desc: pointer to control queue descriptor
* @buf: pointer to command buffer
* @buf_len: max length of buf
*
* Dumps debug log about control command with descriptor contents.
*/
void
ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc, void *buf,
u16 buf_len)
{
struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
u16 len;
#ifndef CONFIG_DYNAMIC_DEBUG
if (!(mask & hw->debug_mask))
return;
#endif
if (!desc)
return;
len = le16_to_cpu(cq_desc->datalen);
ice_debug(hw, mask,
"CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
le16_to_cpu(cq_desc->opcode),
le16_to_cpu(cq_desc->flags),
le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
le32_to_cpu(cq_desc->cookie_high),
le32_to_cpu(cq_desc->cookie_low));
ice_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n",
le32_to_cpu(cq_desc->params.generic.param0),
le32_to_cpu(cq_desc->params.generic.param1));
ice_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n",
le32_to_cpu(cq_desc->params.generic.addr_high),
le32_to_cpu(cq_desc->params.generic.addr_low));
if (buf && cq_desc->datalen != 0) {
ice_debug(hw, mask, "Buffer:\n");
if (buf_len < len)
len = buf_len;
ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
}
}
/* FW Admin Queue command wrappers */
/**
* ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
* @hw: pointer to the hw struct
* @desc: descriptor describing the command
* @buf: buffer to use for indirect commands (NULL for direct commands)
* @buf_size: size of buffer for indirect commands (0 for direct commands)
* @cd: pointer to command details structure
*
* Helper function to send FW Admin Queue commands to the FW Admin Queue.
*/
enum ice_status
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
u16 buf_size, struct ice_sq_cd *cd)
{
return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
}
/**
* ice_aq_get_fw_ver
* @hw: pointer to the hw struct
* @cd: pointer to command details structure or NULL
*
* Get the firmware version (0x0001) from the admin queue commands
*/
enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
{
struct ice_aqc_get_ver *resp;
struct ice_aq_desc desc;
enum ice_status status;
resp = &desc.params.get_ver;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status) {
hw->fw_branch = resp->fw_branch;
hw->fw_maj_ver = resp->fw_major;
hw->fw_min_ver = resp->fw_minor;
hw->fw_patch = resp->fw_patch;
hw->fw_build = le32_to_cpu(resp->fw_build);
hw->api_branch = resp->api_branch;
hw->api_maj_ver = resp->api_major;
hw->api_min_ver = resp->api_minor;
hw->api_patch = resp->api_patch;
}
return status;
}
/**
* ice_aq_q_shutdown
* @hw: pointer to the hw struct
* @unloading: is the driver unloading itself
*
* Tell the Firmware that we're shutting down the AdminQ and whether
* or not the driver is unloading as well (0x0003).
*/
enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
{
struct ice_aqc_q_shutdown *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.q_shutdown;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
if (unloading)
cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_req_res
* @hw: pointer to the hw struct
* @res: resource id
* @access: access type
* @sdp_number: resource number
* @timeout: the maximum time in ms that the driver may hold the resource
* @cd: pointer to command details structure or NULL
*
* Requests common resource using the admin queue commands (0x0008).
* When attempting to acquire the Global Config Lock, the driver can
* learn of three states:
* 1) ICE_SUCCESS - acquired lock, and can perform download package
* 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
* 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
* successfully downloaded the package; the driver does
* not have to download the package and can continue
* loading
*
* Note that if the caller is in an acquire lock, perform action, release lock
* phase of operation, it is possible that the FW may detect a timeout and issue
* a CORER. In this case, the driver will receive a CORER interrupt and will
* have to determine its cause. The calling thread that is handling this flow
* will likely get an error propagated back to it indicating the Download
* Package, Update Package or the Release Resource AQ commands timed out.
*/
static enum ice_status
ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd_resp;
struct ice_aq_desc desc;
enum ice_status status;
cmd_resp = &desc.params.res_owner;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
cmd_resp->res_id = cpu_to_le16(res);
cmd_resp->access_type = cpu_to_le16(access);
cmd_resp->res_number = cpu_to_le32(sdp_number);
cmd_resp->timeout = cpu_to_le32(*timeout);
*timeout = 0;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
/* The completion specifies the maximum time in ms that the driver
* may hold the resource in the Timeout field.
*/
/* Global config lock response utilizes an additional status field.
*
* If the Global config lock resource is held by some other driver, the
* command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
* and the timeout field indicates the maximum time the current owner
* of the resource has to free it.
*/
if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
*timeout = le32_to_cpu(cmd_resp->timeout);
return 0;
} else if (le16_to_cpu(cmd_resp->status) ==
ICE_AQ_RES_GLBL_IN_PROG) {
*timeout = le32_to_cpu(cmd_resp->timeout);
return ICE_ERR_AQ_ERROR;
} else if (le16_to_cpu(cmd_resp->status) ==
ICE_AQ_RES_GLBL_DONE) {
return ICE_ERR_AQ_NO_WORK;
}
/* invalid FW response, force a timeout immediately */
*timeout = 0;
return ICE_ERR_AQ_ERROR;
}
/* If the resource is held by some other driver, the command completes
* with a busy return value and the timeout field indicates the maximum
* time the current owner of the resource has to free it.
*/
if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
*timeout = le32_to_cpu(cmd_resp->timeout);
return status;
}
/**
* ice_aq_release_res
* @hw: pointer to the hw struct
* @res: resource id
* @sdp_number: resource number
* @cd: pointer to command details structure or NULL
*
* release common resource using the admin queue commands (0x0009)
*/
static enum ice_status
ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.res_owner;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
cmd->res_id = cpu_to_le16(res);
cmd->res_number = cpu_to_le32(sdp_number);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_acquire_res
* @hw: pointer to the HW structure
* @res: resource id
* @access: access type (read or write)
* @timeout: timeout in milliseconds
*
* This function will attempt to acquire the ownership of a resource.
*/
enum ice_status
ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
enum ice_aq_res_access_type access, u32 timeout)
{
#define ICE_RES_POLLING_DELAY_MS 10
u32 delay = ICE_RES_POLLING_DELAY_MS;
u32 time_left = timeout;
enum ice_status status;
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
* previously acquired the resource and performed any necessary updates;
* in this case the caller does not obtain the resource and has no
* further work to do.
*/
if (status == ICE_ERR_AQ_NO_WORK)
goto ice_acquire_res_exit;
if (status)
ice_debug(hw, ICE_DBG_RES,
"resource %d acquire type %d failed.\n", res, access);
/* If necessary, poll until the current lock owner timeouts */
timeout = time_left;
while (status && timeout && time_left) {
mdelay(delay);
timeout = (timeout > delay) ? timeout - delay : 0;
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
if (status == ICE_ERR_AQ_NO_WORK)
/* lock free, but no work to do */
break;
if (!status)
/* lock acquired */
break;
}
if (status && status != ICE_ERR_AQ_NO_WORK)
ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
ice_acquire_res_exit:
if (status == ICE_ERR_AQ_NO_WORK) {
if (access == ICE_RES_WRITE)
ice_debug(hw, ICE_DBG_RES,
"resource indicates no work to do.\n");
else
ice_debug(hw, ICE_DBG_RES,
"Warning: ICE_ERR_AQ_NO_WORK not expected\n");
}
return status;
}
/**
* ice_release_res
* @hw: pointer to the HW structure
* @res: resource id
*
* This function will release a resource using the proper Admin Command.
*/
void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
{
enum ice_status status;
u32 total_delay = 0;
status = ice_aq_release_res(hw, res, 0, NULL);
/* there are some rare cases when trying to release the resource
* results in an admin Q timeout, so handle them correctly
*/
while ((status == ICE_ERR_AQ_TIMEOUT) &&
(total_delay < hw->adminq.sq_cmd_timeout)) {
mdelay(1);
status = ice_aq_release_res(hw, res, 0, NULL);
total_delay++;
}
}
/**
* ice_get_num_per_func - determine number of resources per PF
* @hw: pointer to the hw structure
* @max: value to be evenly split between each PF
*
* Determine the number of valid functions by going through the bitmap returned
* from parsing capabilities and use this to calculate the number of resources
* per PF based on the max value passed in.
*/
static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
{
u8 funcs;
#define ICE_CAPS_VALID_FUNCS_M 0xFF
funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
ICE_CAPS_VALID_FUNCS_M);
if (!funcs)
return 0;
return max / funcs;
}
/**
* ice_parse_caps - parse function/device capabilities
* @hw: pointer to the hw struct
* @buf: pointer to a buffer containing function/device capability records
* @cap_count: number of capability records in the list
* @opc: type of capabilities list to parse
*
* Helper function to parse function(0x000a)/device(0x000b) capabilities list.
*/
static void
ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
enum ice_adminq_opc opc)
{
struct ice_aqc_list_caps_elem *cap_resp;
struct ice_hw_func_caps *func_p = NULL;
struct ice_hw_dev_caps *dev_p = NULL;
struct ice_hw_common_caps *caps;
u32 i;
if (!buf)
return;
cap_resp = (struct ice_aqc_list_caps_elem *)buf;
if (opc == ice_aqc_opc_list_dev_caps) {
dev_p = &hw->dev_caps;
caps = &dev_p->common_cap;
} else if (opc == ice_aqc_opc_list_func_caps) {
func_p = &hw->func_caps;
caps = &func_p->common_cap;
} else {
ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
return;
}
for (i = 0; caps && i < cap_count; i++, cap_resp++) {
u32 logical_id = le32_to_cpu(cap_resp->logical_id);
u32 phys_id = le32_to_cpu(cap_resp->phys_id);
u32 number = le32_to_cpu(cap_resp->number);
u16 cap = le16_to_cpu(cap_resp->cap);
switch (cap) {
case ICE_AQC_CAPS_VALID_FUNCTIONS:
caps->valid_functions = number;
ice_debug(hw, ICE_DBG_INIT,
"HW caps: Valid Functions = %d\n",
caps->valid_functions);
break;
case ICE_AQC_CAPS_SRIOV:
caps->sr_iov_1_1 = (number == 1);
ice_debug(hw, ICE_DBG_INIT,
"HW caps: SR-IOV = %d\n", caps->sr_iov_1_1);
break;
case ICE_AQC_CAPS_VF:
if (dev_p) {
dev_p->num_vfs_exposed = number;
ice_debug(hw, ICE_DBG_INIT,
"HW caps: VFs exposed = %d\n",
dev_p->num_vfs_exposed);
} else if (func_p) {
func_p->num_allocd_vfs = number;
func_p->vf_base_id = logical_id;
ice_debug(hw, ICE_DBG_INIT,
"HW caps: VFs allocated = %d\n",
func_p->num_allocd_vfs);
ice_debug(hw, ICE_DBG_INIT,
"HW caps: VF base_id = %d\n",
func_p->vf_base_id);
}
break;
case ICE_AQC_CAPS_VSI:
if (dev_p) {
dev_p->num_vsi_allocd_to_host = number;
ice_debug(hw, ICE_DBG_INIT,
"HW caps: Dev.VSI cnt = %d\n",
dev_p->num_vsi_allocd_to_host);
} else if (func_p) {
func_p->guar_num_vsi =
ice_get_num_per_func(hw, ICE_MAX_VSI);
ice_debug(hw, ICE_DBG_INIT,
"HW caps: Func.VSI cnt = %d\n",
number);
}
break;
case ICE_AQC_CAPS_RSS:
caps->rss_table_size = number;
caps->rss_table_entry_width = logical_id;
ice_debug(hw, ICE_DBG_INIT,
"HW caps: RSS table size = %d\n",
caps->rss_table_size);
ice_debug(hw, ICE_DBG_INIT,
"HW caps: RSS table width = %d\n",
caps->rss_table_entry_width);
break;
case ICE_AQC_CAPS_RXQS:
caps->num_rxq = number;
caps->rxq_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT,
"HW caps: Num Rx Qs = %d\n", caps->num_rxq);
ice_debug(hw, ICE_DBG_INIT,
"HW caps: Rx first queue ID = %d\n",
caps->rxq_first_id);
break;
case ICE_AQC_CAPS_TXQS:
caps->num_txq = number;
caps->txq_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT,
"HW caps: Num Tx Qs = %d\n", caps->num_txq);
ice_debug(hw, ICE_DBG_INIT,
"HW caps: Tx first queue ID = %d\n",
caps->txq_first_id);
break;
case ICE_AQC_CAPS_MSIX:
caps->num_msix_vectors = number;
caps->msix_vector_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT,
"HW caps: MSIX vector count = %d\n",
caps->num_msix_vectors);
ice_debug(hw, ICE_DBG_INIT,
"HW caps: MSIX first vector index = %d\n",
caps->msix_vector_first_id);
break;
case ICE_AQC_CAPS_MAX_MTU:
caps->max_mtu = number;
if (dev_p)
ice_debug(hw, ICE_DBG_INIT,
"HW caps: Dev.MaxMTU = %d\n",
caps->max_mtu);
else if (func_p)
ice_debug(hw, ICE_DBG_INIT,
"HW caps: func.MaxMTU = %d\n",
caps->max_mtu);
break;
default:
ice_debug(hw, ICE_DBG_INIT,
"HW caps: Unknown capability[%d]: 0x%x\n", i,
cap);
break;
}
}
}
/**
* ice_aq_discover_caps - query function/device capabilities
* @hw: pointer to the hw struct
* @buf: a virtual buffer to hold the capabilities
* @buf_size: Size of the virtual buffer
* @cap_count: cap count needed if AQ err==ENOMEM
* @opc: capabilities type to discover - pass in the command opcode
* @cd: pointer to command details structure or NULL
*
* Get the function(0x000a)/device(0x000b) capabilities description from
* the firmware.
*/
static enum ice_status
ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
struct ice_aqc_list_caps *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.get_cap;
if (opc != ice_aqc_opc_list_func_caps &&
opc != ice_aqc_opc_list_dev_caps)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status)
ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
*cap_count = le32_to_cpu(cmd->count);
return status;
}
/**
* ice_discover_caps - get info about the HW
* @hw: pointer to the hardware structure
* @opc: capabilities type to discover - pass in the command opcode
*/
static enum ice_status
ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
{
enum ice_status status;
u32 cap_count;
u16 cbuf_len;
u8 retries;
/* The driver doesn't know how many capabilities the device will return
* so the buffer size required isn't known ahead of time. The driver
* starts with cbuf_len and if this turns out to be insufficient, the
* device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
* The driver then allocates the buffer based on the count and retries
* the operation. So it follows that the retry count is 2.
*/
#define ICE_GET_CAP_BUF_COUNT 40
#define ICE_GET_CAP_RETRY_COUNT 2
cap_count = ICE_GET_CAP_BUF_COUNT;
retries = ICE_GET_CAP_RETRY_COUNT;
do {
void *cbuf;
cbuf_len = (u16)(cap_count *
sizeof(struct ice_aqc_list_caps_elem));
cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
if (!cbuf)
return ICE_ERR_NO_MEMORY;
status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
opc, NULL);
devm_kfree(ice_hw_to_dev(hw), cbuf);
if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
break;
/* If ENOMEM is returned, try again with bigger buffer */
} while (--retries);
return status;
}
/**
* ice_get_caps - get info about the HW
* @hw: pointer to the hardware structure
*/
enum ice_status ice_get_caps(struct ice_hw *hw)
{
enum ice_status status;
status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
if (!status)
status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
return status;
}
/**
* ice_aq_manage_mac_write - manage MAC address write command
* @hw: pointer to the hw struct
* @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
* @flags: flags to control write behavior
* @cd: pointer to command details structure or NULL
*
* This function is used to write MAC address to the NVM (0x0108).
*/
enum ice_status
ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
struct ice_sq_cd *cd)
{
struct ice_aqc_manage_mac_write *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.mac_write;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
cmd->flags = flags;
/* Prep values for flags, sah, sal */
cmd->sah = htons(*((const u16 *)mac_addr));
cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_clear_pxe_mode
* @hw: pointer to the hw struct
*
* Tell the firmware that the driver is taking over from PXE (0x0110).
*/
static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_clear_pxe_mode - clear pxe operations mode
* @hw: pointer to the hw struct
*
* Make sure all PXE mode settings are cleared, including things
* like descriptor fetch/write-back mode.
*/
void ice_clear_pxe_mode(struct ice_hw *hw)
{
if (ice_check_sq_alive(hw, &hw->adminq))
ice_aq_clear_pxe_mode(hw);
}
/**
* ice_get_link_speed_based_on_phy_type - returns link speed
* @phy_type_low: lower part of phy_type
* @phy_type_high: higher part of phy_type
*
* This helper function will convert an entry in phy type structure
* [phy_type_low, phy_type_high] to its corresponding link speed.
* Note: In the structure of [phy_type_low, phy_type_high], there should
* be one bit set, as this function will convert one phy type to its
* speed.
* If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
* If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
*/
static u16
ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
{
u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
switch (phy_type_low) {
case ICE_PHY_TYPE_LOW_100BASE_TX:
case ICE_PHY_TYPE_LOW_100M_SGMII:
speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
break;
case ICE_PHY_TYPE_LOW_1000BASE_T:
case ICE_PHY_TYPE_LOW_1000BASE_SX:
case ICE_PHY_TYPE_LOW_1000BASE_LX:
case ICE_PHY_TYPE_LOW_1000BASE_KX:
case ICE_PHY_TYPE_LOW_1G_SGMII:
speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
break;
case ICE_PHY_TYPE_LOW_2500BASE_T:
case ICE_PHY_TYPE_LOW_2500BASE_X:
case ICE_PHY_TYPE_LOW_2500BASE_KX:
speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
break;
case ICE_PHY_TYPE_LOW_5GBASE_T:
case ICE_PHY_TYPE_LOW_5GBASE_KR:
speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
break;
case ICE_PHY_TYPE_LOW_10GBASE_T:
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
case ICE_PHY_TYPE_LOW_10GBASE_SR:
case ICE_PHY_TYPE_LOW_10GBASE_LR:
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
break;
case ICE_PHY_TYPE_LOW_25GBASE_T:
case ICE_PHY_TYPE_LOW_25GBASE_CR:
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
case ICE_PHY_TYPE_LOW_25GBASE_SR:
case ICE_PHY_TYPE_LOW_25GBASE_LR:
case ICE_PHY_TYPE_LOW_25GBASE_KR:
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
break;
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_40G_XLAUI:
speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
break;
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_LAUI2:
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI2:
case ICE_PHY_TYPE_LOW_50GBASE_CP:
case ICE_PHY_TYPE_LOW_50GBASE_SR:
case ICE_PHY_TYPE_LOW_50GBASE_FR:
case ICE_PHY_TYPE_LOW_50GBASE_LR:
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI1:
speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
break;
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_CAUI4:
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_AUI4:
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
case ICE_PHY_TYPE_LOW_100GBASE_DR:
speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
break;
default:
speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
break;
}
switch (phy_type_high) {
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
case ICE_PHY_TYPE_HIGH_100G_AUI2:
speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
break;
default:
speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
break;
}
if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
return ICE_AQ_LINK_SPEED_UNKNOWN;
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
return ICE_AQ_LINK_SPEED_UNKNOWN;
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
return speed_phy_type_low;
else
return speed_phy_type_high;
}
/**
* ice_update_phy_type
* @phy_type_low: pointer to the lower part of phy_type
* @phy_type_high: pointer to the higher part of phy_type
* @link_speeds_bitmap: targeted link speeds bitmap
*
* Note: For the link_speeds_bitmap structure, you can check it at
* [ice_aqc_get_link_status->link_speed]. Caller can pass in
* link_speeds_bitmap include multiple speeds.
*
* Each entry in this [phy_type_low, phy_type_high] structure will
* present a certain link speed. This helper function will turn on bits
* in [phy_type_low, phy_type_high] structure based on the value of
* link_speeds_bitmap input parameter.
*/
void
ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
u16 link_speeds_bitmap)
{
u16 speed = ICE_AQ_LINK_SPEED_UNKNOWN;
u64 pt_high;
u64 pt_low;
int index;
/* We first check with low part of phy_type */
for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
pt_low = BIT_ULL(index);
speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
if (link_speeds_bitmap & speed)
*phy_type_low |= BIT_ULL(index);
}
/* We then check with high part of phy_type */
for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
pt_high = BIT_ULL(index);
speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
if (link_speeds_bitmap & speed)
*phy_type_high |= BIT_ULL(index);
}
}
/**
* ice_aq_set_phy_cfg
* @hw: pointer to the hw struct
* @lport: logical port number
* @cfg: structure with PHY configuration data to be set
* @cd: pointer to command details structure or NULL
*
* Set the various PHY configuration parameters supported on the Port.
* One or more of the Set PHY config parameters may be ignored in an MFP
* mode as the PF may not have the privilege to set some of the PHY Config
* parameters. This status will be indicated by the command response (0x0601).
*/
enum ice_status
ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
if (!cfg)
return ICE_ERR_PARAM;
/* Ensure that only valid bits of cfg->caps can be turned on. */
if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
ice_debug(hw, ICE_DBG_PHY,
"Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
cfg->caps);
cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
}
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
desc.params.set_phy.lport_num = lport;
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
}
/**
* ice_update_link_info - update status of the HW network link
* @pi: port info structure of the interested logical port
*/
enum ice_status ice_update_link_info(struct ice_port_info *pi)
{
struct ice_aqc_get_phy_caps_data *pcaps;
struct ice_phy_info *phy_info;
enum ice_status status;
struct ice_hw *hw;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
if (!pcaps)
return ICE_ERR_NO_MEMORY;
phy_info = &pi->phy;
status = ice_aq_get_link_info(pi, true, NULL, NULL);
if (status)
goto out;
if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
pcaps, NULL);
if (status)
goto out;
memcpy(phy_info->link_info.module_type, &pcaps->module_type,
sizeof(phy_info->link_info.module_type));
}
out:
devm_kfree(ice_hw_to_dev(hw), pcaps);
return status;
}
/**
* ice_set_fc
* @pi: port information structure
* @aq_failures: pointer to status code, specific to ice_set_fc routine
* @ena_auto_link_update: enable automatic link update
*
* Set the requested flow control mode.
*/
enum ice_status
ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
{
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status;
u8 pause_mask = 0x0;
struct ice_hw *hw;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
switch (pi->fc.req_mode) {
case ICE_FC_FULL:
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
break;
case ICE_FC_RX_PAUSE:
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
break;
case ICE_FC_TX_PAUSE:
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
break;
default:
break;
}
pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
if (!pcaps)
return ICE_ERR_NO_MEMORY;
/* Get the current phy config */
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
NULL);
if (status) {
*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
goto out;
}
/* clear the old pause settings */
cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
ICE_AQC_PHY_EN_RX_LINK_PAUSE);
/* set the new capabilities */
cfg.caps |= pause_mask;
/* If the capabilities have changed, then set the new config */
if (cfg.caps != pcaps->caps) {
int retry_count, retry_max = 10;
/* Auto restart link so settings take effect */
if (ena_auto_link_update)
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
/* Copy over all the old settings */
cfg.phy_type_high = pcaps->phy_type_high;
cfg.phy_type_low = pcaps->phy_type_low;
cfg.low_power_ctrl = pcaps->low_power_ctrl;
cfg.eee_cap = pcaps->eee_cap;
cfg.eeer_value = pcaps->eeer_value;
cfg.link_fec_opt = pcaps->link_fec_options;
status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
if (status) {
*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
goto out;
}
/* Update the link info
* It sometimes takes a really long time for link to
* come back from the atomic reset. Thus, we wait a
* little bit.
*/
for (retry_count = 0; retry_count < retry_max; retry_count++) {
status = ice_update_link_info(pi);
if (!status)
break;
mdelay(100);
}
if (status)
*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
}
out:
devm_kfree(ice_hw_to_dev(hw), pcaps);
return status;
}
/**
* ice_get_link_status - get status of the HW network link
* @pi: port information structure
* @link_up: pointer to bool (true/false = linkup/linkdown)
*
* Variable link_up is true if link is up, false if link is down.
* The variable link_up is invalid if status is non zero. As a
* result of this call, link status reporting becomes enabled
*/
enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
{
struct ice_phy_info *phy_info;
enum ice_status status = 0;
if (!pi || !link_up)
return ICE_ERR_PARAM;
phy_info = &pi->phy;
if (phy_info->get_link_info) {
status = ice_update_link_info(pi);
if (status)
ice_debug(pi->hw, ICE_DBG_LINK,
"get link status error, status = %d\n",
status);
}
*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
return status;
}
/**
* ice_aq_set_link_restart_an
* @pi: pointer to the port information structure
* @ena_link: if true: enable link, if false: disable link
* @cd: pointer to command details structure or NULL
*
* Sets up the link and restarts the Auto-Negotiation over the link.
*/
enum ice_status
ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
struct ice_sq_cd *cd)
{
struct ice_aqc_restart_an *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.restart_an;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
cmd->lport_num = pi->lport;
if (ena_link)
cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
else
cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_event_mask
* @hw: pointer to the HW struct
* @port_num: port number of the physical function
* @mask: event mask to be set
* @cd: pointer to command details structure or NULL
*
* Set event mask (0x0613)
*/
enum ice_status
ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_event_mask *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_event_mask;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
cmd->lport_num = port_num;
cmd->event_mask = cpu_to_le16(mask);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_port_id_led
* @pi: pointer to the port information
* @is_orig_mode: is this LED set to original mode (by the net-list)
* @cd: pointer to command details structure or NULL
*
* Set LED value for the given port (0x06e9)
*/
enum ice_status
ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_port_id_led *cmd;
struct ice_hw *hw = pi->hw;
struct ice_aq_desc desc;
cmd = &desc.params.set_port_id_led;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
if (is_orig_mode)
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
else
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* __ice_aq_get_set_rss_lut
* @hw: pointer to the hardware structure
* @vsi_id: VSI FW index
* @lut_type: LUT table type
* @lut: pointer to the LUT buffer provided by the caller
* @lut_size: size of the LUT buffer
* @glob_lut_idx: global LUT index
* @set: set true to set the table, false to get the table
*
* Internal function to get (0x0B05) or set (0x0B03) RSS look up table
*/
static enum ice_status
__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
u16 lut_size, u8 glob_lut_idx, bool set)
{
struct ice_aqc_get_set_rss_lut *cmd_resp;
struct ice_aq_desc desc;
enum ice_status status;
u16 flags = 0;
cmd_resp = &desc.params.get_set_rss_lut;
if (set) {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
} else {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
}
cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
ICE_AQC_GSET_RSS_LUT_VSI_VALID);
switch (lut_type) {
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
break;
default:
status = ICE_ERR_PARAM;
goto ice_aq_get_set_rss_lut_exit;
}
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
if (!set)
goto ice_aq_get_set_rss_lut_send;
} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
if (!set)
goto ice_aq_get_set_rss_lut_send;
} else {
goto ice_aq_get_set_rss_lut_send;
}
/* LUT size is only valid for Global and PF table types */
switch (lut_size) {
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
break;
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
break;
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
break;
}
/* fall-through */
default:
status = ICE_ERR_PARAM;
goto ice_aq_get_set_rss_lut_exit;
}
ice_aq_get_set_rss_lut_send:
cmd_resp->flags = cpu_to_le16(flags);
status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
ice_aq_get_set_rss_lut_exit:
return status;
}
/**
* ice_aq_get_rss_lut
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @lut_type: LUT table type
* @lut: pointer to the LUT buffer provided by the caller
* @lut_size: size of the LUT buffer
*
* get the RSS lookup table, PF or VSI type
*/
enum ice_status
ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
u8 *lut, u16 lut_size)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
lut_type, lut, lut_size, 0, false);
}
/**
* ice_aq_set_rss_lut
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @lut_type: LUT table type
* @lut: pointer to the LUT buffer provided by the caller
* @lut_size: size of the LUT buffer
*
* set the RSS lookup table, PF or VSI type
*/
enum ice_status
ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
u8 *lut, u16 lut_size)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
lut_type, lut, lut_size, 0, true);
}
/**
* __ice_aq_get_set_rss_key
* @hw: pointer to the hw struct
* @vsi_id: VSI FW index
* @key: pointer to key info struct
* @set: set true to set the key, false to get the key
*
* get (0x0B04) or set (0x0B02) the RSS key per VSI
*/
static enum
ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
struct ice_aqc_get_set_rss_keys *key,
bool set)
{
struct ice_aqc_get_set_rss_key *cmd_resp;
u16 key_size = sizeof(*key);
struct ice_aq_desc desc;
cmd_resp = &desc.params.get_set_rss_key;
if (set) {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
} else {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
}
cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
ICE_AQC_GSET_RSS_KEY_VSI_VALID);
return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
}
/**
* ice_aq_get_rss_key
* @hw: pointer to the hw struct
* @vsi_handle: software VSI handle
* @key: pointer to key info struct
*
* get the RSS key per VSI
*/
enum ice_status
ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
struct ice_aqc_get_set_rss_keys *key)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
key, false);
}
/**
* ice_aq_set_rss_key
* @hw: pointer to the hw struct
* @vsi_handle: software VSI handle
* @keys: pointer to key info struct
*
* set the RSS key per VSI
*/
enum ice_status
ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
struct ice_aqc_get_set_rss_keys *keys)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
keys, true);
}
/**
* ice_aq_add_lan_txq
* @hw: pointer to the hardware structure
* @num_qgrps: Number of added queue groups
* @qg_list: list of queue groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* Add Tx LAN queue (0x0C30)
*
* NOTE:
* Prior to calling add Tx LAN queue:
* Initialize the following as part of the Tx queue context:
* Completion queue ID if the queue uses Completion queue, Quanta profile,
* Cache profile and Packet shaper profile.
*
* After add Tx LAN queue AQ command is completed:
* Interrupts should be associated with specific queues,
* Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
* flow.
*/
static enum ice_status
ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
struct ice_sq_cd *cd)
{
u16 i, sum_header_size, sum_q_size = 0;
struct ice_aqc_add_tx_qgrp *list;
struct ice_aqc_add_txqs *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.add_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
if (!qg_list)
return ICE_ERR_PARAM;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return ICE_ERR_PARAM;
sum_header_size = num_qgrps *
(sizeof(*qg_list) - sizeof(*qg_list->txqs));
list = qg_list;
for (i = 0; i < num_qgrps; i++) {
struct ice_aqc_add_txqs_perq *q = list->txqs;
sum_q_size += list->num_txqs * sizeof(*q);
list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
}
if (buf_size != (sum_header_size + sum_q_size))
return ICE_ERR_PARAM;
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
cmd->num_qgrps = num_qgrps;
return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
}
/**
* ice_aq_dis_lan_txq
* @hw: pointer to the hardware structure
* @num_qgrps: number of groups in the list
* @qg_list: the list of groups to disable
* @buf_size: the total size of the qg_list buffer in bytes
* @rst_src: if called due to reset, specifies the RST source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL
*
* Disable LAN Tx queue (0x0C31)
*/
static enum ice_status
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cd)
{
struct ice_aqc_dis_txqs *cmd;
struct ice_aq_desc desc;
enum ice_status status;
u16 i, sz = 0;
cmd = &desc.params.dis_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
/* qg_list can be NULL only in VM/VF reset flow */
if (!qg_list && !rst_src)
return ICE_ERR_PARAM;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return ICE_ERR_PARAM;
cmd->num_entries = num_qgrps;
cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
ICE_AQC_Q_DIS_TIMEOUT_M);
switch (rst_src) {
case ICE_VM_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
cmd->vmvf_and_timeout |=
cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
break;
case ICE_VF_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
/* In this case, FW expects vmvf_num to be absolute VF id */
cmd->vmvf_and_timeout |=
cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
ICE_AQC_Q_DIS_VMVF_NUM_M);
break;
case ICE_NO_RESET:
default:
break;
}
/* flush pipe on time out */
cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
/* If no queue group info, we are in a reset flow. Issue the AQ */
if (!qg_list)
goto do_aq;
/* set RD bit to indicate that command buffer is provided by the driver
* and it needs to be read by the firmware
*/
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
for (i = 0; i < num_qgrps; ++i) {
/* Calculate the size taken up by the queue IDs in this group */
sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
/* Add the size of the group header */
sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
/* If the num of queues is even, add 2 bytes of padding */
if ((qg_list[i].num_qs % 2) == 0)
sz += 2;
}
if (buf_size != sz)
return ICE_ERR_PARAM;
do_aq:
status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
if (status) {
if (!qg_list)
ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
vmvf_num, hw->adminq.sq_last_status);
else
ice_debug(hw, ICE_DBG_SCHED, "disable Q %d failed %d\n",
le16_to_cpu(qg_list[0].q_id[0]),
hw->adminq.sq_last_status);
}
return status;
}
/* End of FW Admin Queue command wrappers */
/**
* ice_write_byte - write a byte to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u8 src_byte, dest_byte, mask;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = (u8)(BIT(ce_info->width) - 1);
src_byte = *from;
src_byte &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_byte <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_byte, dest, sizeof(dest_byte));
dest_byte &= ~mask; /* get the bits not changing */
dest_byte |= src_byte; /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_byte, sizeof(dest_byte));
}
/**
* ice_write_word - write a word to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u16 src_word, mask;
__le16 dest_word;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = BIT(ce_info->width) - 1;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_word = *(u16 *)from;
src_word &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_word <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_word, dest, sizeof(dest_word));
dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
dest_word |= cpu_to_le16(src_word); /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_word, sizeof(dest_word));
}
/**
* ice_write_dword - write a dword to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u32 src_dword, mask;
__le32 dest_dword;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 32 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 5 bits so the shift will do nothing
*/
if (ce_info->width < 32)
mask = BIT(ce_info->width) - 1;
else
mask = (u32)~0;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_dword = *(u32 *)from;
src_dword &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_dword <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_dword, dest, sizeof(dest_dword));
dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_dword, sizeof(dest_dword));
}
/**
* ice_write_qword - write a qword to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u64 src_qword, mask;
__le64 dest_qword;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 64 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 6 bits so the shift will do nothing
*/
if (ce_info->width < 64)
mask = BIT_ULL(ce_info->width) - 1;
else
mask = (u64)~0;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_qword = *(u64 *)from;
src_qword &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_qword <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
memcpy(&dest_qword, dest, sizeof(dest_qword));
dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
/* put it all back */
memcpy(dest, &dest_qword, sizeof(dest_qword));
}
/**
* ice_set_ctx - set context bits in packed structure
* @src_ctx: pointer to a generic non-packed context structure
* @dest_ctx: pointer to memory for the packed structure
* @ce_info: a description of the structure to be transformed
*/
enum ice_status
ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
int f;
for (f = 0; ce_info[f].width; f++) {
/* We have to deal with each element of the FW response
* using the correct size so that we are correct regardless
* of the endianness of the machine.
*/
switch (ce_info[f].size_of) {
case sizeof(u8):
ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u16):
ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u32):
ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u64):
ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
break;
default:
return ICE_ERR_INVAL_SIZE;
}
}
return 0;
}
/**
* ice_ena_vsi_txq
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: tc number
* @num_qgrps: Number of added queue groups
* @buf: list of queue groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* This function adds one lan q
*/
enum ice_status
ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_qgrps,
struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_txsched_elem_data node = { 0 };
struct ice_sched_node *parent;
enum ice_status status;
struct ice_hw *hw;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
if (num_qgrps > 1 || buf->num_txqs > 1)
return ICE_ERR_MAX_LIMIT;
hw = pi->hw;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
mutex_lock(&pi->sched_lock);
/* find a parent node */
parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
ICE_SCHED_NODE_OWNER_LAN);
if (!parent) {
status = ICE_ERR_PARAM;
goto ena_txq_exit;
}
buf->parent_teid = parent->info.node_teid;
node.parent_teid = parent->info.node_teid;
/* Mark that the values in the "generic" section as valid. The default
* value in the "generic" section is zero. This means that :
* - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
* - 0 priority among siblings, indicated by Bit 1-3.
* - WFQ, indicated by Bit 4.
* - 0 Adjustment value is used in PSM credit update flow, indicated by
* Bit 5-6.
* - Bit 7 is reserved.
* Without setting the generic section as valid in valid_sections, the
* Admin Q command will fail with error code ICE_AQ_RC_EINVAL.
*/
buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
/* add the lan q */
status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
if (status) {
ice_debug(hw, ICE_DBG_SCHED, "enable Q %d failed %d\n",
le16_to_cpu(buf->txqs[0].txq_id),
hw->adminq.sq_last_status);
goto ena_txq_exit;
}
node.node_teid = buf->txqs[0].q_teid;
node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
/* add a leaf node into schduler tree q layer */
status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
ena_txq_exit:
mutex_unlock(&pi->sched_lock);
return status;
}
/**
* ice_dis_vsi_txq
* @pi: port information structure
* @num_queues: number of queues
* @q_ids: pointer to the q_id array
* @q_teids: pointer to queue node teids
* @rst_src: if called due to reset, specifies the RST source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL
*
* This function removes queues and their corresponding nodes in SW DB
*/
enum ice_status
ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cd)
{
enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
struct ice_aqc_dis_txq_item qg_list;
u16 i;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
/* if queue is disabled already yet the disable queue command has to be
* sent to complete the VF reset, then call ice_aq_dis_lan_txq without
* any queue information
*/
if (!num_queues && rst_src)
return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src, vmvf_num,
NULL);
mutex_lock(&pi->sched_lock);
for (i = 0; i < num_queues; i++) {
struct ice_sched_node *node;
node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
if (!node)
continue;
qg_list.parent_teid = node->info.parent_teid;
qg_list.num_qs = 1;
qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
sizeof(qg_list), rst_src, vmvf_num,
cd);
if (status)
break;
ice_free_sched_node(pi, node);
}
mutex_unlock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_vsi_qs - configure the new/exisiting VSI queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @maxqs: max queues array per TC
* @owner: lan or rdma
*
* This function adds/updates the VSI queues per TC.
*/
static enum ice_status
ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
u16 *maxqs, u8 owner)
{
enum ice_status status = 0;
u8 i;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
mutex_lock(&pi->sched_lock);
for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
/* configuration is possible only if TC node is present */
if (!ice_sched_get_tc_node(pi, i))
continue;
status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
ice_is_tc_ena(tc_bitmap, i));
if (status)
break;
}
mutex_unlock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_vsi_lan - configure VSI lan queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @max_lanqs: max lan queues array per TC
*
* This function adds/updates the VSI lan queues per TC.
*/
enum ice_status
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
u16 *max_lanqs)
{
return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
ICE_SCHED_NODE_OWNER_LAN);
}
/**
* ice_replay_pre_init - replay pre initialization
* @hw: pointer to the hw struct
*
* Initializes required config data for VSI, FD, ACL, and RSS before replay.
*/
static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
{
struct ice_switch_info *sw = hw->switch_info;
u8 i;
/* Delete old entries from replay filter list head if there is any */
ice_rm_all_sw_replay_rule_info(hw);
/* In start of replay, move entries into replay_rules list, it
* will allow adding rules entries back to filt_rules list,
* which is operational list.
*/
for (i = 0; i < ICE_SW_LKUP_LAST; i++)
list_replace_init(&sw->recp_list[i].filt_rules,
&sw->recp_list[i].filt_replay_rules);
return 0;
}
/**
* ice_replay_vsi - replay VSI configuration
* @hw: pointer to the hw struct
* @vsi_handle: driver VSI handle
*
* Restore all VSI configuration after reset. It is required to call this
* function with main VSI first.
*/
enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
{
enum ice_status status;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
/* Replay pre-initialization if there is any */
if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
status = ice_replay_pre_init(hw);
if (status)
return status;
}
/* Replay per VSI all filters */
status = ice_replay_vsi_all_fltr(hw, vsi_handle);
return status;
}
/**
* ice_replay_post - post replay configuration cleanup
* @hw: pointer to the hw struct
*
* Post replay cleanup.
*/
void ice_replay_post(struct ice_hw *hw)
{
/* Delete old entries from replay filter list head */
ice_rm_all_sw_replay_rule_info(hw);
}
/**
* ice_stat_update40 - read 40 bit stat from the chip and update stat values
* @hw: ptr to the hardware info
* @hireg: high 32 bit HW register to read from
* @loreg: low 32 bit HW register to read from
* @prev_stat_loaded: bool to specify if previous stats are loaded
* @prev_stat: ptr to previous loaded stat value
* @cur_stat: ptr to current stat value
*/
void
ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat)
{
u64 new_data;
new_data = rd32(hw, loreg);
new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
/* device stats are not reset at PFR, they likely will not be zeroed
* when the driver starts. So save the first values read and use them as
* offsets to be subtracted from the raw values in order to report stats
* that count from zero.
*/
if (!prev_stat_loaded)
*prev_stat = new_data;
if (new_data >= *prev_stat)
*cur_stat = new_data - *prev_stat;
else
/* to manage the potential roll-over */
*cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
*cur_stat &= 0xFFFFFFFFFFULL;
}
/**
* ice_stat_update32 - read 32 bit stat from the chip and update stat values
* @hw: ptr to the hardware info
* @reg: HW register to read from
* @prev_stat_loaded: bool to specify if previous stats are loaded
* @prev_stat: ptr to previous loaded stat value
* @cur_stat: ptr to current stat value
*/
void
ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
u64 *prev_stat, u64 *cur_stat)
{
u32 new_data;
new_data = rd32(hw, reg);
/* device stats are not reset at PFR, they likely will not be zeroed
* when the driver starts. So save the first values read and use them as
* offsets to be subtracted from the raw values in order to report stats
* that count from zero.
*/
if (!prev_stat_loaded)
*prev_stat = new_data;
if (new_data >= *prev_stat)
*cur_stat = new_data - *prev_stat;
else
/* to manage the potential roll-over */
*cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
}