linux/drivers/video/fbdev/acornfb.c

1144 lines
28 KiB
C

/*
* linux/drivers/video/acornfb.c
*
* Copyright (C) 1998-2001 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Frame buffer code for Acorn platforms
*
* NOTE: Most of the modes with X!=640 will disappear shortly.
* NOTE: Startup setting of HS & VS polarity not supported.
* (do we need to support it if we're coming up in 640x480?)
*
* FIXME: (things broken by the "new improved" FBCON API)
* - Blanking 8bpp displays with VIDC
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/fb.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/gfp.h>
#include <mach/hardware.h>
#include <asm/irq.h>
#include <asm/mach-types.h>
#include <asm/pgtable.h>
#include "acornfb.h"
/*
* Default resolution.
* NOTE that it has to be supported in the table towards
* the end of this file.
*/
#define DEFAULT_XRES 640
#define DEFAULT_YRES 480
#define DEFAULT_BPP 4
/*
* define this to debug the video mode selection
*/
#undef DEBUG_MODE_SELECTION
/*
* Translation from RISC OS monitor types to actual
* HSYNC and VSYNC frequency ranges. These are
* probably not right, but they're the best info I
* have. Allow 1% either way on the nominal for TVs.
*/
#define NR_MONTYPES 6
static struct fb_monspecs monspecs[NR_MONTYPES] = {
{ /* TV */
.hfmin = 15469,
.hfmax = 15781,
.vfmin = 49,
.vfmax = 51,
}, { /* Multi Freq */
.hfmin = 0,
.hfmax = 99999,
.vfmin = 0,
.vfmax = 199,
}, { /* Hi-res mono */
.hfmin = 58608,
.hfmax = 58608,
.vfmin = 64,
.vfmax = 64,
}, { /* VGA */
.hfmin = 30000,
.hfmax = 70000,
.vfmin = 60,
.vfmax = 60,
}, { /* SVGA */
.hfmin = 30000,
.hfmax = 70000,
.vfmin = 56,
.vfmax = 75,
}, {
.hfmin = 30000,
.hfmax = 70000,
.vfmin = 60,
.vfmax = 60,
}
};
static struct fb_info fb_info;
static struct acornfb_par current_par;
static struct vidc_timing current_vidc;
extern unsigned int vram_size; /* set by setup.c */
#ifdef HAS_VIDC20
#include <mach/acornfb.h>
#define MAX_SIZE 2*1024*1024
/* VIDC20 has a different set of rules from the VIDC:
* hcr : must be multiple of 4
* hswr : must be even
* hdsr : must be even
* hder : must be even
* vcr : >= 2, (interlace, must be odd)
* vswr : >= 1
* vdsr : >= 1
* vder : >= vdsr
*/
static void acornfb_set_timing(struct fb_info *info)
{
struct fb_var_screeninfo *var = &info->var;
struct vidc_timing vidc;
u_int vcr, fsize;
u_int ext_ctl, dat_ctl;
u_int words_per_line;
memset(&vidc, 0, sizeof(vidc));
vidc.h_sync_width = var->hsync_len - 8;
vidc.h_border_start = vidc.h_sync_width + var->left_margin + 8 - 12;
vidc.h_display_start = vidc.h_border_start + 12 - 18;
vidc.h_display_end = vidc.h_display_start + var->xres;
vidc.h_border_end = vidc.h_display_end + 18 - 12;
vidc.h_cycle = vidc.h_border_end + var->right_margin + 12 - 8;
vidc.h_interlace = vidc.h_cycle / 2;
vidc.v_sync_width = var->vsync_len - 1;
vidc.v_border_start = vidc.v_sync_width + var->upper_margin;
vidc.v_display_start = vidc.v_border_start;
vidc.v_display_end = vidc.v_display_start + var->yres;
vidc.v_border_end = vidc.v_display_end;
vidc.control = acornfb_default_control();
vcr = var->vsync_len + var->upper_margin + var->yres +
var->lower_margin;
if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED) {
vidc.v_cycle = (vcr - 3) / 2;
vidc.control |= VIDC20_CTRL_INT;
} else
vidc.v_cycle = vcr - 2;
switch (var->bits_per_pixel) {
case 1: vidc.control |= VIDC20_CTRL_1BPP; break;
case 2: vidc.control |= VIDC20_CTRL_2BPP; break;
case 4: vidc.control |= VIDC20_CTRL_4BPP; break;
default:
case 8: vidc.control |= VIDC20_CTRL_8BPP; break;
case 16: vidc.control |= VIDC20_CTRL_16BPP; break;
case 32: vidc.control |= VIDC20_CTRL_32BPP; break;
}
acornfb_vidc20_find_rates(&vidc, var);
fsize = var->vsync_len + var->upper_margin + var->lower_margin - 1;
if (memcmp(&current_vidc, &vidc, sizeof(vidc))) {
current_vidc = vidc;
vidc_writel(VIDC20_CTRL| vidc.control);
vidc_writel(0xd0000000 | vidc.pll_ctl);
vidc_writel(0x80000000 | vidc.h_cycle);
vidc_writel(0x81000000 | vidc.h_sync_width);
vidc_writel(0x82000000 | vidc.h_border_start);
vidc_writel(0x83000000 | vidc.h_display_start);
vidc_writel(0x84000000 | vidc.h_display_end);
vidc_writel(0x85000000 | vidc.h_border_end);
vidc_writel(0x86000000);
vidc_writel(0x87000000 | vidc.h_interlace);
vidc_writel(0x90000000 | vidc.v_cycle);
vidc_writel(0x91000000 | vidc.v_sync_width);
vidc_writel(0x92000000 | vidc.v_border_start);
vidc_writel(0x93000000 | vidc.v_display_start);
vidc_writel(0x94000000 | vidc.v_display_end);
vidc_writel(0x95000000 | vidc.v_border_end);
vidc_writel(0x96000000);
vidc_writel(0x97000000);
}
iomd_writel(fsize, IOMD_FSIZE);
ext_ctl = acornfb_default_econtrol();
if (var->sync & FB_SYNC_COMP_HIGH_ACT) /* should be FB_SYNC_COMP */
ext_ctl |= VIDC20_ECTL_HS_NCSYNC | VIDC20_ECTL_VS_NCSYNC;
else {
if (var->sync & FB_SYNC_HOR_HIGH_ACT)
ext_ctl |= VIDC20_ECTL_HS_HSYNC;
else
ext_ctl |= VIDC20_ECTL_HS_NHSYNC;
if (var->sync & FB_SYNC_VERT_HIGH_ACT)
ext_ctl |= VIDC20_ECTL_VS_VSYNC;
else
ext_ctl |= VIDC20_ECTL_VS_NVSYNC;
}
vidc_writel(VIDC20_ECTL | ext_ctl);
words_per_line = var->xres * var->bits_per_pixel / 32;
if (current_par.using_vram && info->fix.smem_len == 2048*1024)
words_per_line /= 2;
/* RiscPC doesn't use the VIDC's VRAM control. */
dat_ctl = VIDC20_DCTL_VRAM_DIS | VIDC20_DCTL_SNA | words_per_line;
/* The data bus width is dependent on both the type
* and amount of video memory.
* DRAM 32bit low
* 1MB VRAM 32bit
* 2MB VRAM 64bit
*/
if (current_par.using_vram && current_par.vram_half_sam == 2048)
dat_ctl |= VIDC20_DCTL_BUS_D63_0;
else
dat_ctl |= VIDC20_DCTL_BUS_D31_0;
vidc_writel(VIDC20_DCTL | dat_ctl);
#ifdef DEBUG_MODE_SELECTION
printk(KERN_DEBUG "VIDC registers for %dx%dx%d:\n", var->xres,
var->yres, var->bits_per_pixel);
printk(KERN_DEBUG " H-cycle : %d\n", vidc.h_cycle);
printk(KERN_DEBUG " H-sync-width : %d\n", vidc.h_sync_width);
printk(KERN_DEBUG " H-border-start : %d\n", vidc.h_border_start);
printk(KERN_DEBUG " H-display-start : %d\n", vidc.h_display_start);
printk(KERN_DEBUG " H-display-end : %d\n", vidc.h_display_end);
printk(KERN_DEBUG " H-border-end : %d\n", vidc.h_border_end);
printk(KERN_DEBUG " H-interlace : %d\n", vidc.h_interlace);
printk(KERN_DEBUG " V-cycle : %d\n", vidc.v_cycle);
printk(KERN_DEBUG " V-sync-width : %d\n", vidc.v_sync_width);
printk(KERN_DEBUG " V-border-start : %d\n", vidc.v_border_start);
printk(KERN_DEBUG " V-display-start : %d\n", vidc.v_display_start);
printk(KERN_DEBUG " V-display-end : %d\n", vidc.v_display_end);
printk(KERN_DEBUG " V-border-end : %d\n", vidc.v_border_end);
printk(KERN_DEBUG " Ext Ctrl (C) : 0x%08X\n", ext_ctl);
printk(KERN_DEBUG " PLL Ctrl (D) : 0x%08X\n", vidc.pll_ctl);
printk(KERN_DEBUG " Ctrl (E) : 0x%08X\n", vidc.control);
printk(KERN_DEBUG " Data Ctrl (F) : 0x%08X\n", dat_ctl);
printk(KERN_DEBUG " Fsize : 0x%08X\n", fsize);
#endif
}
/*
* We have to take note of the VIDC20's 16-bit palette here.
* The VIDC20 looks up a 16 bit pixel as follows:
*
* bits 111111
* 5432109876543210
* red ++++++++ (8 bits, 7 to 0)
* green ++++++++ (8 bits, 11 to 4)
* blue ++++++++ (8 bits, 15 to 8)
*
* We use a pixel which looks like:
*
* bits 111111
* 5432109876543210
* red +++++ (5 bits, 4 to 0)
* green +++++ (5 bits, 9 to 5)
* blue +++++ (5 bits, 14 to 10)
*/
static int
acornfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
union palette pal;
if (regno >= current_par.palette_size)
return 1;
if (regno < 16 && info->fix.visual == FB_VISUAL_DIRECTCOLOR) {
u32 pseudo_val;
pseudo_val = regno << info->var.red.offset;
pseudo_val |= regno << info->var.green.offset;
pseudo_val |= regno << info->var.blue.offset;
((u32 *)info->pseudo_palette)[regno] = pseudo_val;
}
pal.p = 0;
pal.vidc20.red = red >> 8;
pal.vidc20.green = green >> 8;
pal.vidc20.blue = blue >> 8;
current_par.palette[regno] = pal;
if (info->var.bits_per_pixel == 16) {
int i;
pal.p = 0;
vidc_writel(0x10000000);
for (i = 0; i < 256; i += 1) {
pal.vidc20.red = current_par.palette[ i & 31].vidc20.red;
pal.vidc20.green = current_par.palette[(i >> 1) & 31].vidc20.green;
pal.vidc20.blue = current_par.palette[(i >> 2) & 31].vidc20.blue;
vidc_writel(pal.p);
/* Palette register pointer auto-increments */
}
} else {
vidc_writel(0x10000000 | regno);
vidc_writel(pal.p);
}
return 0;
}
#endif
/*
* Before selecting the timing parameters, adjust
* the resolution to fit the rules.
*/
static int
acornfb_adjust_timing(struct fb_info *info, struct fb_var_screeninfo *var, u_int fontht)
{
u_int font_line_len, sam_size, min_size, size, nr_y;
/* xres must be even */
var->xres = (var->xres + 1) & ~1;
/*
* We don't allow xres_virtual to differ from xres
*/
var->xres_virtual = var->xres;
var->xoffset = 0;
if (current_par.using_vram)
sam_size = current_par.vram_half_sam * 2;
else
sam_size = 16;
/*
* Now, find a value for yres_virtual which allows
* us to do ywrap scrolling. The value of
* yres_virtual must be such that the end of the
* displayable frame buffer must be aligned with
* the start of a font line.
*/
font_line_len = var->xres * var->bits_per_pixel * fontht / 8;
min_size = var->xres * var->yres * var->bits_per_pixel / 8;
/*
* If minimum screen size is greater than that we have
* available, reject it.
*/
if (min_size > info->fix.smem_len)
return -EINVAL;
/* Find int 'y', such that y * fll == s * sam < maxsize
* y = s * sam / fll; s = maxsize / sam
*/
for (size = info->fix.smem_len;
nr_y = size / font_line_len, min_size <= size;
size -= sam_size) {
if (nr_y * font_line_len == size)
break;
}
nr_y *= fontht;
if (var->accel_flags & FB_ACCELF_TEXT) {
if (min_size > size) {
/*
* failed, use ypan
*/
size = info->fix.smem_len;
var->yres_virtual = size / (font_line_len / fontht);
} else
var->yres_virtual = nr_y;
} else if (var->yres_virtual > nr_y)
var->yres_virtual = nr_y;
current_par.screen_end = info->fix.smem_start + size;
/*
* Fix yres & yoffset if needed.
*/
if (var->yres > var->yres_virtual)
var->yres = var->yres_virtual;
if (var->vmode & FB_VMODE_YWRAP) {
if (var->yoffset > var->yres_virtual)
var->yoffset = var->yres_virtual;
} else {
if (var->yoffset + var->yres > var->yres_virtual)
var->yoffset = var->yres_virtual - var->yres;
}
/* hsync_len must be even */
var->hsync_len = (var->hsync_len + 1) & ~1;
#if defined(HAS_VIDC20)
/* left_margin must be even */
if (var->left_margin & 1) {
var->left_margin += 1;
var->right_margin -= 1;
}
/* right_margin must be even */
if (var->right_margin & 1)
var->right_margin += 1;
#endif
if (var->vsync_len < 1)
var->vsync_len = 1;
return 0;
}
static int
acornfb_validate_timing(struct fb_var_screeninfo *var,
struct fb_monspecs *monspecs)
{
unsigned long hs, vs;
/*
* hs(Hz) = 10^12 / (pixclock * xtotal)
* vs(Hz) = hs(Hz) / ytotal
*
* No need to do long long divisions or anything
* like that if you factor it correctly
*/
hs = 1953125000 / var->pixclock;
hs = hs * 512 /
(var->xres + var->left_margin + var->right_margin + var->hsync_len);
vs = hs /
(var->yres + var->upper_margin + var->lower_margin + var->vsync_len);
return (vs >= monspecs->vfmin && vs <= monspecs->vfmax &&
hs >= monspecs->hfmin && hs <= monspecs->hfmax) ? 0 : -EINVAL;
}
static inline void
acornfb_update_dma(struct fb_info *info, struct fb_var_screeninfo *var)
{
u_int off = var->yoffset * info->fix.line_length;
#if defined(HAS_MEMC)
memc_write(VDMA_INIT, off >> 2);
#elif defined(HAS_IOMD)
iomd_writel(info->fix.smem_start + off, IOMD_VIDINIT);
#endif
}
static int
acornfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
u_int fontht;
int err;
/*
* FIXME: Find the font height
*/
fontht = 8;
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.msb_right = 0;
var->transp.msb_right = 0;
switch (var->bits_per_pixel) {
case 1: case 2: case 4: case 8:
var->red.offset = 0;
var->red.length = var->bits_per_pixel;
var->green = var->red;
var->blue = var->red;
var->transp.offset = 0;
var->transp.length = 0;
break;
#ifdef HAS_VIDC20
case 16:
var->red.offset = 0;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 5;
var->blue.offset = 10;
var->blue.length = 5;
var->transp.offset = 15;
var->transp.length = 1;
break;
case 32:
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 16;
var->blue.length = 8;
var->transp.offset = 24;
var->transp.length = 4;
break;
#endif
default:
return -EINVAL;
}
/*
* Check to see if the pixel rate is valid.
*/
if (!acornfb_valid_pixrate(var))
return -EINVAL;
/*
* Validate and adjust the resolution to
* match the video generator hardware.
*/
err = acornfb_adjust_timing(info, var, fontht);
if (err)
return err;
/*
* Validate the timing against the
* monitor hardware.
*/
return acornfb_validate_timing(var, &info->monspecs);
}
static int acornfb_set_par(struct fb_info *info)
{
switch (info->var.bits_per_pixel) {
case 1:
current_par.palette_size = 2;
info->fix.visual = FB_VISUAL_MONO10;
break;
case 2:
current_par.palette_size = 4;
info->fix.visual = FB_VISUAL_PSEUDOCOLOR;
break;
case 4:
current_par.palette_size = 16;
info->fix.visual = FB_VISUAL_PSEUDOCOLOR;
break;
case 8:
current_par.palette_size = VIDC_PALETTE_SIZE;
info->fix.visual = FB_VISUAL_PSEUDOCOLOR;
break;
#ifdef HAS_VIDC20
case 16:
current_par.palette_size = 32;
info->fix.visual = FB_VISUAL_DIRECTCOLOR;
break;
case 32:
current_par.palette_size = VIDC_PALETTE_SIZE;
info->fix.visual = FB_VISUAL_DIRECTCOLOR;
break;
#endif
default:
BUG();
}
info->fix.line_length = (info->var.xres * info->var.bits_per_pixel) / 8;
#if defined(HAS_MEMC)
{
unsigned long size = info->fix.smem_len - VDMA_XFERSIZE;
memc_write(VDMA_START, 0);
memc_write(VDMA_END, size >> 2);
}
#elif defined(HAS_IOMD)
{
unsigned long start, size;
u_int control;
start = info->fix.smem_start;
size = current_par.screen_end;
if (current_par.using_vram) {
size -= current_par.vram_half_sam;
control = DMA_CR_E | (current_par.vram_half_sam / 256);
} else {
size -= 16;
control = DMA_CR_E | DMA_CR_D | 16;
}
iomd_writel(start, IOMD_VIDSTART);
iomd_writel(size, IOMD_VIDEND);
iomd_writel(control, IOMD_VIDCR);
}
#endif
acornfb_update_dma(info, &info->var);
acornfb_set_timing(info);
return 0;
}
static int
acornfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
{
u_int y_bottom = var->yoffset;
if (!(var->vmode & FB_VMODE_YWRAP))
y_bottom += info->var.yres;
if (y_bottom > info->var.yres_virtual)
return -EINVAL;
acornfb_update_dma(info, var);
return 0;
}
static struct fb_ops acornfb_ops = {
.owner = THIS_MODULE,
.fb_check_var = acornfb_check_var,
.fb_set_par = acornfb_set_par,
.fb_setcolreg = acornfb_setcolreg,
.fb_pan_display = acornfb_pan_display,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
/*
* Everything after here is initialisation!!!
*/
static struct fb_videomode modedb[] = {
{ /* 320x256 @ 50Hz */
NULL, 50, 320, 256, 125000, 92, 62, 35, 19, 38, 2,
FB_SYNC_COMP_HIGH_ACT,
FB_VMODE_NONINTERLACED
}, { /* 640x250 @ 50Hz, 15.6 kHz hsync */
NULL, 50, 640, 250, 62500, 185, 123, 38, 21, 76, 3,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x256 @ 50Hz, 15.6 kHz hsync */
NULL, 50, 640, 256, 62500, 185, 123, 35, 18, 76, 3,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x512 @ 50Hz, 26.8 kHz hsync */
NULL, 50, 640, 512, 41667, 113, 87, 18, 1, 56, 3,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x250 @ 70Hz, 31.5 kHz hsync */
NULL, 70, 640, 250, 39722, 48, 16, 109, 88, 96, 2,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x256 @ 70Hz, 31.5 kHz hsync */
NULL, 70, 640, 256, 39722, 48, 16, 106, 85, 96, 2,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x352 @ 70Hz, 31.5 kHz hsync */
NULL, 70, 640, 352, 39722, 48, 16, 58, 37, 96, 2,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x480 @ 60Hz, 31.5 kHz hsync */
NULL, 60, 640, 480, 39722, 48, 16, 32, 11, 96, 2,
0,
FB_VMODE_NONINTERLACED
}, { /* 800x600 @ 56Hz, 35.2 kHz hsync */
NULL, 56, 800, 600, 27778, 101, 23, 22, 1, 100, 2,
0,
FB_VMODE_NONINTERLACED
}, { /* 896x352 @ 60Hz, 21.8 kHz hsync */
NULL, 60, 896, 352, 41667, 59, 27, 9, 0, 118, 3,
0,
FB_VMODE_NONINTERLACED
}, { /* 1024x 768 @ 60Hz, 48.4 kHz hsync */
NULL, 60, 1024, 768, 15385, 160, 24, 29, 3, 136, 6,
0,
FB_VMODE_NONINTERLACED
}, { /* 1280x1024 @ 60Hz, 63.8 kHz hsync */
NULL, 60, 1280, 1024, 9090, 186, 96, 38, 1, 160, 3,
0,
FB_VMODE_NONINTERLACED
}
};
static struct fb_videomode acornfb_default_mode = {
.name = NULL,
.refresh = 60,
.xres = 640,
.yres = 480,
.pixclock = 39722,
.left_margin = 56,
.right_margin = 16,
.upper_margin = 34,
.lower_margin = 9,
.hsync_len = 88,
.vsync_len = 2,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED
};
static void acornfb_init_fbinfo(void)
{
static int first = 1;
if (!first)
return;
first = 0;
fb_info.fbops = &acornfb_ops;
fb_info.flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN;
fb_info.pseudo_palette = current_par.pseudo_palette;
strcpy(fb_info.fix.id, "Acorn");
fb_info.fix.type = FB_TYPE_PACKED_PIXELS;
fb_info.fix.type_aux = 0;
fb_info.fix.xpanstep = 0;
fb_info.fix.ypanstep = 1;
fb_info.fix.ywrapstep = 1;
fb_info.fix.line_length = 0;
fb_info.fix.accel = FB_ACCEL_NONE;
/*
* setup initial parameters
*/
memset(&fb_info.var, 0, sizeof(fb_info.var));
#if defined(HAS_VIDC20)
fb_info.var.red.length = 8;
fb_info.var.transp.length = 4;
#endif
fb_info.var.green = fb_info.var.red;
fb_info.var.blue = fb_info.var.red;
fb_info.var.nonstd = 0;
fb_info.var.activate = FB_ACTIVATE_NOW;
fb_info.var.height = -1;
fb_info.var.width = -1;
fb_info.var.vmode = FB_VMODE_NONINTERLACED;
fb_info.var.accel_flags = FB_ACCELF_TEXT;
current_par.dram_size = 0;
current_par.montype = -1;
current_par.dpms = 0;
}
/*
* setup acornfb options:
*
* mon:hmin-hmax:vmin-vmax:dpms:width:height
* Set monitor parameters:
* hmin = horizontal minimum frequency (Hz)
* hmax = horizontal maximum frequency (Hz) (optional)
* vmin = vertical minimum frequency (Hz)
* vmax = vertical maximum frequency (Hz) (optional)
* dpms = DPMS supported? (optional)
* width = width of picture in mm. (optional)
* height = height of picture in mm. (optional)
*
* montype:type
* Set RISC-OS style monitor type:
* 0 (or tv) - TV frequency
* 1 (or multi) - Multi frequency
* 2 (or hires) - Hi-res monochrome
* 3 (or vga) - VGA
* 4 (or svga) - SVGA
* auto, or option missing
* - try hardware detect
*
* dram:size
* Set the amount of DRAM to use for the frame buffer
* (even if you have VRAM).
* size can optionally be followed by 'M' or 'K' for
* MB or KB respectively.
*/
static void acornfb_parse_mon(char *opt)
{
char *p = opt;
current_par.montype = -2;
fb_info.monspecs.hfmin = simple_strtoul(p, &p, 0);
if (*p == '-')
fb_info.monspecs.hfmax = simple_strtoul(p + 1, &p, 0);
else
fb_info.monspecs.hfmax = fb_info.monspecs.hfmin;
if (*p != ':')
goto bad;
fb_info.monspecs.vfmin = simple_strtoul(p + 1, &p, 0);
if (*p == '-')
fb_info.monspecs.vfmax = simple_strtoul(p + 1, &p, 0);
else
fb_info.monspecs.vfmax = fb_info.monspecs.vfmin;
if (*p != ':')
goto check_values;
fb_info.monspecs.dpms = simple_strtoul(p + 1, &p, 0);
if (*p != ':')
goto check_values;
fb_info.var.width = simple_strtoul(p + 1, &p, 0);
if (*p != ':')
goto check_values;
fb_info.var.height = simple_strtoul(p + 1, NULL, 0);
check_values:
if (fb_info.monspecs.hfmax < fb_info.monspecs.hfmin ||
fb_info.monspecs.vfmax < fb_info.monspecs.vfmin)
goto bad;
return;
bad:
printk(KERN_ERR "Acornfb: bad monitor settings: %s\n", opt);
current_par.montype = -1;
}
static void acornfb_parse_montype(char *opt)
{
current_par.montype = -2;
if (strncmp(opt, "tv", 2) == 0) {
opt += 2;
current_par.montype = 0;
} else if (strncmp(opt, "multi", 5) == 0) {
opt += 5;
current_par.montype = 1;
} else if (strncmp(opt, "hires", 5) == 0) {
opt += 5;
current_par.montype = 2;
} else if (strncmp(opt, "vga", 3) == 0) {
opt += 3;
current_par.montype = 3;
} else if (strncmp(opt, "svga", 4) == 0) {
opt += 4;
current_par.montype = 4;
} else if (strncmp(opt, "auto", 4) == 0) {
opt += 4;
current_par.montype = -1;
} else if (isdigit(*opt))
current_par.montype = simple_strtoul(opt, &opt, 0);
if (current_par.montype == -2 ||
current_par.montype > NR_MONTYPES) {
printk(KERN_ERR "acornfb: unknown monitor type: %s\n",
opt);
current_par.montype = -1;
} else
if (opt && *opt) {
if (strcmp(opt, ",dpms") == 0)
current_par.dpms = 1;
else
printk(KERN_ERR
"acornfb: unknown monitor option: %s\n",
opt);
}
}
static void acornfb_parse_dram(char *opt)
{
unsigned int size;
size = simple_strtoul(opt, &opt, 0);
if (opt) {
switch (*opt) {
case 'M':
case 'm':
size *= 1024;
case 'K':
case 'k':
size *= 1024;
default:
break;
}
}
current_par.dram_size = size;
}
static struct options {
char *name;
void (*parse)(char *opt);
} opt_table[] = {
{ "mon", acornfb_parse_mon },
{ "montype", acornfb_parse_montype },
{ "dram", acornfb_parse_dram },
{ NULL, NULL }
};
static int acornfb_setup(char *options)
{
struct options *optp;
char *opt;
if (!options || !*options)
return 0;
acornfb_init_fbinfo();
while ((opt = strsep(&options, ",")) != NULL) {
if (!*opt)
continue;
for (optp = opt_table; optp->name; optp++) {
int optlen;
optlen = strlen(optp->name);
if (strncmp(opt, optp->name, optlen) == 0 &&
opt[optlen] == ':') {
optp->parse(opt + optlen + 1);
break;
}
}
if (!optp->name)
printk(KERN_ERR "acornfb: unknown parameter: %s\n",
opt);
}
return 0;
}
/*
* Detect type of monitor connected
* For now, we just assume SVGA
*/
static int acornfb_detect_monitortype(void)
{
return 4;
}
/*
* This enables the unused memory to be freed on older Acorn machines.
* We are freeing memory on behalf of the architecture initialisation
* code here.
*/
static inline void
free_unused_pages(unsigned int virtual_start, unsigned int virtual_end)
{
int mb_freed = 0;
/*
* Align addresses
*/
virtual_start = PAGE_ALIGN(virtual_start);
virtual_end = PAGE_ALIGN(virtual_end);
while (virtual_start < virtual_end) {
struct page *page;
/*
* Clear page reserved bit,
* set count to 1, and free
* the page.
*/
page = virt_to_page(virtual_start);
__free_reserved_page(page);
virtual_start += PAGE_SIZE;
mb_freed += PAGE_SIZE / 1024;
}
printk("acornfb: freed %dK memory\n", mb_freed);
}
static int acornfb_probe(struct platform_device *dev)
{
unsigned long size;
u_int h_sync, v_sync;
int rc, i;
char *option = NULL;
if (fb_get_options("acornfb", &option))
return -ENODEV;
acornfb_setup(option);
acornfb_init_fbinfo();
current_par.dev = &dev->dev;
if (current_par.montype == -1)
current_par.montype = acornfb_detect_monitortype();
if (current_par.montype == -1 || current_par.montype > NR_MONTYPES)
current_par.montype = 4;
if (current_par.montype >= 0) {
fb_info.monspecs = monspecs[current_par.montype];
fb_info.monspecs.dpms = current_par.dpms;
}
/*
* Try to select a suitable default mode
*/
for (i = 0; i < ARRAY_SIZE(modedb); i++) {
unsigned long hs;
hs = modedb[i].refresh *
(modedb[i].yres + modedb[i].upper_margin +
modedb[i].lower_margin + modedb[i].vsync_len);
if (modedb[i].xres == DEFAULT_XRES &&
modedb[i].yres == DEFAULT_YRES &&
modedb[i].refresh >= fb_info.monspecs.vfmin &&
modedb[i].refresh <= fb_info.monspecs.vfmax &&
hs >= fb_info.monspecs.hfmin &&
hs <= fb_info.monspecs.hfmax) {
acornfb_default_mode = modedb[i];
break;
}
}
fb_info.screen_base = (char *)SCREEN_BASE;
fb_info.fix.smem_start = SCREEN_START;
current_par.using_vram = 0;
/*
* If vram_size is set, we are using VRAM in
* a Risc PC. However, if the user has specified
* an amount of DRAM then use that instead.
*/
if (vram_size && !current_par.dram_size) {
size = vram_size;
current_par.vram_half_sam = vram_size / 1024;
current_par.using_vram = 1;
} else if (current_par.dram_size)
size = current_par.dram_size;
else
size = MAX_SIZE;
/*
* Limit maximum screen size.
*/
if (size > MAX_SIZE)
size = MAX_SIZE;
size = PAGE_ALIGN(size);
#if defined(HAS_VIDC20)
if (!current_par.using_vram) {
dma_addr_t handle;
void *base;
/*
* RiscPC needs to allocate the DRAM memory
* for the framebuffer if we are not using
* VRAM.
*/
base = dma_alloc_wc(current_par.dev, size, &handle,
GFP_KERNEL);
if (base == NULL) {
printk(KERN_ERR "acornfb: unable to allocate screen "
"memory\n");
return -ENOMEM;
}
fb_info.screen_base = base;
fb_info.fix.smem_start = handle;
}
#endif
fb_info.fix.smem_len = size;
current_par.palette_size = VIDC_PALETTE_SIZE;
/*
* Lookup the timing for this resolution. If we can't
* find it, then we can't restore it if we change
* the resolution, so we disable this feature.
*/
do {
rc = fb_find_mode(&fb_info.var, &fb_info, NULL, modedb,
ARRAY_SIZE(modedb),
&acornfb_default_mode, DEFAULT_BPP);
/*
* If we found an exact match, all ok.
*/
if (rc == 1)
break;
rc = fb_find_mode(&fb_info.var, &fb_info, NULL, NULL, 0,
&acornfb_default_mode, DEFAULT_BPP);
/*
* If we found an exact match, all ok.
*/
if (rc == 1)
break;
rc = fb_find_mode(&fb_info.var, &fb_info, NULL, modedb,
ARRAY_SIZE(modedb),
&acornfb_default_mode, DEFAULT_BPP);
if (rc)
break;
rc = fb_find_mode(&fb_info.var, &fb_info, NULL, NULL, 0,
&acornfb_default_mode, DEFAULT_BPP);
} while (0);
/*
* If we didn't find an exact match, try the
* generic database.
*/
if (rc == 0) {
printk("Acornfb: no valid mode found\n");
return -EINVAL;
}
h_sync = 1953125000 / fb_info.var.pixclock;
h_sync = h_sync * 512 / (fb_info.var.xres + fb_info.var.left_margin +
fb_info.var.right_margin + fb_info.var.hsync_len);
v_sync = h_sync / (fb_info.var.yres + fb_info.var.upper_margin +
fb_info.var.lower_margin + fb_info.var.vsync_len);
printk(KERN_INFO "Acornfb: %dkB %cRAM, %s, using %dx%d, "
"%d.%03dkHz, %dHz\n",
fb_info.fix.smem_len / 1024,
current_par.using_vram ? 'V' : 'D',
VIDC_NAME, fb_info.var.xres, fb_info.var.yres,
h_sync / 1000, h_sync % 1000, v_sync);
printk(KERN_INFO "Acornfb: Monitor: %d.%03d-%d.%03dkHz, %d-%dHz%s\n",
fb_info.monspecs.hfmin / 1000, fb_info.monspecs.hfmin % 1000,
fb_info.monspecs.hfmax / 1000, fb_info.monspecs.hfmax % 1000,
fb_info.monspecs.vfmin, fb_info.monspecs.vfmax,
fb_info.monspecs.dpms ? ", DPMS" : "");
if (fb_set_var(&fb_info, &fb_info.var))
printk(KERN_ERR "Acornfb: unable to set display parameters\n");
if (register_framebuffer(&fb_info) < 0)
return -EINVAL;
return 0;
}
static struct platform_driver acornfb_driver = {
.probe = acornfb_probe,
.driver = {
.name = "acornfb",
},
};
static int __init acornfb_init(void)
{
return platform_driver_register(&acornfb_driver);
}
module_init(acornfb_init);
MODULE_AUTHOR("Russell King");
MODULE_DESCRIPTION("VIDC 1/1a/20 framebuffer driver");
MODULE_LICENSE("GPL");