linux/tools/testing/nvdimm/test/nfit.c

1563 lines
45 KiB
C

/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/libnvdimm.h>
#include <linux/vmalloc.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/ndctl.h>
#include <linux/sizes.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <nfit.h>
#include <nd.h>
#include "nfit_test.h"
/*
* Generate an NFIT table to describe the following topology:
*
* BUS0: Interleaved PMEM regions, and aliasing with BLK regions
*
* (a) (b) DIMM BLK-REGION
* +----------+--------------+----------+---------+
* +------+ | blk2.0 | pm0.0 | blk2.1 | pm1.0 | 0 region2
* | imc0 +--+- - - - - region0 - - - -+----------+ +
* +--+---+ | blk3.0 | pm0.0 | blk3.1 | pm1.0 | 1 region3
* | +----------+--------------v----------v v
* +--+---+ | |
* | cpu0 | region1
* +--+---+ | |
* | +-------------------------^----------^ ^
* +--+---+ | blk4.0 | pm1.0 | 2 region4
* | imc1 +--+-------------------------+----------+ +
* +------+ | blk5.0 | pm1.0 | 3 region5
* +-------------------------+----------+-+-------+
*
* +--+---+
* | cpu1 |
* +--+---+ (Hotplug DIMM)
* | +----------------------------------------------+
* +--+---+ | blk6.0/pm7.0 | 4 region6/7
* | imc0 +--+----------------------------------------------+
* +------+
*
*
* *) In this layout we have four dimms and two memory controllers in one
* socket. Each unique interface (BLK or PMEM) to DPA space
* is identified by a region device with a dynamically assigned id.
*
* *) The first portion of dimm0 and dimm1 are interleaved as REGION0.
* A single PMEM namespace "pm0.0" is created using half of the
* REGION0 SPA-range. REGION0 spans dimm0 and dimm1. PMEM namespace
* allocate from from the bottom of a region. The unallocated
* portion of REGION0 aliases with REGION2 and REGION3. That
* unallacted capacity is reclaimed as BLK namespaces ("blk2.0" and
* "blk3.0") starting at the base of each DIMM to offset (a) in those
* DIMMs. "pm0.0", "blk2.0" and "blk3.0" are free-form readable
* names that can be assigned to a namespace.
*
* *) In the last portion of dimm0 and dimm1 we have an interleaved
* SPA range, REGION1, that spans those two dimms as well as dimm2
* and dimm3. Some of REGION1 allocated to a PMEM namespace named
* "pm1.0" the rest is reclaimed in 4 BLK namespaces (for each
* dimm in the interleave set), "blk2.1", "blk3.1", "blk4.0", and
* "blk5.0".
*
* *) The portion of dimm2 and dimm3 that do not participate in the
* REGION1 interleaved SPA range (i.e. the DPA address below offset
* (b) are also included in the "blk4.0" and "blk5.0" namespaces.
* Note, that BLK namespaces need not be contiguous in DPA-space, and
* can consume aliased capacity from multiple interleave sets.
*
* BUS1: Legacy NVDIMM (single contiguous range)
*
* region2
* +---------------------+
* |---------------------|
* || pm2.0 ||
* |---------------------|
* +---------------------+
*
* *) A NFIT-table may describe a simple system-physical-address range
* with no BLK aliasing. This type of region may optionally
* reference an NVDIMM.
*/
enum {
NUM_PM = 3,
NUM_DCR = 5,
NUM_BDW = NUM_DCR,
NUM_SPA = NUM_PM + NUM_DCR + NUM_BDW,
NUM_MEM = NUM_DCR + NUM_BDW + 2 /* spa0 iset */ + 4 /* spa1 iset */,
DIMM_SIZE = SZ_32M,
LABEL_SIZE = SZ_128K,
SPA0_SIZE = DIMM_SIZE,
SPA1_SIZE = DIMM_SIZE*2,
SPA2_SIZE = DIMM_SIZE,
BDW_SIZE = 64 << 8,
DCR_SIZE = 12,
NUM_NFITS = 2, /* permit testing multiple NFITs per system */
};
struct nfit_test_dcr {
__le64 bdw_addr;
__le32 bdw_status;
__u8 aperature[BDW_SIZE];
};
#define NFIT_DIMM_HANDLE(node, socket, imc, chan, dimm) \
(((node & 0xfff) << 16) | ((socket & 0xf) << 12) \
| ((imc & 0xf) << 8) | ((chan & 0xf) << 4) | (dimm & 0xf))
static u32 handle[NUM_DCR] = {
[0] = NFIT_DIMM_HANDLE(0, 0, 0, 0, 0),
[1] = NFIT_DIMM_HANDLE(0, 0, 0, 0, 1),
[2] = NFIT_DIMM_HANDLE(0, 0, 1, 0, 0),
[3] = NFIT_DIMM_HANDLE(0, 0, 1, 0, 1),
[4] = NFIT_DIMM_HANDLE(0, 1, 0, 0, 0),
};
struct nfit_test {
struct acpi_nfit_desc acpi_desc;
struct platform_device pdev;
struct list_head resources;
void *nfit_buf;
dma_addr_t nfit_dma;
size_t nfit_size;
int num_dcr;
int num_pm;
void **dimm;
dma_addr_t *dimm_dma;
void **flush;
dma_addr_t *flush_dma;
void **label;
dma_addr_t *label_dma;
void **spa_set;
dma_addr_t *spa_set_dma;
struct nfit_test_dcr **dcr;
dma_addr_t *dcr_dma;
int (*alloc)(struct nfit_test *t);
void (*setup)(struct nfit_test *t);
int setup_hotplug;
struct ars_state {
struct nd_cmd_ars_status *ars_status;
unsigned long deadline;
spinlock_t lock;
} ars_state;
};
static struct nfit_test *to_nfit_test(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
return container_of(pdev, struct nfit_test, pdev);
}
static int nfit_test_cmd_get_config_size(struct nd_cmd_get_config_size *nd_cmd,
unsigned int buf_len)
{
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
nd_cmd->status = 0;
nd_cmd->config_size = LABEL_SIZE;
nd_cmd->max_xfer = SZ_4K;
return 0;
}
static int nfit_test_cmd_get_config_data(struct nd_cmd_get_config_data_hdr
*nd_cmd, unsigned int buf_len, void *label)
{
unsigned int len, offset = nd_cmd->in_offset;
int rc;
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
if (offset >= LABEL_SIZE)
return -EINVAL;
if (nd_cmd->in_length + sizeof(*nd_cmd) > buf_len)
return -EINVAL;
nd_cmd->status = 0;
len = min(nd_cmd->in_length, LABEL_SIZE - offset);
memcpy(nd_cmd->out_buf, label + offset, len);
rc = buf_len - sizeof(*nd_cmd) - len;
return rc;
}
static int nfit_test_cmd_set_config_data(struct nd_cmd_set_config_hdr *nd_cmd,
unsigned int buf_len, void *label)
{
unsigned int len, offset = nd_cmd->in_offset;
u32 *status;
int rc;
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
if (offset >= LABEL_SIZE)
return -EINVAL;
if (nd_cmd->in_length + sizeof(*nd_cmd) + 4 > buf_len)
return -EINVAL;
status = (void *)nd_cmd + nd_cmd->in_length + sizeof(*nd_cmd);
*status = 0;
len = min(nd_cmd->in_length, LABEL_SIZE - offset);
memcpy(label + offset, nd_cmd->in_buf, len);
rc = buf_len - sizeof(*nd_cmd) - (len + 4);
return rc;
}
#define NFIT_TEST_ARS_RECORDS 4
#define NFIT_TEST_CLEAR_ERR_UNIT 256
static int nfit_test_cmd_ars_cap(struct nd_cmd_ars_cap *nd_cmd,
unsigned int buf_len)
{
if (buf_len < sizeof(*nd_cmd))
return -EINVAL;
nd_cmd->max_ars_out = sizeof(struct nd_cmd_ars_status)
+ NFIT_TEST_ARS_RECORDS * sizeof(struct nd_ars_record);
nd_cmd->status = (ND_ARS_PERSISTENT | ND_ARS_VOLATILE) << 16;
nd_cmd->clear_err_unit = NFIT_TEST_CLEAR_ERR_UNIT;
return 0;
}
/*
* Initialize the ars_state to return an ars_result 1 second in the future with
* a 4K error range in the middle of the requested address range.
*/
static void post_ars_status(struct ars_state *ars_state, u64 addr, u64 len)
{
struct nd_cmd_ars_status *ars_status;
struct nd_ars_record *ars_record;
ars_state->deadline = jiffies + 1*HZ;
ars_status = ars_state->ars_status;
ars_status->status = 0;
ars_status->out_length = sizeof(struct nd_cmd_ars_status)
+ sizeof(struct nd_ars_record);
ars_status->address = addr;
ars_status->length = len;
ars_status->type = ND_ARS_PERSISTENT;
ars_status->num_records = 1;
ars_record = &ars_status->records[0];
ars_record->handle = 0;
ars_record->err_address = addr + len / 2;
ars_record->length = SZ_4K;
}
static int nfit_test_cmd_ars_start(struct ars_state *ars_state,
struct nd_cmd_ars_start *ars_start, unsigned int buf_len,
int *cmd_rc)
{
if (buf_len < sizeof(*ars_start))
return -EINVAL;
spin_lock(&ars_state->lock);
if (time_before(jiffies, ars_state->deadline)) {
ars_start->status = NFIT_ARS_START_BUSY;
*cmd_rc = -EBUSY;
} else {
ars_start->status = 0;
ars_start->scrub_time = 1;
post_ars_status(ars_state, ars_start->address,
ars_start->length);
*cmd_rc = 0;
}
spin_unlock(&ars_state->lock);
return 0;
}
static int nfit_test_cmd_ars_status(struct ars_state *ars_state,
struct nd_cmd_ars_status *ars_status, unsigned int buf_len,
int *cmd_rc)
{
if (buf_len < ars_state->ars_status->out_length)
return -EINVAL;
spin_lock(&ars_state->lock);
if (time_before(jiffies, ars_state->deadline)) {
memset(ars_status, 0, buf_len);
ars_status->status = NFIT_ARS_STATUS_BUSY;
ars_status->out_length = sizeof(*ars_status);
*cmd_rc = -EBUSY;
} else {
memcpy(ars_status, ars_state->ars_status,
ars_state->ars_status->out_length);
*cmd_rc = 0;
}
spin_unlock(&ars_state->lock);
return 0;
}
static int nfit_test_cmd_clear_error(struct nd_cmd_clear_error *clear_err,
unsigned int buf_len, int *cmd_rc)
{
const u64 mask = NFIT_TEST_CLEAR_ERR_UNIT - 1;
if (buf_len < sizeof(*clear_err))
return -EINVAL;
if ((clear_err->address & mask) || (clear_err->length & mask))
return -EINVAL;
/*
* Report 'all clear' success for all commands even though a new
* scrub will find errors again. This is enough to have the
* error removed from the 'badblocks' tracking in the pmem
* driver.
*/
clear_err->status = 0;
clear_err->cleared = clear_err->length;
*cmd_rc = 0;
return 0;
}
static int nfit_test_ctl(struct nvdimm_bus_descriptor *nd_desc,
struct nvdimm *nvdimm, unsigned int cmd, void *buf,
unsigned int buf_len, int *cmd_rc)
{
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
struct nfit_test *t = container_of(acpi_desc, typeof(*t), acpi_desc);
int i, rc = 0, __cmd_rc;
if (!cmd_rc)
cmd_rc = &__cmd_rc;
*cmd_rc = 0;
if (nvdimm) {
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
if (!nfit_mem || !test_bit(cmd, &nfit_mem->dsm_mask))
return -ENOTTY;
/* lookup label space for the given dimm */
for (i = 0; i < ARRAY_SIZE(handle); i++)
if (__to_nfit_memdev(nfit_mem)->device_handle ==
handle[i])
break;
if (i >= ARRAY_SIZE(handle))
return -ENXIO;
switch (cmd) {
case ND_CMD_GET_CONFIG_SIZE:
rc = nfit_test_cmd_get_config_size(buf, buf_len);
break;
case ND_CMD_GET_CONFIG_DATA:
rc = nfit_test_cmd_get_config_data(buf, buf_len,
t->label[i]);
break;
case ND_CMD_SET_CONFIG_DATA:
rc = nfit_test_cmd_set_config_data(buf, buf_len,
t->label[i]);
break;
default:
return -ENOTTY;
}
} else {
struct ars_state *ars_state = &t->ars_state;
if (!nd_desc || !test_bit(cmd, &nd_desc->dsm_mask))
return -ENOTTY;
switch (cmd) {
case ND_CMD_ARS_CAP:
rc = nfit_test_cmd_ars_cap(buf, buf_len);
break;
case ND_CMD_ARS_START:
rc = nfit_test_cmd_ars_start(ars_state, buf, buf_len,
cmd_rc);
break;
case ND_CMD_ARS_STATUS:
rc = nfit_test_cmd_ars_status(ars_state, buf, buf_len,
cmd_rc);
break;
case ND_CMD_CLEAR_ERROR:
rc = nfit_test_cmd_clear_error(buf, buf_len, cmd_rc);
break;
default:
return -ENOTTY;
}
}
return rc;
}
static DEFINE_SPINLOCK(nfit_test_lock);
static struct nfit_test *instances[NUM_NFITS];
static void release_nfit_res(void *data)
{
struct nfit_test_resource *nfit_res = data;
struct resource *res = nfit_res->res;
spin_lock(&nfit_test_lock);
list_del(&nfit_res->list);
spin_unlock(&nfit_test_lock);
if (is_vmalloc_addr(nfit_res->buf))
vfree(nfit_res->buf);
else
dma_free_coherent(nfit_res->dev, resource_size(res),
nfit_res->buf, res->start);
kfree(res);
kfree(nfit_res);
}
static void *__test_alloc(struct nfit_test *t, size_t size, dma_addr_t *dma,
void *buf)
{
struct device *dev = &t->pdev.dev;
struct resource *res = kzalloc(sizeof(*res) * 2, GFP_KERNEL);
struct nfit_test_resource *nfit_res = kzalloc(sizeof(*nfit_res),
GFP_KERNEL);
int rc;
if (!res || !buf || !nfit_res)
goto err;
rc = devm_add_action(dev, release_nfit_res, nfit_res);
if (rc)
goto err;
INIT_LIST_HEAD(&nfit_res->list);
memset(buf, 0, size);
nfit_res->dev = dev;
nfit_res->buf = buf;
nfit_res->res = res;
res->start = *dma;
res->end = *dma + size - 1;
res->name = "NFIT";
spin_lock(&nfit_test_lock);
list_add(&nfit_res->list, &t->resources);
spin_unlock(&nfit_test_lock);
return nfit_res->buf;
err:
if (buf && !is_vmalloc_addr(buf))
dma_free_coherent(dev, size, buf, *dma);
else if (buf)
vfree(buf);
kfree(res);
kfree(nfit_res);
return NULL;
}
static void *test_alloc(struct nfit_test *t, size_t size, dma_addr_t *dma)
{
void *buf = vmalloc(size);
*dma = (unsigned long) buf;
return __test_alloc(t, size, dma, buf);
}
static void *test_alloc_coherent(struct nfit_test *t, size_t size,
dma_addr_t *dma)
{
struct device *dev = &t->pdev.dev;
void *buf = dma_alloc_coherent(dev, size, dma, GFP_KERNEL);
return __test_alloc(t, size, dma, buf);
}
static struct nfit_test_resource *nfit_test_lookup(resource_size_t addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(instances); i++) {
struct nfit_test_resource *n, *nfit_res = NULL;
struct nfit_test *t = instances[i];
if (!t)
continue;
spin_lock(&nfit_test_lock);
list_for_each_entry(n, &t->resources, list) {
if (addr >= n->res->start && (addr < n->res->start
+ resource_size(n->res))) {
nfit_res = n;
break;
} else if (addr >= (unsigned long) n->buf
&& (addr < (unsigned long) n->buf
+ resource_size(n->res))) {
nfit_res = n;
break;
}
}
spin_unlock(&nfit_test_lock);
if (nfit_res)
return nfit_res;
}
return NULL;
}
static int ars_state_init(struct device *dev, struct ars_state *ars_state)
{
ars_state->ars_status = devm_kzalloc(dev,
sizeof(struct nd_cmd_ars_status)
+ sizeof(struct nd_ars_record) * NFIT_TEST_ARS_RECORDS,
GFP_KERNEL);
if (!ars_state->ars_status)
return -ENOMEM;
spin_lock_init(&ars_state->lock);
return 0;
}
static int nfit_test0_alloc(struct nfit_test *t)
{
size_t nfit_size = sizeof(struct acpi_nfit_system_address) * NUM_SPA
+ sizeof(struct acpi_nfit_memory_map) * NUM_MEM
+ sizeof(struct acpi_nfit_control_region) * NUM_DCR
+ offsetof(struct acpi_nfit_control_region,
window_size) * NUM_DCR
+ sizeof(struct acpi_nfit_data_region) * NUM_BDW
+ sizeof(struct acpi_nfit_flush_address) * NUM_DCR;
int i;
t->nfit_buf = test_alloc(t, nfit_size, &t->nfit_dma);
if (!t->nfit_buf)
return -ENOMEM;
t->nfit_size = nfit_size;
t->spa_set[0] = test_alloc_coherent(t, SPA0_SIZE, &t->spa_set_dma[0]);
if (!t->spa_set[0])
return -ENOMEM;
t->spa_set[1] = test_alloc_coherent(t, SPA1_SIZE, &t->spa_set_dma[1]);
if (!t->spa_set[1])
return -ENOMEM;
t->spa_set[2] = test_alloc_coherent(t, SPA0_SIZE, &t->spa_set_dma[2]);
if (!t->spa_set[2])
return -ENOMEM;
for (i = 0; i < NUM_DCR; i++) {
t->dimm[i] = test_alloc(t, DIMM_SIZE, &t->dimm_dma[i]);
if (!t->dimm[i])
return -ENOMEM;
t->label[i] = test_alloc(t, LABEL_SIZE, &t->label_dma[i]);
if (!t->label[i])
return -ENOMEM;
sprintf(t->label[i], "label%d", i);
t->flush[i] = test_alloc(t, 8, &t->flush_dma[i]);
if (!t->flush[i])
return -ENOMEM;
}
for (i = 0; i < NUM_DCR; i++) {
t->dcr[i] = test_alloc(t, LABEL_SIZE, &t->dcr_dma[i]);
if (!t->dcr[i])
return -ENOMEM;
}
return ars_state_init(&t->pdev.dev, &t->ars_state);
}
static int nfit_test1_alloc(struct nfit_test *t)
{
size_t nfit_size = sizeof(struct acpi_nfit_system_address)
+ sizeof(struct acpi_nfit_memory_map)
+ offsetof(struct acpi_nfit_control_region, window_size);
t->nfit_buf = test_alloc(t, nfit_size, &t->nfit_dma);
if (!t->nfit_buf)
return -ENOMEM;
t->nfit_size = nfit_size;
t->spa_set[0] = test_alloc_coherent(t, SPA2_SIZE, &t->spa_set_dma[0]);
if (!t->spa_set[0])
return -ENOMEM;
return ars_state_init(&t->pdev.dev, &t->ars_state);
}
static void nfit_test0_setup(struct nfit_test *t)
{
struct acpi_nfit_desc *acpi_desc;
struct acpi_nfit_memory_map *memdev;
void *nfit_buf = t->nfit_buf;
struct acpi_nfit_system_address *spa;
struct acpi_nfit_control_region *dcr;
struct acpi_nfit_data_region *bdw;
struct acpi_nfit_flush_address *flush;
unsigned int offset;
/*
* spa0 (interleave first half of dimm0 and dimm1, note storage
* does not actually alias the related block-data-window
* regions)
*/
spa = nfit_buf;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16);
spa->range_index = 0+1;
spa->address = t->spa_set_dma[0];
spa->length = SPA0_SIZE;
/*
* spa1 (interleave last half of the 4 DIMMS, note storage
* does not actually alias the related block-data-window
* regions)
*/
spa = nfit_buf + sizeof(*spa);
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16);
spa->range_index = 1+1;
spa->address = t->spa_set_dma[1];
spa->length = SPA1_SIZE;
/* spa2 (dcr0) dimm0 */
spa = nfit_buf + sizeof(*spa) * 2;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16);
spa->range_index = 2+1;
spa->address = t->dcr_dma[0];
spa->length = DCR_SIZE;
/* spa3 (dcr1) dimm1 */
spa = nfit_buf + sizeof(*spa) * 3;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16);
spa->range_index = 3+1;
spa->address = t->dcr_dma[1];
spa->length = DCR_SIZE;
/* spa4 (dcr2) dimm2 */
spa = nfit_buf + sizeof(*spa) * 4;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16);
spa->range_index = 4+1;
spa->address = t->dcr_dma[2];
spa->length = DCR_SIZE;
/* spa5 (dcr3) dimm3 */
spa = nfit_buf + sizeof(*spa) * 5;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16);
spa->range_index = 5+1;
spa->address = t->dcr_dma[3];
spa->length = DCR_SIZE;
/* spa6 (bdw for dcr0) dimm0 */
spa = nfit_buf + sizeof(*spa) * 6;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16);
spa->range_index = 6+1;
spa->address = t->dimm_dma[0];
spa->length = DIMM_SIZE;
/* spa7 (bdw for dcr1) dimm1 */
spa = nfit_buf + sizeof(*spa) * 7;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16);
spa->range_index = 7+1;
spa->address = t->dimm_dma[1];
spa->length = DIMM_SIZE;
/* spa8 (bdw for dcr2) dimm2 */
spa = nfit_buf + sizeof(*spa) * 8;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16);
spa->range_index = 8+1;
spa->address = t->dimm_dma[2];
spa->length = DIMM_SIZE;
/* spa9 (bdw for dcr3) dimm3 */
spa = nfit_buf + sizeof(*spa) * 9;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16);
spa->range_index = 9+1;
spa->address = t->dimm_dma[3];
spa->length = DIMM_SIZE;
offset = sizeof(*spa) * 10;
/* mem-region0 (spa0, dimm0) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[0];
memdev->physical_id = 0;
memdev->region_id = 0;
memdev->range_index = 0+1;
memdev->region_index = 4+1;
memdev->region_size = SPA0_SIZE/2;
memdev->region_offset = t->spa_set_dma[0];
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 2;
/* mem-region1 (spa0, dimm1) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map);
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[1];
memdev->physical_id = 1;
memdev->region_id = 0;
memdev->range_index = 0+1;
memdev->region_index = 5+1;
memdev->region_size = SPA0_SIZE/2;
memdev->region_offset = t->spa_set_dma[0] + SPA0_SIZE/2;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 2;
/* mem-region2 (spa1, dimm0) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 2;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[0];
memdev->physical_id = 0;
memdev->region_id = 1;
memdev->range_index = 1+1;
memdev->region_index = 4+1;
memdev->region_size = SPA1_SIZE/4;
memdev->region_offset = t->spa_set_dma[1];
memdev->address = SPA0_SIZE/2;
memdev->interleave_index = 0;
memdev->interleave_ways = 4;
/* mem-region3 (spa1, dimm1) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 3;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[1];
memdev->physical_id = 1;
memdev->region_id = 1;
memdev->range_index = 1+1;
memdev->region_index = 5+1;
memdev->region_size = SPA1_SIZE/4;
memdev->region_offset = t->spa_set_dma[1] + SPA1_SIZE/4;
memdev->address = SPA0_SIZE/2;
memdev->interleave_index = 0;
memdev->interleave_ways = 4;
/* mem-region4 (spa1, dimm2) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 4;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[2];
memdev->physical_id = 2;
memdev->region_id = 0;
memdev->range_index = 1+1;
memdev->region_index = 6+1;
memdev->region_size = SPA1_SIZE/4;
memdev->region_offset = t->spa_set_dma[1] + 2*SPA1_SIZE/4;
memdev->address = SPA0_SIZE/2;
memdev->interleave_index = 0;
memdev->interleave_ways = 4;
/* mem-region5 (spa1, dimm3) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 5;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[3];
memdev->physical_id = 3;
memdev->region_id = 0;
memdev->range_index = 1+1;
memdev->region_index = 7+1;
memdev->region_size = SPA1_SIZE/4;
memdev->region_offset = t->spa_set_dma[1] + 3*SPA1_SIZE/4;
memdev->address = SPA0_SIZE/2;
memdev->interleave_index = 0;
memdev->interleave_ways = 4;
/* mem-region6 (spa/dcr0, dimm0) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 6;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[0];
memdev->physical_id = 0;
memdev->region_id = 0;
memdev->range_index = 2+1;
memdev->region_index = 0+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
/* mem-region7 (spa/dcr1, dimm1) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 7;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[1];
memdev->physical_id = 1;
memdev->region_id = 0;
memdev->range_index = 3+1;
memdev->region_index = 1+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
/* mem-region8 (spa/dcr2, dimm2) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 8;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[2];
memdev->physical_id = 2;
memdev->region_id = 0;
memdev->range_index = 4+1;
memdev->region_index = 2+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
/* mem-region9 (spa/dcr3, dimm3) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 9;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[3];
memdev->physical_id = 3;
memdev->region_id = 0;
memdev->range_index = 5+1;
memdev->region_index = 3+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
/* mem-region10 (spa/bdw0, dimm0) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 10;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[0];
memdev->physical_id = 0;
memdev->region_id = 0;
memdev->range_index = 6+1;
memdev->region_index = 0+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
/* mem-region11 (spa/bdw1, dimm1) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 11;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[1];
memdev->physical_id = 1;
memdev->region_id = 0;
memdev->range_index = 7+1;
memdev->region_index = 1+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
/* mem-region12 (spa/bdw2, dimm2) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 12;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[2];
memdev->physical_id = 2;
memdev->region_id = 0;
memdev->range_index = 8+1;
memdev->region_index = 2+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
/* mem-region13 (spa/dcr3, dimm3) */
memdev = nfit_buf + offset + sizeof(struct acpi_nfit_memory_map) * 13;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[3];
memdev->physical_id = 3;
memdev->region_id = 0;
memdev->range_index = 9+1;
memdev->region_index = 3+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset = offset + sizeof(struct acpi_nfit_memory_map) * 14;
/* dcr-descriptor0: blk */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = sizeof(struct acpi_nfit_control_region);
dcr->region_index = 0+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~handle[0];
dcr->code = NFIT_FIC_BLK;
dcr->windows = 1;
dcr->window_size = DCR_SIZE;
dcr->command_offset = 0;
dcr->command_size = 8;
dcr->status_offset = 8;
dcr->status_size = 4;
/* dcr-descriptor1: blk */
dcr = nfit_buf + offset + sizeof(struct acpi_nfit_control_region);
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = sizeof(struct acpi_nfit_control_region);
dcr->region_index = 1+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~handle[1];
dcr->code = NFIT_FIC_BLK;
dcr->windows = 1;
dcr->window_size = DCR_SIZE;
dcr->command_offset = 0;
dcr->command_size = 8;
dcr->status_offset = 8;
dcr->status_size = 4;
/* dcr-descriptor2: blk */
dcr = nfit_buf + offset + sizeof(struct acpi_nfit_control_region) * 2;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = sizeof(struct acpi_nfit_control_region);
dcr->region_index = 2+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~handle[2];
dcr->code = NFIT_FIC_BLK;
dcr->windows = 1;
dcr->window_size = DCR_SIZE;
dcr->command_offset = 0;
dcr->command_size = 8;
dcr->status_offset = 8;
dcr->status_size = 4;
/* dcr-descriptor3: blk */
dcr = nfit_buf + offset + sizeof(struct acpi_nfit_control_region) * 3;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = sizeof(struct acpi_nfit_control_region);
dcr->region_index = 3+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~handle[3];
dcr->code = NFIT_FIC_BLK;
dcr->windows = 1;
dcr->window_size = DCR_SIZE;
dcr->command_offset = 0;
dcr->command_size = 8;
dcr->status_offset = 8;
dcr->status_size = 4;
offset = offset + sizeof(struct acpi_nfit_control_region) * 4;
/* dcr-descriptor0: pmem */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 4+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~handle[0];
dcr->code = NFIT_FIC_BYTEN;
dcr->windows = 0;
/* dcr-descriptor1: pmem */
dcr = nfit_buf + offset + offsetof(struct acpi_nfit_control_region,
window_size);
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 5+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~handle[1];
dcr->code = NFIT_FIC_BYTEN;
dcr->windows = 0;
/* dcr-descriptor2: pmem */
dcr = nfit_buf + offset + offsetof(struct acpi_nfit_control_region,
window_size) * 2;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 6+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~handle[2];
dcr->code = NFIT_FIC_BYTEN;
dcr->windows = 0;
/* dcr-descriptor3: pmem */
dcr = nfit_buf + offset + offsetof(struct acpi_nfit_control_region,
window_size) * 3;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 7+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~handle[3];
dcr->code = NFIT_FIC_BYTEN;
dcr->windows = 0;
offset = offset + offsetof(struct acpi_nfit_control_region,
window_size) * 4;
/* bdw0 (spa/dcr0, dimm0) */
bdw = nfit_buf + offset;
bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION;
bdw->header.length = sizeof(struct acpi_nfit_data_region);
bdw->region_index = 0+1;
bdw->windows = 1;
bdw->offset = 0;
bdw->size = BDW_SIZE;
bdw->capacity = DIMM_SIZE;
bdw->start_address = 0;
/* bdw1 (spa/dcr1, dimm1) */
bdw = nfit_buf + offset + sizeof(struct acpi_nfit_data_region);
bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION;
bdw->header.length = sizeof(struct acpi_nfit_data_region);
bdw->region_index = 1+1;
bdw->windows = 1;
bdw->offset = 0;
bdw->size = BDW_SIZE;
bdw->capacity = DIMM_SIZE;
bdw->start_address = 0;
/* bdw2 (spa/dcr2, dimm2) */
bdw = nfit_buf + offset + sizeof(struct acpi_nfit_data_region) * 2;
bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION;
bdw->header.length = sizeof(struct acpi_nfit_data_region);
bdw->region_index = 2+1;
bdw->windows = 1;
bdw->offset = 0;
bdw->size = BDW_SIZE;
bdw->capacity = DIMM_SIZE;
bdw->start_address = 0;
/* bdw3 (spa/dcr3, dimm3) */
bdw = nfit_buf + offset + sizeof(struct acpi_nfit_data_region) * 3;
bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION;
bdw->header.length = sizeof(struct acpi_nfit_data_region);
bdw->region_index = 3+1;
bdw->windows = 1;
bdw->offset = 0;
bdw->size = BDW_SIZE;
bdw->capacity = DIMM_SIZE;
bdw->start_address = 0;
offset = offset + sizeof(struct acpi_nfit_data_region) * 4;
/* flush0 (dimm0) */
flush = nfit_buf + offset;
flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS;
flush->header.length = sizeof(struct acpi_nfit_flush_address);
flush->device_handle = handle[0];
flush->hint_count = 1;
flush->hint_address[0] = t->flush_dma[0];
/* flush1 (dimm1) */
flush = nfit_buf + offset + sizeof(struct acpi_nfit_flush_address) * 1;
flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS;
flush->header.length = sizeof(struct acpi_nfit_flush_address);
flush->device_handle = handle[1];
flush->hint_count = 1;
flush->hint_address[0] = t->flush_dma[1];
/* flush2 (dimm2) */
flush = nfit_buf + offset + sizeof(struct acpi_nfit_flush_address) * 2;
flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS;
flush->header.length = sizeof(struct acpi_nfit_flush_address);
flush->device_handle = handle[2];
flush->hint_count = 1;
flush->hint_address[0] = t->flush_dma[2];
/* flush3 (dimm3) */
flush = nfit_buf + offset + sizeof(struct acpi_nfit_flush_address) * 3;
flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS;
flush->header.length = sizeof(struct acpi_nfit_flush_address);
flush->device_handle = handle[3];
flush->hint_count = 1;
flush->hint_address[0] = t->flush_dma[3];
if (t->setup_hotplug) {
offset = offset + sizeof(struct acpi_nfit_flush_address) * 4;
/* dcr-descriptor4: blk */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = sizeof(struct acpi_nfit_control_region);
dcr->region_index = 8+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~handle[4];
dcr->code = NFIT_FIC_BLK;
dcr->windows = 1;
dcr->window_size = DCR_SIZE;
dcr->command_offset = 0;
dcr->command_size = 8;
dcr->status_offset = 8;
dcr->status_size = 4;
offset = offset + sizeof(struct acpi_nfit_control_region);
/* dcr-descriptor4: pmem */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 9+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~handle[4];
dcr->code = NFIT_FIC_BYTEN;
dcr->windows = 0;
offset = offset + offsetof(struct acpi_nfit_control_region,
window_size);
/* bdw4 (spa/dcr4, dimm4) */
bdw = nfit_buf + offset;
bdw->header.type = ACPI_NFIT_TYPE_DATA_REGION;
bdw->header.length = sizeof(struct acpi_nfit_data_region);
bdw->region_index = 8+1;
bdw->windows = 1;
bdw->offset = 0;
bdw->size = BDW_SIZE;
bdw->capacity = DIMM_SIZE;
bdw->start_address = 0;
offset = offset + sizeof(struct acpi_nfit_data_region);
/* spa10 (dcr4) dimm4 */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_DCR), 16);
spa->range_index = 10+1;
spa->address = t->dcr_dma[4];
spa->length = DCR_SIZE;
/*
* spa11 (single-dimm interleave for hotplug, note storage
* does not actually alias the related block-data-window
* regions)
*/
spa = nfit_buf + offset + sizeof(*spa);
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16);
spa->range_index = 11+1;
spa->address = t->spa_set_dma[2];
spa->length = SPA0_SIZE;
/* spa12 (bdw for dcr4) dimm4 */
spa = nfit_buf + offset + sizeof(*spa) * 2;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_BDW), 16);
spa->range_index = 12+1;
spa->address = t->dimm_dma[4];
spa->length = DIMM_SIZE;
offset = offset + sizeof(*spa) * 3;
/* mem-region14 (spa/dcr4, dimm4) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[4];
memdev->physical_id = 4;
memdev->region_id = 0;
memdev->range_index = 10+1;
memdev->region_index = 8+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
/* mem-region15 (spa0, dimm4) */
memdev = nfit_buf + offset +
sizeof(struct acpi_nfit_memory_map);
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[4];
memdev->physical_id = 4;
memdev->region_id = 0;
memdev->range_index = 11+1;
memdev->region_index = 9+1;
memdev->region_size = SPA0_SIZE;
memdev->region_offset = t->spa_set_dma[2];
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
/* mem-region16 (spa/bdw4, dimm4) */
memdev = nfit_buf + offset +
sizeof(struct acpi_nfit_memory_map) * 2;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = handle[4];
memdev->physical_id = 4;
memdev->region_id = 0;
memdev->range_index = 12+1;
memdev->region_index = 8+1;
memdev->region_size = 0;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
offset = offset + sizeof(struct acpi_nfit_memory_map) * 3;
/* flush3 (dimm4) */
flush = nfit_buf + offset;
flush->header.type = ACPI_NFIT_TYPE_FLUSH_ADDRESS;
flush->header.length = sizeof(struct acpi_nfit_flush_address);
flush->device_handle = handle[4];
flush->hint_count = 1;
flush->hint_address[0] = t->flush_dma[4];
}
post_ars_status(&t->ars_state, t->spa_set_dma[0], SPA0_SIZE);
acpi_desc = &t->acpi_desc;
set_bit(ND_CMD_GET_CONFIG_SIZE, &acpi_desc->dimm_dsm_force_en);
set_bit(ND_CMD_GET_CONFIG_DATA, &acpi_desc->dimm_dsm_force_en);
set_bit(ND_CMD_SET_CONFIG_DATA, &acpi_desc->dimm_dsm_force_en);
set_bit(ND_CMD_ARS_CAP, &acpi_desc->bus_dsm_force_en);
set_bit(ND_CMD_ARS_START, &acpi_desc->bus_dsm_force_en);
set_bit(ND_CMD_ARS_STATUS, &acpi_desc->bus_dsm_force_en);
set_bit(ND_CMD_CLEAR_ERROR, &acpi_desc->bus_dsm_force_en);
}
static void nfit_test1_setup(struct nfit_test *t)
{
size_t offset;
void *nfit_buf = t->nfit_buf;
struct acpi_nfit_memory_map *memdev;
struct acpi_nfit_control_region *dcr;
struct acpi_nfit_system_address *spa;
struct acpi_nfit_desc *acpi_desc;
offset = 0;
/* spa0 (flat range with no bdw aliasing) */
spa = nfit_buf + offset;
spa->header.type = ACPI_NFIT_TYPE_SYSTEM_ADDRESS;
spa->header.length = sizeof(*spa);
memcpy(spa->range_guid, to_nfit_uuid(NFIT_SPA_PM), 16);
spa->range_index = 0+1;
spa->address = t->spa_set_dma[0];
spa->length = SPA2_SIZE;
offset += sizeof(*spa);
/* mem-region0 (spa0, dimm0) */
memdev = nfit_buf + offset;
memdev->header.type = ACPI_NFIT_TYPE_MEMORY_MAP;
memdev->header.length = sizeof(*memdev);
memdev->device_handle = 0;
memdev->physical_id = 0;
memdev->region_id = 0;
memdev->range_index = 0+1;
memdev->region_index = 0+1;
memdev->region_size = SPA2_SIZE;
memdev->region_offset = 0;
memdev->address = 0;
memdev->interleave_index = 0;
memdev->interleave_ways = 1;
memdev->flags = ACPI_NFIT_MEM_SAVE_FAILED | ACPI_NFIT_MEM_RESTORE_FAILED
| ACPI_NFIT_MEM_FLUSH_FAILED | ACPI_NFIT_MEM_HEALTH_OBSERVED
| ACPI_NFIT_MEM_NOT_ARMED;
offset += sizeof(*memdev);
/* dcr-descriptor0 */
dcr = nfit_buf + offset;
dcr->header.type = ACPI_NFIT_TYPE_CONTROL_REGION;
dcr->header.length = offsetof(struct acpi_nfit_control_region,
window_size);
dcr->region_index = 0+1;
dcr->vendor_id = 0xabcd;
dcr->device_id = 0;
dcr->revision_id = 1;
dcr->serial_number = ~0;
dcr->code = NFIT_FIC_BYTE;
dcr->windows = 0;
post_ars_status(&t->ars_state, t->spa_set_dma[0], SPA2_SIZE);
acpi_desc = &t->acpi_desc;
set_bit(ND_CMD_ARS_CAP, &acpi_desc->bus_dsm_force_en);
set_bit(ND_CMD_ARS_START, &acpi_desc->bus_dsm_force_en);
set_bit(ND_CMD_ARS_STATUS, &acpi_desc->bus_dsm_force_en);
set_bit(ND_CMD_CLEAR_ERROR, &acpi_desc->bus_dsm_force_en);
}
static int nfit_test_blk_do_io(struct nd_blk_region *ndbr, resource_size_t dpa,
void *iobuf, u64 len, int rw)
{
struct nfit_blk *nfit_blk = ndbr->blk_provider_data;
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
struct nd_region *nd_region = &ndbr->nd_region;
unsigned int lane;
lane = nd_region_acquire_lane(nd_region);
if (rw)
memcpy(mmio->addr.base + dpa, iobuf, len);
else {
memcpy(iobuf, mmio->addr.base + dpa, len);
/* give us some some coverage of the mmio_flush_range() API */
mmio_flush_range(mmio->addr.base + dpa, len);
}
nd_region_release_lane(nd_region, lane);
return 0;
}
static int nfit_test_probe(struct platform_device *pdev)
{
struct nvdimm_bus_descriptor *nd_desc;
struct acpi_nfit_desc *acpi_desc;
struct device *dev = &pdev->dev;
struct nfit_test *nfit_test;
int rc;
nfit_test = to_nfit_test(&pdev->dev);
/* common alloc */
if (nfit_test->num_dcr) {
int num = nfit_test->num_dcr;
nfit_test->dimm = devm_kcalloc(dev, num, sizeof(void *),
GFP_KERNEL);
nfit_test->dimm_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t),
GFP_KERNEL);
nfit_test->flush = devm_kcalloc(dev, num, sizeof(void *),
GFP_KERNEL);
nfit_test->flush_dma = devm_kcalloc(dev, num, sizeof(dma_addr_t),
GFP_KERNEL);
nfit_test->label = devm_kcalloc(dev, num, sizeof(void *),
GFP_KERNEL);
nfit_test->label_dma = devm_kcalloc(dev, num,
sizeof(dma_addr_t), GFP_KERNEL);
nfit_test->dcr = devm_kcalloc(dev, num,
sizeof(struct nfit_test_dcr *), GFP_KERNEL);
nfit_test->dcr_dma = devm_kcalloc(dev, num,
sizeof(dma_addr_t), GFP_KERNEL);
if (nfit_test->dimm && nfit_test->dimm_dma && nfit_test->label
&& nfit_test->label_dma && nfit_test->dcr
&& nfit_test->dcr_dma && nfit_test->flush
&& nfit_test->flush_dma)
/* pass */;
else
return -ENOMEM;
}
if (nfit_test->num_pm) {
int num = nfit_test->num_pm;
nfit_test->spa_set = devm_kcalloc(dev, num, sizeof(void *),
GFP_KERNEL);
nfit_test->spa_set_dma = devm_kcalloc(dev, num,
sizeof(dma_addr_t), GFP_KERNEL);
if (nfit_test->spa_set && nfit_test->spa_set_dma)
/* pass */;
else
return -ENOMEM;
}
/* per-nfit specific alloc */
if (nfit_test->alloc(nfit_test))
return -ENOMEM;
nfit_test->setup(nfit_test);
acpi_desc = &nfit_test->acpi_desc;
acpi_nfit_desc_init(acpi_desc, &pdev->dev);
acpi_desc->nfit = nfit_test->nfit_buf;
acpi_desc->blk_do_io = nfit_test_blk_do_io;
nd_desc = &acpi_desc->nd_desc;
nd_desc->provider_name = NULL;
nd_desc->ndctl = nfit_test_ctl;
acpi_desc->nvdimm_bus = nvdimm_bus_register(&pdev->dev, nd_desc);
if (!acpi_desc->nvdimm_bus)
return -ENXIO;
rc = acpi_nfit_init(acpi_desc, nfit_test->nfit_size);
if (rc) {
nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
return rc;
}
if (nfit_test->setup != nfit_test0_setup)
return 0;
nfit_test->setup_hotplug = 1;
nfit_test->setup(nfit_test);
rc = acpi_nfit_init(acpi_desc, nfit_test->nfit_size);
if (rc) {
nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
return rc;
}
return 0;
}
static int nfit_test_remove(struct platform_device *pdev)
{
struct nfit_test *nfit_test = to_nfit_test(&pdev->dev);
struct acpi_nfit_desc *acpi_desc = &nfit_test->acpi_desc;
nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
return 0;
}
static void nfit_test_release(struct device *dev)
{
struct nfit_test *nfit_test = to_nfit_test(dev);
kfree(nfit_test);
}
static const struct platform_device_id nfit_test_id[] = {
{ KBUILD_MODNAME },
{ },
};
static struct platform_driver nfit_test_driver = {
.probe = nfit_test_probe,
.remove = nfit_test_remove,
.driver = {
.name = KBUILD_MODNAME,
},
.id_table = nfit_test_id,
};
#ifdef CONFIG_CMA_SIZE_MBYTES
#define CMA_SIZE_MBYTES CONFIG_CMA_SIZE_MBYTES
#else
#define CMA_SIZE_MBYTES 0
#endif
static __init int nfit_test_init(void)
{
int rc, i;
nfit_test_setup(nfit_test_lookup);
for (i = 0; i < NUM_NFITS; i++) {
struct nfit_test *nfit_test;
struct platform_device *pdev;
static int once;
nfit_test = kzalloc(sizeof(*nfit_test), GFP_KERNEL);
if (!nfit_test) {
rc = -ENOMEM;
goto err_register;
}
INIT_LIST_HEAD(&nfit_test->resources);
switch (i) {
case 0:
nfit_test->num_pm = NUM_PM;
nfit_test->num_dcr = NUM_DCR;
nfit_test->alloc = nfit_test0_alloc;
nfit_test->setup = nfit_test0_setup;
break;
case 1:
nfit_test->num_pm = 1;
nfit_test->alloc = nfit_test1_alloc;
nfit_test->setup = nfit_test1_setup;
break;
default:
rc = -EINVAL;
goto err_register;
}
pdev = &nfit_test->pdev;
pdev->name = KBUILD_MODNAME;
pdev->id = i;
pdev->dev.release = nfit_test_release;
rc = platform_device_register(pdev);
if (rc) {
put_device(&pdev->dev);
goto err_register;
}
rc = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (rc)
goto err_register;
instances[i] = nfit_test;
if (!once++) {
dma_addr_t dma;
void *buf;
buf = dma_alloc_coherent(&pdev->dev, SZ_128M, &dma,
GFP_KERNEL);
if (!buf) {
rc = -ENOMEM;
dev_warn(&pdev->dev, "need 128M of free cma\n");
goto err_register;
}
dma_free_coherent(&pdev->dev, SZ_128M, buf, dma);
}
}
rc = platform_driver_register(&nfit_test_driver);
if (rc)
goto err_register;
return 0;
err_register:
for (i = 0; i < NUM_NFITS; i++)
if (instances[i])
platform_device_unregister(&instances[i]->pdev);
nfit_test_teardown();
return rc;
}
static __exit void nfit_test_exit(void)
{
int i;
platform_driver_unregister(&nfit_test_driver);
for (i = 0; i < NUM_NFITS; i++)
platform_device_unregister(&instances[i]->pdev);
nfit_test_teardown();
}
module_init(nfit_test_init);
module_exit(nfit_test_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Intel Corporation");