mirror of https://gitee.com/openkylin/linux.git
153 lines
4.8 KiB
C
153 lines
4.8 KiB
C
/*
|
|
* Based on arch/arm/include/asm/cacheflush.h
|
|
*
|
|
* Copyright (C) 1999-2002 Russell King.
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef __ASM_CACHEFLUSH_H
|
|
#define __ASM_CACHEFLUSH_H
|
|
|
|
#include <linux/mm.h>
|
|
|
|
/*
|
|
* This flag is used to indicate that the page pointed to by a pte is clean
|
|
* and does not require cleaning before returning it to the user.
|
|
*/
|
|
#define PG_dcache_clean PG_arch_1
|
|
|
|
/*
|
|
* MM Cache Management
|
|
* ===================
|
|
*
|
|
* The arch/arm64/mm/cache.S implements these methods.
|
|
*
|
|
* Start addresses are inclusive and end addresses are exclusive; start
|
|
* addresses should be rounded down, end addresses up.
|
|
*
|
|
* See Documentation/cachetlb.txt for more information. Please note that
|
|
* the implementation assumes non-aliasing VIPT D-cache and (aliasing)
|
|
* VIPT or ASID-tagged VIVT I-cache.
|
|
*
|
|
* flush_cache_all()
|
|
*
|
|
* Unconditionally clean and invalidate the entire cache.
|
|
*
|
|
* flush_cache_mm(mm)
|
|
*
|
|
* Clean and invalidate all user space cache entries
|
|
* before a change of page tables.
|
|
*
|
|
* flush_icache_range(start, end)
|
|
*
|
|
* Ensure coherency between the I-cache and the D-cache in the
|
|
* region described by start, end.
|
|
* - start - virtual start address
|
|
* - end - virtual end address
|
|
*
|
|
* __flush_cache_user_range(start, end)
|
|
*
|
|
* Ensure coherency between the I-cache and the D-cache in the
|
|
* region described by start, end.
|
|
* - start - virtual start address
|
|
* - end - virtual end address
|
|
*
|
|
* __flush_dcache_area(kaddr, size)
|
|
*
|
|
* Ensure that the data held in page is written back.
|
|
* - kaddr - page address
|
|
* - size - region size
|
|
*/
|
|
extern void flush_cache_all(void);
|
|
extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
|
|
extern void flush_icache_range(unsigned long start, unsigned long end);
|
|
extern void __flush_dcache_area(void *addr, size_t len);
|
|
extern void __flush_cache_user_range(unsigned long start, unsigned long end);
|
|
|
|
static inline void flush_cache_mm(struct mm_struct *mm)
|
|
{
|
|
}
|
|
|
|
static inline void flush_cache_page(struct vm_area_struct *vma,
|
|
unsigned long user_addr, unsigned long pfn)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Copy user data from/to a page which is mapped into a different
|
|
* processes address space. Really, we want to allow our "user
|
|
* space" model to handle this.
|
|
*/
|
|
extern void copy_to_user_page(struct vm_area_struct *, struct page *,
|
|
unsigned long, void *, const void *, unsigned long);
|
|
#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
|
|
do { \
|
|
memcpy(dst, src, len); \
|
|
} while (0)
|
|
|
|
#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
|
|
|
|
/*
|
|
* flush_dcache_page is used when the kernel has written to the page
|
|
* cache page at virtual address page->virtual.
|
|
*
|
|
* If this page isn't mapped (ie, page_mapping == NULL), or it might
|
|
* have userspace mappings, then we _must_ always clean + invalidate
|
|
* the dcache entries associated with the kernel mapping.
|
|
*
|
|
* Otherwise we can defer the operation, and clean the cache when we are
|
|
* about to change to user space. This is the same method as used on SPARC64.
|
|
* See update_mmu_cache for the user space part.
|
|
*/
|
|
#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
|
|
extern void flush_dcache_page(struct page *);
|
|
|
|
static inline void __flush_icache_all(void)
|
|
{
|
|
asm("ic ialluis");
|
|
}
|
|
|
|
#define flush_dcache_mmap_lock(mapping) \
|
|
spin_lock_irq(&(mapping)->tree_lock)
|
|
#define flush_dcache_mmap_unlock(mapping) \
|
|
spin_unlock_irq(&(mapping)->tree_lock)
|
|
|
|
/*
|
|
* We don't appear to need to do anything here. In fact, if we did, we'd
|
|
* duplicate cache flushing elsewhere performed by flush_dcache_page().
|
|
*/
|
|
#define flush_icache_page(vma,page) do { } while (0)
|
|
|
|
/*
|
|
* flush_cache_vmap() is used when creating mappings (eg, via vmap,
|
|
* vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
|
|
* caches, since the direct-mappings of these pages may contain cached
|
|
* data, we need to do a full cache flush to ensure that writebacks
|
|
* don't corrupt data placed into these pages via the new mappings.
|
|
*/
|
|
static inline void flush_cache_vmap(unsigned long start, unsigned long end)
|
|
{
|
|
/*
|
|
* set_pte_at() called from vmap_pte_range() does not
|
|
* have a DSB after cleaning the cache line.
|
|
*/
|
|
dsb();
|
|
}
|
|
|
|
static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
|
|
{
|
|
}
|
|
|
|
#endif
|