linux/arch/x86/kernel/process_32.c

734 lines
18 KiB
C

/*
* Copyright (C) 1995 Linus Torvalds
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <stdarg.h>
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/elfcore.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/utsname.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/ptrace.h>
#include <linux/random.h>
#include <linux/personality.h>
#include <linux/tick.h>
#include <linux/percpu.h>
#include <linux/prctl.h>
#include <linux/dmi.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/ldt.h>
#include <asm/processor.h>
#include <asm/i387.h>
#include <asm/desc.h>
#ifdef CONFIG_MATH_EMULATION
#include <asm/math_emu.h>
#endif
#include <linux/err.h>
#include <asm/tlbflush.h>
#include <asm/cpu.h>
#include <asm/kdebug.h>
#include <asm/idle.h>
#include <asm/syscalls.h>
#include <asm/smp.h>
asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
EXPORT_PER_CPU_SYMBOL(current_task);
DEFINE_PER_CPU(int, cpu_number);
EXPORT_PER_CPU_SYMBOL(cpu_number);
/*
* Return saved PC of a blocked thread.
*/
unsigned long thread_saved_pc(struct task_struct *tsk)
{
return ((unsigned long *)tsk->thread.sp)[3];
}
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
BUG();
}
#endif
/*
* The idle thread. There's no useful work to be
* done, so just try to conserve power and have a
* low exit latency (ie sit in a loop waiting for
* somebody to say that they'd like to reschedule)
*/
void cpu_idle(void)
{
int cpu = smp_processor_id();
current_thread_info()->status |= TS_POLLING;
/* endless idle loop with no priority at all */
while (1) {
tick_nohz_stop_sched_tick(1);
while (!need_resched()) {
check_pgt_cache();
rmb();
if (rcu_pending(cpu))
rcu_check_callbacks(cpu, 0);
if (cpu_is_offline(cpu))
play_dead();
local_irq_disable();
__get_cpu_var(irq_stat).idle_timestamp = jiffies;
/* Don't trace irqs off for idle */
stop_critical_timings();
pm_idle();
start_critical_timings();
}
tick_nohz_restart_sched_tick();
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
void __show_regs(struct pt_regs *regs, int all)
{
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
unsigned long d0, d1, d2, d3, d6, d7;
unsigned long sp;
unsigned short ss, gs;
const char *board;
if (user_mode_vm(regs)) {
sp = regs->sp;
ss = regs->ss & 0xffff;
savesegment(gs, gs);
} else {
sp = (unsigned long) (&regs->sp);
savesegment(ss, ss);
savesegment(gs, gs);
}
printk("\n");
board = dmi_get_system_info(DMI_PRODUCT_NAME);
if (!board)
board = "";
printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
task_pid_nr(current), current->comm,
print_tainted(), init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version, board);
printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
(u16)regs->cs, regs->ip, regs->flags,
smp_processor_id());
print_symbol("EIP is at %s\n", regs->ip);
printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
regs->ax, regs->bx, regs->cx, regs->dx);
printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
regs->si, regs->di, regs->bp, sp);
printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
(u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
if (!all)
return;
cr0 = read_cr0();
cr2 = read_cr2();
cr3 = read_cr3();
cr4 = read_cr4_safe();
printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
cr0, cr2, cr3, cr4);
get_debugreg(d0, 0);
get_debugreg(d1, 1);
get_debugreg(d2, 2);
get_debugreg(d3, 3);
printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
d0, d1, d2, d3);
get_debugreg(d6, 6);
get_debugreg(d7, 7);
printk("DR6: %08lx DR7: %08lx\n",
d6, d7);
}
void show_regs(struct pt_regs *regs)
{
__show_regs(regs, 1);
show_trace(NULL, regs, &regs->sp, regs->bp);
}
/*
* This gets run with %bx containing the
* function to call, and %dx containing
* the "args".
*/
extern void kernel_thread_helper(void);
/*
* Create a kernel thread
*/
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
struct pt_regs regs;
memset(&regs, 0, sizeof(regs));
regs.bx = (unsigned long) fn;
regs.dx = (unsigned long) arg;
regs.ds = __USER_DS;
regs.es = __USER_DS;
regs.fs = __KERNEL_PERCPU;
regs.orig_ax = -1;
regs.ip = (unsigned long) kernel_thread_helper;
regs.cs = __KERNEL_CS | get_kernel_rpl();
regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
/* Ok, create the new process.. */
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
}
EXPORT_SYMBOL(kernel_thread);
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
/* The process may have allocated an io port bitmap... nuke it. */
if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
struct task_struct *tsk = current;
struct thread_struct *t = &tsk->thread;
int cpu = get_cpu();
struct tss_struct *tss = &per_cpu(init_tss, cpu);
kfree(t->io_bitmap_ptr);
t->io_bitmap_ptr = NULL;
clear_thread_flag(TIF_IO_BITMAP);
/*
* Careful, clear this in the TSS too:
*/
memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
t->io_bitmap_max = 0;
tss->io_bitmap_owner = NULL;
tss->io_bitmap_max = 0;
tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
put_cpu();
}
#ifdef CONFIG_X86_DS
/* Free any DS contexts that have not been properly released. */
if (unlikely(current->thread.ds_ctx)) {
/* we clear debugctl to make sure DS is not used. */
update_debugctlmsr(0);
ds_free(current->thread.ds_ctx);
}
#endif /* CONFIG_X86_DS */
}
void flush_thread(void)
{
struct task_struct *tsk = current;
tsk->thread.debugreg0 = 0;
tsk->thread.debugreg1 = 0;
tsk->thread.debugreg2 = 0;
tsk->thread.debugreg3 = 0;
tsk->thread.debugreg6 = 0;
tsk->thread.debugreg7 = 0;
memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
clear_tsk_thread_flag(tsk, TIF_DEBUG);
/*
* Forget coprocessor state..
*/
tsk->fpu_counter = 0;
clear_fpu(tsk);
clear_used_math();
}
void release_thread(struct task_struct *dead_task)
{
BUG_ON(dead_task->mm);
release_vm86_irqs(dead_task);
}
/*
* This gets called before we allocate a new thread and copy
* the current task into it.
*/
void prepare_to_copy(struct task_struct *tsk)
{
unlazy_fpu(tsk);
}
int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
unsigned long unused,
struct task_struct * p, struct pt_regs * regs)
{
struct pt_regs * childregs;
struct task_struct *tsk;
int err;
childregs = task_pt_regs(p);
*childregs = *regs;
childregs->ax = 0;
childregs->sp = sp;
p->thread.sp = (unsigned long) childregs;
p->thread.sp0 = (unsigned long) (childregs+1);
p->thread.ip = (unsigned long) ret_from_fork;
savesegment(gs, p->thread.gs);
tsk = current;
if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
IO_BITMAP_BYTES, GFP_KERNEL);
if (!p->thread.io_bitmap_ptr) {
p->thread.io_bitmap_max = 0;
return -ENOMEM;
}
set_tsk_thread_flag(p, TIF_IO_BITMAP);
}
err = 0;
/*
* Set a new TLS for the child thread?
*/
if (clone_flags & CLONE_SETTLS)
err = do_set_thread_area(p, -1,
(struct user_desc __user *)childregs->si, 0);
if (err && p->thread.io_bitmap_ptr) {
kfree(p->thread.io_bitmap_ptr);
p->thread.io_bitmap_max = 0;
}
return err;
}
void
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
{
__asm__("movl %0, %%gs" :: "r"(0));
regs->fs = 0;
set_fs(USER_DS);
regs->ds = __USER_DS;
regs->es = __USER_DS;
regs->ss = __USER_DS;
regs->cs = __USER_CS;
regs->ip = new_ip;
regs->sp = new_sp;
/*
* Free the old FP and other extended state
*/
free_thread_xstate(current);
}
EXPORT_SYMBOL_GPL(start_thread);
static void hard_disable_TSC(void)
{
write_cr4(read_cr4() | X86_CR4_TSD);
}
void disable_TSC(void)
{
preempt_disable();
if (!test_and_set_thread_flag(TIF_NOTSC))
/*
* Must flip the CPU state synchronously with
* TIF_NOTSC in the current running context.
*/
hard_disable_TSC();
preempt_enable();
}
static void hard_enable_TSC(void)
{
write_cr4(read_cr4() & ~X86_CR4_TSD);
}
static void enable_TSC(void)
{
preempt_disable();
if (test_and_clear_thread_flag(TIF_NOTSC))
/*
* Must flip the CPU state synchronously with
* TIF_NOTSC in the current running context.
*/
hard_enable_TSC();
preempt_enable();
}
int get_tsc_mode(unsigned long adr)
{
unsigned int val;
if (test_thread_flag(TIF_NOTSC))
val = PR_TSC_SIGSEGV;
else
val = PR_TSC_ENABLE;
return put_user(val, (unsigned int __user *)adr);
}
int set_tsc_mode(unsigned int val)
{
if (val == PR_TSC_SIGSEGV)
disable_TSC();
else if (val == PR_TSC_ENABLE)
enable_TSC();
else
return -EINVAL;
return 0;
}
#ifdef CONFIG_X86_DS
static int update_debugctl(struct thread_struct *prev,
struct thread_struct *next, unsigned long debugctl)
{
unsigned long ds_prev = 0;
unsigned long ds_next = 0;
if (prev->ds_ctx)
ds_prev = (unsigned long)prev->ds_ctx->ds;
if (next->ds_ctx)
ds_next = (unsigned long)next->ds_ctx->ds;
if (ds_next != ds_prev) {
/* we clear debugctl to make sure DS
* is not in use when we change it */
debugctl = 0;
update_debugctlmsr(0);
wrmsr(MSR_IA32_DS_AREA, ds_next, 0);
}
return debugctl;
}
#else
static int update_debugctl(struct thread_struct *prev,
struct thread_struct *next, unsigned long debugctl)
{
return debugctl;
}
#endif /* CONFIG_X86_DS */
static noinline void
__switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
struct tss_struct *tss)
{
struct thread_struct *prev, *next;
unsigned long debugctl;
prev = &prev_p->thread;
next = &next_p->thread;
debugctl = update_debugctl(prev, next, prev->debugctlmsr);
if (next->debugctlmsr != debugctl)
update_debugctlmsr(next->debugctlmsr);
if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
set_debugreg(next->debugreg0, 0);
set_debugreg(next->debugreg1, 1);
set_debugreg(next->debugreg2, 2);
set_debugreg(next->debugreg3, 3);
/* no 4 and 5 */
set_debugreg(next->debugreg6, 6);
set_debugreg(next->debugreg7, 7);
}
if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
test_tsk_thread_flag(next_p, TIF_NOTSC)) {
/* prev and next are different */
if (test_tsk_thread_flag(next_p, TIF_NOTSC))
hard_disable_TSC();
else
hard_enable_TSC();
}
#ifdef CONFIG_X86_PTRACE_BTS
if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
#endif /* CONFIG_X86_PTRACE_BTS */
if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
/*
* Disable the bitmap via an invalid offset. We still cache
* the previous bitmap owner and the IO bitmap contents:
*/
tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
return;
}
if (likely(next == tss->io_bitmap_owner)) {
/*
* Previous owner of the bitmap (hence the bitmap content)
* matches the next task, we dont have to do anything but
* to set a valid offset in the TSS:
*/
tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
return;
}
/*
* Lazy TSS's I/O bitmap copy. We set an invalid offset here
* and we let the task to get a GPF in case an I/O instruction
* is performed. The handler of the GPF will verify that the
* faulting task has a valid I/O bitmap and, it true, does the
* real copy and restart the instruction. This will save us
* redundant copies when the currently switched task does not
* perform any I/O during its timeslice.
*/
tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
}
/*
* switch_to(x,yn) should switch tasks from x to y.
*
* We fsave/fwait so that an exception goes off at the right time
* (as a call from the fsave or fwait in effect) rather than to
* the wrong process. Lazy FP saving no longer makes any sense
* with modern CPU's, and this simplifies a lot of things (SMP
* and UP become the same).
*
* NOTE! We used to use the x86 hardware context switching. The
* reason for not using it any more becomes apparent when you
* try to recover gracefully from saved state that is no longer
* valid (stale segment register values in particular). With the
* hardware task-switch, there is no way to fix up bad state in
* a reasonable manner.
*
* The fact that Intel documents the hardware task-switching to
* be slow is a fairly red herring - this code is not noticeably
* faster. However, there _is_ some room for improvement here,
* so the performance issues may eventually be a valid point.
* More important, however, is the fact that this allows us much
* more flexibility.
*
* The return value (in %ax) will be the "prev" task after
* the task-switch, and shows up in ret_from_fork in entry.S,
* for example.
*/
struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
struct thread_struct *prev = &prev_p->thread,
*next = &next_p->thread;
int cpu = smp_processor_id();
struct tss_struct *tss = &per_cpu(init_tss, cpu);
/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
__unlazy_fpu(prev_p);
/* we're going to use this soon, after a few expensive things */
if (next_p->fpu_counter > 5)
prefetch(next->xstate);
/*
* Reload esp0.
*/
load_sp0(tss, next);
/*
* Save away %gs. No need to save %fs, as it was saved on the
* stack on entry. No need to save %es and %ds, as those are
* always kernel segments while inside the kernel. Doing this
* before setting the new TLS descriptors avoids the situation
* where we temporarily have non-reloadable segments in %fs
* and %gs. This could be an issue if the NMI handler ever
* used %fs or %gs (it does not today), or if the kernel is
* running inside of a hypervisor layer.
*/
savesegment(gs, prev->gs);
/*
* Load the per-thread Thread-Local Storage descriptor.
*/
load_TLS(next, cpu);
/*
* Restore IOPL if needed. In normal use, the flags restore
* in the switch assembly will handle this. But if the kernel
* is running virtualized at a non-zero CPL, the popf will
* not restore flags, so it must be done in a separate step.
*/
if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
set_iopl_mask(next->iopl);
/*
* Now maybe handle debug registers and/or IO bitmaps
*/
if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
__switch_to_xtra(prev_p, next_p, tss);
/*
* Leave lazy mode, flushing any hypercalls made here.
* This must be done before restoring TLS segments so
* the GDT and LDT are properly updated, and must be
* done before math_state_restore, so the TS bit is up
* to date.
*/
arch_leave_lazy_cpu_mode();
/* If the task has used fpu the last 5 timeslices, just do a full
* restore of the math state immediately to avoid the trap; the
* chances of needing FPU soon are obviously high now
*
* tsk_used_math() checks prevent calling math_state_restore(),
* which can sleep in the case of !tsk_used_math()
*/
if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
math_state_restore();
/*
* Restore %gs if needed (which is common)
*/
if (prev->gs | next->gs)
loadsegment(gs, next->gs);
x86_write_percpu(current_task, next_p);
return prev_p;
}
asmlinkage int sys_fork(struct pt_regs regs)
{
return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
}
asmlinkage int sys_clone(struct pt_regs regs)
{
unsigned long clone_flags;
unsigned long newsp;
int __user *parent_tidptr, *child_tidptr;
clone_flags = regs.bx;
newsp = regs.cx;
parent_tidptr = (int __user *)regs.dx;
child_tidptr = (int __user *)regs.di;
if (!newsp)
newsp = regs.sp;
return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
}
/*
* This is trivial, and on the face of it looks like it
* could equally well be done in user mode.
*
* Not so, for quite unobvious reasons - register pressure.
* In user mode vfork() cannot have a stack frame, and if
* done by calling the "clone()" system call directly, you
* do not have enough call-clobbered registers to hold all
* the information you need.
*/
asmlinkage int sys_vfork(struct pt_regs regs)
{
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
}
/*
* sys_execve() executes a new program.
*/
asmlinkage int sys_execve(struct pt_regs regs)
{
int error;
char * filename;
filename = getname((char __user *) regs.bx);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename,
(char __user * __user *) regs.cx,
(char __user * __user *) regs.dx,
&regs);
if (error == 0) {
/* Make sure we don't return using sysenter.. */
set_thread_flag(TIF_IRET);
}
putname(filename);
out:
return error;
}
#define top_esp (THREAD_SIZE - sizeof(unsigned long))
#define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
unsigned long get_wchan(struct task_struct *p)
{
unsigned long bp, sp, ip;
unsigned long stack_page;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
stack_page = (unsigned long)task_stack_page(p);
sp = p->thread.sp;
if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
return 0;
/* include/asm-i386/system.h:switch_to() pushes bp last. */
bp = *(unsigned long *) sp;
do {
if (bp < stack_page || bp > top_ebp+stack_page)
return 0;
ip = *(unsigned long *) (bp+4);
if (!in_sched_functions(ip))
return ip;
bp = *(unsigned long *) bp;
} while (count++ < 16);
return 0;
}
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() % 8192;
return sp & ~0xf;
}
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
unsigned long range_end = mm->brk + 0x02000000;
return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}