linux/arch/arc/kernel/time.c

292 lines
7.3 KiB
C

/*
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* vineetg: Jan 1011
* -sched_clock( ) no longer jiffies based. Uses the same clocksource
* as gtod
*
* Rajeshwarr/Vineetg: Mar 2008
* -Implemented CONFIG_GENERIC_TIME (rather deleted arch specific code)
* for arch independent gettimeofday()
* -Implemented CONFIG_GENERIC_CLOCKEVENTS as base for hrtimers
*
* Vineetg: Mar 2008: Forked off from time.c which now is time-jiff.c
*/
/* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1
* Each can programmed to go from @count to @limit and optionally
* interrupt when that happens.
* A write to Control Register clears the Interrupt
*
* We've designated TIMER0 for events (clockevents)
* while TIMER1 for free running (clocksource)
*
* Newer ARC700 cores have 64bit clk fetching RTSC insn, preferred over TIMER1
* which however is currently broken
*/
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/timex.h>
#include <linux/profile.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <asm/irq.h>
#include <asm/arcregs.h>
#include <asm/clk.h>
#include <asm/mach_desc.h>
#include <asm/mcip.h>
/* Timer related Aux registers */
#define ARC_REG_TIMER0_LIMIT 0x23 /* timer 0 limit */
#define ARC_REG_TIMER0_CTRL 0x22 /* timer 0 control */
#define ARC_REG_TIMER0_CNT 0x21 /* timer 0 count */
#define ARC_REG_TIMER1_LIMIT 0x102 /* timer 1 limit */
#define ARC_REG_TIMER1_CTRL 0x101 /* timer 1 control */
#define ARC_REG_TIMER1_CNT 0x100 /* timer 1 count */
#define TIMER_CTRL_IE (1 << 0) /* Interupt when Count reachs limit */
#define TIMER_CTRL_NH (1 << 1) /* Count only when CPU NOT halted */
#define ARC_TIMER_MAX 0xFFFFFFFF
/********** Clock Source Device *********/
#ifdef CONFIG_ARC_HAS_GRTC
static int arc_counter_setup(void)
{
return 1;
}
static cycle_t arc_counter_read(struct clocksource *cs)
{
unsigned long flags;
union {
#ifdef CONFIG_CPU_BIG_ENDIAN
struct { u32 h, l; };
#else
struct { u32 l, h; };
#endif
cycle_t full;
} stamp;
local_irq_save(flags);
__mcip_cmd(CMD_GRTC_READ_LO, 0);
stamp.l = read_aux_reg(ARC_REG_MCIP_READBACK);
__mcip_cmd(CMD_GRTC_READ_HI, 0);
stamp.h = read_aux_reg(ARC_REG_MCIP_READBACK);
local_irq_restore(flags);
return stamp.full;
}
static struct clocksource arc_counter = {
.name = "ARConnect GRTC",
.rating = 400,
.read = arc_counter_read,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
#else
#ifdef CONFIG_ARC_HAS_RTC
#define AUX_RTC_CTRL 0x103
#define AUX_RTC_LOW 0x104
#define AUX_RTC_HIGH 0x105
int arc_counter_setup(void)
{
write_aux_reg(AUX_RTC_CTRL, 1);
/* Not usable in SMP */
return !IS_ENABLED(CONFIG_SMP);
}
static cycle_t arc_counter_read(struct clocksource *cs)
{
unsigned long status;
union {
#ifdef CONFIG_CPU_BIG_ENDIAN
struct { u32 high, low; };
#else
struct { u32 low, high; };
#endif
cycle_t full;
} stamp;
__asm__ __volatile(
"1: \n"
" lr %0, [AUX_RTC_LOW] \n"
" lr %1, [AUX_RTC_HIGH] \n"
" lr %2, [AUX_RTC_CTRL] \n"
" bbit0.nt %2, 31, 1b \n"
: "=r" (stamp.low), "=r" (stamp.high), "=r" (status));
return stamp.full;
}
static struct clocksource arc_counter = {
.name = "ARCv2 RTC",
.rating = 350,
.read = arc_counter_read,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
#else /* !CONFIG_ARC_HAS_RTC */
/*
* set 32bit TIMER1 to keep counting monotonically and wraparound
*/
int arc_counter_setup(void)
{
write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMER_MAX);
write_aux_reg(ARC_REG_TIMER1_CNT, 0);
write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
/* Not usable in SMP */
return !IS_ENABLED(CONFIG_SMP);
}
static cycle_t arc_counter_read(struct clocksource *cs)
{
return (cycle_t) read_aux_reg(ARC_REG_TIMER1_CNT);
}
static struct clocksource arc_counter = {
.name = "ARC Timer1",
.rating = 300,
.read = arc_counter_read,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
#endif
#endif
/********** Clock Event Device *********/
/*
* Arm the timer to interrupt after @cycles
* The distinction for oneshot/periodic is done in arc_event_timer_ack() below
*/
static void arc_timer_event_setup(unsigned int cycles)
{
write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
}
static int arc_clkevent_set_next_event(unsigned long delta,
struct clock_event_device *dev)
{
arc_timer_event_setup(delta);
return 0;
}
static int arc_clkevent_set_periodic(struct clock_event_device *dev)
{
/*
* At X Hz, 1 sec = 1000ms -> X cycles;
* 10ms -> X / 100 cycles
*/
arc_timer_event_setup(arc_get_core_freq() / HZ);
return 0;
}
static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
.name = "ARC Timer0",
.features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_PERIODIC,
.rating = 300,
.irq = TIMER0_IRQ, /* hardwired, no need for resources */
.set_next_event = arc_clkevent_set_next_event,
.set_state_periodic = arc_clkevent_set_periodic,
};
static irqreturn_t timer_irq_handler(int irq, void *dev_id)
{
/*
* Note that generic IRQ core could have passed @evt for @dev_id if
* irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
*/
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
int irq_reenable = clockevent_state_periodic(evt);
/*
* Any write to CTRL reg ACks the interrupt, we rewrite the
* Count when [N]ot [H]alted bit.
* And re-arm it if perioid by [I]nterrupt [E]nable bit
*/
write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
evt->event_handler(evt);
return IRQ_HANDLED;
}
/*
* Setup the local event timer for @cpu
*/
void arc_local_timer_setup()
{
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
int cpu = smp_processor_id();
evt->cpumask = cpumask_of(cpu);
clockevents_config_and_register(evt, arc_get_core_freq(),
0, ARC_TIMER_MAX);
/* setup the per-cpu timer IRQ handler - for all cpus */
arc_request_percpu_irq(TIMER0_IRQ, cpu, timer_irq_handler,
"Timer0 (per-cpu-tick)", evt);
}
/*
* Called from start_kernel() - boot CPU only
*
* -Sets up h/w timers as applicable on boot cpu
* -Also sets up any global state needed for timer subsystem:
* - for "counting" timer, registers a clocksource, usable across CPUs
* (provided that underlying counter h/w is synchronized across cores)
* - for "event" timer, sets up TIMER0 IRQ (as that is platform agnostic)
*/
void __init time_init(void)
{
/*
* sets up the timekeeping free-flowing counter which also returns
* whether the counter is usable as clocksource
*/
if (arc_counter_setup())
/*
* CLK upto 4.29 GHz can be safely represented in 32 bits
* because Max 32 bit number is 4,294,967,295
*/
clocksource_register_hz(&arc_counter, arc_get_core_freq());
/* sets up the periodic event timer */
arc_local_timer_setup();
if (machine_desc->init_time)
machine_desc->init_time();
}