linux/drivers/gpu/drm/i915/intel_lrc.c

2986 lines
88 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
* Michel Thierry <michel.thierry@intel.com>
* Thomas Daniel <thomas.daniel@intel.com>
* Oscar Mateo <oscar.mateo@intel.com>
*
*/
/**
* DOC: Logical Rings, Logical Ring Contexts and Execlists
*
* Motivation:
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
* These expanded contexts enable a number of new abilities, especially
* "Execlists" (also implemented in this file).
*
* One of the main differences with the legacy HW contexts is that logical
* ring contexts incorporate many more things to the context's state, like
* PDPs or ringbuffer control registers:
*
* The reason why PDPs are included in the context is straightforward: as
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
* instead, the GPU will do it for you on the context switch.
*
* But, what about the ringbuffer control registers (head, tail, etc..)?
* shouldn't we just need a set of those per engine command streamer? This is
* where the name "Logical Rings" starts to make sense: by virtualizing the
* rings, the engine cs shifts to a new "ring buffer" with every context
* switch. When you want to submit a workload to the GPU you: A) choose your
* context, B) find its appropriate virtualized ring, C) write commands to it
* and then, finally, D) tell the GPU to switch to that context.
*
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
* to a contexts is via a context execution list, ergo "Execlists".
*
* LRC implementation:
* Regarding the creation of contexts, we have:
*
* - One global default context.
* - One local default context for each opened fd.
* - One local extra context for each context create ioctl call.
*
* Now that ringbuffers belong per-context (and not per-engine, like before)
* and that contexts are uniquely tied to a given engine (and not reusable,
* like before) we need:
*
* - One ringbuffer per-engine inside each context.
* - One backing object per-engine inside each context.
*
* The global default context starts its life with these new objects fully
* allocated and populated. The local default context for each opened fd is
* more complex, because we don't know at creation time which engine is going
* to use them. To handle this, we have implemented a deferred creation of LR
* contexts:
*
* The local context starts its life as a hollow or blank holder, that only
* gets populated for a given engine once we receive an execbuffer. If later
* on we receive another execbuffer ioctl for the same context but a different
* engine, we allocate/populate a new ringbuffer and context backing object and
* so on.
*
* Finally, regarding local contexts created using the ioctl call: as they are
* only allowed with the render ring, we can allocate & populate them right
* away (no need to defer anything, at least for now).
*
* Execlists implementation:
* Execlists are the new method by which, on gen8+ hardware, workloads are
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
* This method works as follows:
*
* When a request is committed, its commands (the BB start and any leading or
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
* for the appropriate context. The tail pointer in the hardware context is not
* updated at this time, but instead, kept by the driver in the ringbuffer
* structure. A structure representing this request is added to a request queue
* for the appropriate engine: this structure contains a copy of the context's
* tail after the request was written to the ring buffer and a pointer to the
* context itself.
*
* If the engine's request queue was empty before the request was added, the
* queue is processed immediately. Otherwise the queue will be processed during
* a context switch interrupt. In any case, elements on the queue will get sent
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
* globally unique 20-bits submission ID.
*
* When execution of a request completes, the GPU updates the context status
* buffer with a context complete event and generates a context switch interrupt.
* During the interrupt handling, the driver examines the events in the buffer:
* for each context complete event, if the announced ID matches that on the head
* of the request queue, then that request is retired and removed from the queue.
*
* After processing, if any requests were retired and the queue is not empty
* then a new execution list can be submitted. The two requests at the front of
* the queue are next to be submitted but since a context may not occur twice in
* an execution list, if subsequent requests have the same ID as the first then
* the two requests must be combined. This is done simply by discarding requests
* at the head of the queue until either only one requests is left (in which case
* we use a NULL second context) or the first two requests have unique IDs.
*
* By always executing the first two requests in the queue the driver ensures
* that the GPU is kept as busy as possible. In the case where a single context
* completes but a second context is still executing, the request for this second
* context will be at the head of the queue when we remove the first one. This
* request will then be resubmitted along with a new request for a different context,
* which will cause the hardware to continue executing the second request and queue
* the new request (the GPU detects the condition of a context getting preempted
* with the same context and optimizes the context switch flow by not doing
* preemption, but just sampling the new tail pointer).
*
*/
#include <linux/interrupt.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_gem_render_state.h"
#include "i915_reset.h"
#include "i915_vgpu.h"
#include "intel_lrc_reg.h"
#include "intel_mocs.h"
#include "intel_workarounds.h"
#define RING_EXECLIST_QFULL (1 << 0x2)
#define RING_EXECLIST1_VALID (1 << 0x3)
#define RING_EXECLIST0_VALID (1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
#define GEN8_CTX_STATUS_COMPLETED_MASK \
(GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
#define WA_TAIL_DWORDS 2
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
#define ACTIVE_PRIORITY (I915_PRIORITY_NEWCLIENT | I915_PRIORITY_NOSEMAPHORE)
static int execlists_context_deferred_alloc(struct intel_context *ce,
struct intel_engine_cs *engine);
static void execlists_init_reg_state(u32 *reg_state,
struct intel_context *ce,
struct intel_engine_cs *engine,
struct intel_ring *ring);
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static inline int rq_prio(const struct i915_request *rq)
{
return rq->sched.attr.priority;
}
static int effective_prio(const struct i915_request *rq)
{
int prio = rq_prio(rq);
/*
* On unwinding the active request, we give it a priority bump
* equivalent to a freshly submitted request. This protects it from
* being gazumped again, but it would be preferable if we didn't
* let it be gazumped in the first place!
*
* See __unwind_incomplete_requests()
*/
if (~prio & ACTIVE_PRIORITY && __i915_request_has_started(rq)) {
/*
* After preemption, we insert the active request at the
* end of the new priority level. This means that we will be
* _lower_ priority than the preemptee all things equal (and
* so the preemption is valid), so adjust our comparison
* accordingly.
*/
prio |= ACTIVE_PRIORITY;
prio--;
}
/* Restrict mere WAIT boosts from triggering preemption */
return prio | __NO_PREEMPTION;
}
static int queue_prio(const struct intel_engine_execlists *execlists)
{
struct i915_priolist *p;
struct rb_node *rb;
rb = rb_first_cached(&execlists->queue);
if (!rb)
return INT_MIN;
/*
* As the priolist[] are inverted, with the highest priority in [0],
* we have to flip the index value to become priority.
*/
p = to_priolist(rb);
return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}
static inline bool need_preempt(const struct intel_engine_cs *engine,
const struct i915_request *rq)
{
int last_prio;
if (!engine->preempt_context)
return false;
if (i915_request_completed(rq))
return false;
/*
* Check if the current priority hint merits a preemption attempt.
*
* We record the highest value priority we saw during rescheduling
* prior to this dequeue, therefore we know that if it is strictly
* less than the current tail of ESLP[0], we do not need to force
* a preempt-to-idle cycle.
*
* However, the priority hint is a mere hint that we may need to
* preempt. If that hint is stale or we may be trying to preempt
* ourselves, ignore the request.
*/
last_prio = effective_prio(rq);
if (!__execlists_need_preempt(engine->execlists.queue_priority_hint,
last_prio))
return false;
/*
* Check against the first request in ELSP[1], it will, thanks to the
* power of PI, be the highest priority of that context.
*/
if (!list_is_last(&rq->link, &engine->timeline.requests) &&
rq_prio(list_next_entry(rq, link)) > last_prio)
return true;
/*
* If the inflight context did not trigger the preemption, then maybe
* it was the set of queued requests? Pick the highest priority in
* the queue (the first active priolist) and see if it deserves to be
* running instead of ELSP[0].
*
* The highest priority request in the queue can not be either
* ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
* context, it's priority would not exceed ELSP[0] aka last_prio.
*/
return queue_prio(&engine->execlists) > last_prio;
}
__maybe_unused static inline bool
assert_priority_queue(const struct i915_request *prev,
const struct i915_request *next)
{
const struct intel_engine_execlists *execlists =
&prev->engine->execlists;
/*
* Without preemption, the prev may refer to the still active element
* which we refuse to let go.
*
* Even with preemption, there are times when we think it is better not
* to preempt and leave an ostensibly lower priority request in flight.
*/
if (port_request(execlists->port) == prev)
return true;
return rq_prio(prev) >= rq_prio(next);
}
/*
* The context descriptor encodes various attributes of a context,
* including its GTT address and some flags. Because it's fairly
* expensive to calculate, we'll just do it once and cache the result,
* which remains valid until the context is unpinned.
*
* This is what a descriptor looks like, from LSB to MSB::
*
* bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
* bits 12-31: LRCA, GTT address of (the HWSP of) this context
* bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC)
* bits 53-54: mbz, reserved for use by hardware
* bits 55-63: group ID, currently unused and set to 0
*
* Starting from Gen11, the upper dword of the descriptor has a new format:
*
* bits 32-36: reserved
* bits 37-47: SW context ID
* bits 48:53: engine instance
* bit 54: mbz, reserved for use by hardware
* bits 55-60: SW counter
* bits 61-63: engine class
*
* engine info, SW context ID and SW counter need to form a unique number
* (Context ID) per lrc.
*/
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
{
struct i915_gem_context *ctx = ce->gem_context;
u64 desc;
BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
desc = ctx->desc_template; /* bits 0-11 */
GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
/* bits 12-31 */
GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
/*
* The following 32bits are copied into the OA reports (dword 2).
* Consider updating oa_get_render_ctx_id in i915_perf.c when changing
* anything below.
*/
if (INTEL_GEN(engine->i915) >= 11) {
GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
/* bits 37-47 */
desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
/* bits 48-53 */
/* TODO: decide what to do with SW counter (bits 55-60) */
desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
/* bits 61-63 */
} else {
GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
}
return desc;
}
static void unwind_wa_tail(struct i915_request *rq)
{
rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
assert_ring_tail_valid(rq->ring, rq->tail);
}
static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs *engine)
{
struct i915_request *rq, *rn, *active = NULL;
struct list_head *uninitialized_var(pl);
int prio = I915_PRIORITY_INVALID | ACTIVE_PRIORITY;
lockdep_assert_held(&engine->timeline.lock);
list_for_each_entry_safe_reverse(rq, rn,
&engine->timeline.requests,
link) {
if (i915_request_completed(rq))
break;
__i915_request_unsubmit(rq);
unwind_wa_tail(rq);
GEM_BUG_ON(rq->hw_context->active);
GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
if (rq_prio(rq) != prio) {
prio = rq_prio(rq);
pl = i915_sched_lookup_priolist(engine, prio);
}
GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
list_add(&rq->sched.link, pl);
active = rq;
}
/*
* The active request is now effectively the start of a new client
* stream, so give it the equivalent small priority bump to prevent
* it being gazumped a second time by another peer.
*
* Note we have to be careful not to apply a priority boost to a request
* still spinning on its semaphores. If the request hasn't started, that
* means it is still waiting for its dependencies to be signaled, and
* if we apply a priority boost to this request, we will boost it past
* its signalers and so break PI.
*
* One consequence of this preemption boost is that we may jump
* over lesser priorities (such as I915_PRIORITY_WAIT), effectively
* making those priorities non-preemptible. They will be moved forward
* in the priority queue, but they will not gain immediate access to
* the GPU.
*/
if (~prio & ACTIVE_PRIORITY && __i915_request_has_started(active)) {
prio |= ACTIVE_PRIORITY;
active->sched.attr.priority = prio;
list_move_tail(&active->sched.link,
i915_sched_lookup_priolist(engine, prio));
}
return active;
}
void
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
struct intel_engine_cs *engine =
container_of(execlists, typeof(*engine), execlists);
__unwind_incomplete_requests(engine);
}
static inline void
execlists_context_status_change(struct i915_request *rq, unsigned long status)
{
/*
* Only used when GVT-g is enabled now. When GVT-g is disabled,
* The compiler should eliminate this function as dead-code.
*/
if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
return;
atomic_notifier_call_chain(&rq->engine->context_status_notifier,
status, rq);
}
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
const struct execlist_port *port)
{
execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}
inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}
static inline void
execlists_context_schedule_in(struct i915_request *rq)
{
GEM_BUG_ON(rq->hw_context->active);
execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
intel_engine_context_in(rq->engine);
rq->hw_context->active = rq->engine;
}
static inline void
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
{
rq->hw_context->active = NULL;
intel_engine_context_out(rq->engine);
execlists_context_status_change(rq, status);
trace_i915_request_out(rq);
}
static u64 execlists_update_context(struct i915_request *rq)
{
struct intel_context *ce = rq->hw_context;
ce->lrc_reg_state[CTX_RING_TAIL + 1] =
intel_ring_set_tail(rq->ring, rq->tail);
/*
* Make sure the context image is complete before we submit it to HW.
*
* Ostensibly, writes (including the WCB) should be flushed prior to
* an uncached write such as our mmio register access, the empirical
* evidence (esp. on Braswell) suggests that the WC write into memory
* may not be visible to the HW prior to the completion of the UC
* register write and that we may begin execution from the context
* before its image is complete leading to invalid PD chasing.
*
* Furthermore, Braswell, at least, wants a full mb to be sure that
* the writes are coherent in memory (visible to the GPU) prior to
* execution, and not just visible to other CPUs (as is the result of
* wmb).
*/
mb();
return ce->lrc_desc;
}
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
{
if (execlists->ctrl_reg) {
writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
} else {
writel(upper_32_bits(desc), execlists->submit_reg);
writel(lower_32_bits(desc), execlists->submit_reg);
}
}
static void execlists_submit_ports(struct intel_engine_cs *engine)
{
struct intel_engine_execlists *execlists = &engine->execlists;
struct execlist_port *port = execlists->port;
unsigned int n;
/*
* We can skip acquiring intel_runtime_pm_get() here as it was taken
* on our behalf by the request (see i915_gem_mark_busy()) and it will
* not be relinquished until the device is idle (see
* i915_gem_idle_work_handler()). As a precaution, we make sure
* that all ELSP are drained i.e. we have processed the CSB,
* before allowing ourselves to idle and calling intel_runtime_pm_put().
*/
GEM_BUG_ON(!engine->i915->gt.awake);
/*
* ELSQ note: the submit queue is not cleared after being submitted
* to the HW so we need to make sure we always clean it up. This is
* currently ensured by the fact that we always write the same number
* of elsq entries, keep this in mind before changing the loop below.
*/
for (n = execlists_num_ports(execlists); n--; ) {
struct i915_request *rq;
unsigned int count;
u64 desc;
rq = port_unpack(&port[n], &count);
if (rq) {
GEM_BUG_ON(count > !n);
if (!count++)
execlists_context_schedule_in(rq);
port_set(&port[n], port_pack(rq, count));
desc = execlists_update_context(rq);
GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
GEM_TRACE("%s in[%d]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
engine->name, n,
port[n].context_id, count,
rq->fence.context, rq->fence.seqno,
hwsp_seqno(rq),
rq_prio(rq));
} else {
GEM_BUG_ON(!n);
desc = 0;
}
write_desc(execlists, desc, n);
}
/* we need to manually load the submit queue */
if (execlists->ctrl_reg)
writel(EL_CTRL_LOAD, execlists->ctrl_reg);
execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
}
static bool ctx_single_port_submission(const struct intel_context *ce)
{
return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
i915_gem_context_force_single_submission(ce->gem_context));
}
static bool can_merge_ctx(const struct intel_context *prev,
const struct intel_context *next)
{
if (prev != next)
return false;
if (ctx_single_port_submission(prev))
return false;
return true;
}
static bool can_merge_rq(const struct i915_request *prev,
const struct i915_request *next)
{
GEM_BUG_ON(!assert_priority_queue(prev, next));
if (!can_merge_ctx(prev->hw_context, next->hw_context))
return false;
return true;
}
static void port_assign(struct execlist_port *port, struct i915_request *rq)
{
GEM_BUG_ON(rq == port_request(port));
if (port_isset(port))
i915_request_put(port_request(port));
port_set(port, port_pack(i915_request_get(rq), port_count(port)));
}
static void inject_preempt_context(struct intel_engine_cs *engine)
{
struct intel_engine_execlists *execlists = &engine->execlists;
struct intel_context *ce = engine->preempt_context;
unsigned int n;
GEM_BUG_ON(execlists->preempt_complete_status !=
upper_32_bits(ce->lrc_desc));
/*
* Switch to our empty preempt context so
* the state of the GPU is known (idle).
*/
GEM_TRACE("%s\n", engine->name);
for (n = execlists_num_ports(execlists); --n; )
write_desc(execlists, 0, n);
write_desc(execlists, ce->lrc_desc, n);
/* we need to manually load the submit queue */
if (execlists->ctrl_reg)
writel(EL_CTRL_LOAD, execlists->ctrl_reg);
execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
}
static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
if (inject_preempt_hang(execlists))
return;
execlists_cancel_port_requests(execlists);
__unwind_incomplete_requests(container_of(execlists,
struct intel_engine_cs,
execlists));
}
static void execlists_dequeue(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct execlist_port *port = execlists->port;
const struct execlist_port * const last_port =
&execlists->port[execlists->port_mask];
struct i915_request *last = port_request(port);
struct rb_node *rb;
bool submit = false;
/*
* Hardware submission is through 2 ports. Conceptually each port
* has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
* static for a context, and unique to each, so we only execute
* requests belonging to a single context from each ring. RING_HEAD
* is maintained by the CS in the context image, it marks the place
* where it got up to last time, and through RING_TAIL we tell the CS
* where we want to execute up to this time.
*
* In this list the requests are in order of execution. Consecutive
* requests from the same context are adjacent in the ringbuffer. We
* can combine these requests into a single RING_TAIL update:
*
* RING_HEAD...req1...req2
* ^- RING_TAIL
* since to execute req2 the CS must first execute req1.
*
* Our goal then is to point each port to the end of a consecutive
* sequence of requests as being the most optimal (fewest wake ups
* and context switches) submission.
*/
if (last) {
/*
* Don't resubmit or switch until all outstanding
* preemptions (lite-restore) are seen. Then we
* know the next preemption status we see corresponds
* to this ELSP update.
*/
GEM_BUG_ON(!execlists_is_active(execlists,
EXECLISTS_ACTIVE_USER));
GEM_BUG_ON(!port_count(&port[0]));
/*
* If we write to ELSP a second time before the HW has had
* a chance to respond to the previous write, we can confuse
* the HW and hit "undefined behaviour". After writing to ELSP,
* we must then wait until we see a context-switch event from
* the HW to indicate that it has had a chance to respond.
*/
if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
return;
if (need_preempt(engine, last)) {
inject_preempt_context(engine);
return;
}
/*
* In theory, we could coalesce more requests onto
* the second port (the first port is active, with
* no preemptions pending). However, that means we
* then have to deal with the possible lite-restore
* of the second port (as we submit the ELSP, there
* may be a context-switch) but also we may complete
* the resubmission before the context-switch. Ergo,
* coalescing onto the second port will cause a
* preemption event, but we cannot predict whether
* that will affect port[0] or port[1].
*
* If the second port is already active, we can wait
* until the next context-switch before contemplating
* new requests. The GPU will be busy and we should be
* able to resubmit the new ELSP before it idles,
* avoiding pipeline bubbles (momentary pauses where
* the driver is unable to keep up the supply of new
* work). However, we have to double check that the
* priorities of the ports haven't been switch.
*/
if (port_count(&port[1]))
return;
/*
* WaIdleLiteRestore:bdw,skl
* Apply the wa NOOPs to prevent
* ring:HEAD == rq:TAIL as we resubmit the
* request. See gen8_emit_fini_breadcrumb() for
* where we prepare the padding after the
* end of the request.
*/
last->tail = last->wa_tail;
}
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
struct i915_request *rq, *rn;
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
/*
* Can we combine this request with the current port?
* It has to be the same context/ringbuffer and not
* have any exceptions (e.g. GVT saying never to
* combine contexts).
*
* If we can combine the requests, we can execute both
* by updating the RING_TAIL to point to the end of the
* second request, and so we never need to tell the
* hardware about the first.
*/
if (last && !can_merge_rq(last, rq)) {
/*
* If we are on the second port and cannot
* combine this request with the last, then we
* are done.
*/
if (port == last_port)
goto done;
/*
* We must not populate both ELSP[] with the
* same LRCA, i.e. we must submit 2 different
* contexts if we submit 2 ELSP.
*/
if (last->hw_context == rq->hw_context)
goto done;
/*
* If GVT overrides us we only ever submit
* port[0], leaving port[1] empty. Note that we
* also have to be careful that we don't queue
* the same context (even though a different
* request) to the second port.
*/
if (ctx_single_port_submission(last->hw_context) ||
ctx_single_port_submission(rq->hw_context))
goto done;
if (submit)
port_assign(port, last);
port++;
GEM_BUG_ON(port_isset(port));
}
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
trace_i915_request_in(rq, port_index(port, execlists));
last = rq;
submit = true;
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
done:
/*
* Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
*
* We choose the priority hint such that if we add a request of greater
* priority than this, we kick the submission tasklet to decide on
* the right order of submitting the requests to hardware. We must
* also be prepared to reorder requests as they are in-flight on the
* HW. We derive the priority hint then as the first "hole" in
* the HW submission ports and if there are no available slots,
* the priority of the lowest executing request, i.e. last.
*
* When we do receive a higher priority request ready to run from the
* user, see queue_request(), the priority hint is bumped to that
* request triggering preemption on the next dequeue (or subsequent
* interrupt for secondary ports).
*/
execlists->queue_priority_hint = queue_prio(execlists);
if (submit) {
port_assign(port, last);
execlists_submit_ports(engine);
}
/* We must always keep the beast fed if we have work piled up */
GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
!port_isset(execlists->port));
/* Re-evaluate the executing context setup after each preemptive kick */
if (last)
execlists_user_begin(execlists, execlists->port);
/* If the engine is now idle, so should be the flag; and vice versa. */
GEM_BUG_ON(execlists_is_active(&engine->execlists,
EXECLISTS_ACTIVE_USER) ==
!port_isset(engine->execlists.port));
}
void
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
{
struct execlist_port *port = execlists->port;
unsigned int num_ports = execlists_num_ports(execlists);
while (num_ports-- && port_isset(port)) {
struct i915_request *rq = port_request(port);
GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
rq->engine->name,
(unsigned int)(port - execlists->port),
rq->fence.context, rq->fence.seqno,
hwsp_seqno(rq));
GEM_BUG_ON(!execlists->active);
execlists_context_schedule_out(rq,
i915_request_completed(rq) ?
INTEL_CONTEXT_SCHEDULE_OUT :
INTEL_CONTEXT_SCHEDULE_PREEMPTED);
i915_request_put(rq);
memset(port, 0, sizeof(*port));
port++;
}
execlists_clear_all_active(execlists);
}
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
clflush((void *)first);
clflush((void *)last);
}
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
const unsigned int reset_value = GEN8_CSB_ENTRIES - 1;
/*
* After a reset, the HW starts writing into CSB entry [0]. We
* therefore have to set our HEAD pointer back one entry so that
* the *first* entry we check is entry 0. To complicate this further,
* as we don't wait for the first interrupt after reset, we have to
* fake the HW write to point back to the last entry so that our
* inline comparison of our cached head position against the last HW
* write works even before the first interrupt.
*/
execlists->csb_head = reset_value;
WRITE_ONCE(*execlists->csb_write, reset_value);
invalidate_csb_entries(&execlists->csb_status[0],
&execlists->csb_status[GEN8_CSB_ENTRIES - 1]);
}
static void nop_submission_tasklet(unsigned long data)
{
/* The driver is wedged; don't process any more events. */
}
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq, *rn;
struct rb_node *rb;
unsigned long flags;
GEM_TRACE("%s\n", engine->name);
/*
* Before we call engine->cancel_requests(), we should have exclusive
* access to the submission state. This is arranged for us by the
* caller disabling the interrupt generation, the tasklet and other
* threads that may then access the same state, giving us a free hand
* to reset state. However, we still need to let lockdep be aware that
* we know this state may be accessed in hardirq context, so we
* disable the irq around this manipulation and we want to keep
* the spinlock focused on its duties and not accidentally conflate
* coverage to the submission's irq state. (Similarly, although we
* shouldn't need to disable irq around the manipulation of the
* submission's irq state, we also wish to remind ourselves that
* it is irq state.)
*/
spin_lock_irqsave(&engine->timeline.lock, flags);
/* Cancel the requests on the HW and clear the ELSP tracker. */
execlists_cancel_port_requests(execlists);
execlists_user_end(execlists);
/* Mark all executing requests as skipped. */
list_for_each_entry(rq, &engine->timeline.requests, link) {
if (!i915_request_signaled(rq))
dma_fence_set_error(&rq->fence, -EIO);
i915_request_mark_complete(rq);
}
/* Flush the queued requests to the timeline list (for retiring). */
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
dma_fence_set_error(&rq->fence, -EIO);
i915_request_mark_complete(rq);
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
/* Remaining _unready_ requests will be nop'ed when submitted */
execlists->queue_priority_hint = INT_MIN;
execlists->queue = RB_ROOT_CACHED;
GEM_BUG_ON(port_isset(execlists->port));
GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
execlists->tasklet.func = nop_submission_tasklet;
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}
static void process_csb(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct execlist_port *port = execlists->port;
const u32 * const buf = execlists->csb_status;
u8 head, tail;
lockdep_assert_held(&engine->timeline.lock);
/*
* Note that csb_write, csb_status may be either in HWSP or mmio.
* When reading from the csb_write mmio register, we have to be
* careful to only use the GEN8_CSB_WRITE_PTR portion, which is
* the low 4bits. As it happens we know the next 4bits are always
* zero and so we can simply masked off the low u8 of the register
* and treat it identically to reading from the HWSP (without having
* to use explicit shifting and masking, and probably bifurcating
* the code to handle the legacy mmio read).
*/
head = execlists->csb_head;
tail = READ_ONCE(*execlists->csb_write);
GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
if (unlikely(head == tail))
return;
/*
* Hopefully paired with a wmb() in HW!
*
* We must complete the read of the write pointer before any reads
* from the CSB, so that we do not see stale values. Without an rmb
* (lfence) the HW may speculatively perform the CSB[] reads *before*
* we perform the READ_ONCE(*csb_write).
*/
rmb();
do {
struct i915_request *rq;
unsigned int status;
unsigned int count;
if (++head == GEN8_CSB_ENTRIES)
head = 0;
/*
* We are flying near dragons again.
*
* We hold a reference to the request in execlist_port[]
* but no more than that. We are operating in softirq
* context and so cannot hold any mutex or sleep. That
* prevents us stopping the requests we are processing
* in port[] from being retired simultaneously (the
* breadcrumb will be complete before we see the
* context-switch). As we only hold the reference to the
* request, any pointer chasing underneath the request
* is subject to a potential use-after-free. Thus we
* store all of the bookkeeping within port[] as
* required, and avoid using unguarded pointers beneath
* request itself. The same applies to the atomic
* status notifier.
*/
GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
engine->name, head,
buf[2 * head + 0], buf[2 * head + 1],
execlists->active);
status = buf[2 * head];
if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
GEN8_CTX_STATUS_PREEMPTED))
execlists_set_active(execlists,
EXECLISTS_ACTIVE_HWACK);
if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
execlists_clear_active(execlists,
EXECLISTS_ACTIVE_HWACK);
if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
continue;
/* We should never get a COMPLETED | IDLE_ACTIVE! */
GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
if (status & GEN8_CTX_STATUS_COMPLETE &&
buf[2*head + 1] == execlists->preempt_complete_status) {
GEM_TRACE("%s preempt-idle\n", engine->name);
complete_preempt_context(execlists);
continue;
}
if (status & GEN8_CTX_STATUS_PREEMPTED &&
execlists_is_active(execlists,
EXECLISTS_ACTIVE_PREEMPT))
continue;
GEM_BUG_ON(!execlists_is_active(execlists,
EXECLISTS_ACTIVE_USER));
rq = port_unpack(port, &count);
GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
engine->name,
port->context_id, count,
rq ? rq->fence.context : 0,
rq ? rq->fence.seqno : 0,
rq ? hwsp_seqno(rq) : 0,
rq ? rq_prio(rq) : 0);
/* Check the context/desc id for this event matches */
GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
GEM_BUG_ON(count == 0);
if (--count == 0) {
/*
* On the final event corresponding to the
* submission of this context, we expect either
* an element-switch event or a completion
* event (and on completion, the active-idle
* marker). No more preemptions, lite-restore
* or otherwise.
*/
GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
GEM_BUG_ON(port_isset(&port[1]) &&
!(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
GEM_BUG_ON(!port_isset(&port[1]) &&
!(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
/*
* We rely on the hardware being strongly
* ordered, that the breadcrumb write is
* coherent (visible from the CPU) before the
* user interrupt and CSB is processed.
*/
GEM_BUG_ON(!i915_request_completed(rq));
execlists_context_schedule_out(rq,
INTEL_CONTEXT_SCHEDULE_OUT);
i915_request_put(rq);
GEM_TRACE("%s completed ctx=%d\n",
engine->name, port->context_id);
port = execlists_port_complete(execlists, port);
if (port_isset(port))
execlists_user_begin(execlists, port);
else
execlists_user_end(execlists);
} else {
port_set(port, port_pack(rq, count));
}
} while (head != tail);
execlists->csb_head = head;
/*
* Gen11 has proven to fail wrt global observation point between
* entry and tail update, failing on the ordering and thus
* we see an old entry in the context status buffer.
*
* Forcibly evict out entries for the next gpu csb update,
* to increase the odds that we get a fresh entries with non
* working hardware. The cost for doing so comes out mostly with
* the wash as hardware, working or not, will need to do the
* invalidation before.
*/
invalidate_csb_entries(&buf[0], &buf[GEN8_CSB_ENTRIES - 1]);
}
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
{
lockdep_assert_held(&engine->timeline.lock);
process_csb(engine);
if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
execlists_dequeue(engine);
}
/*
* Check the unread Context Status Buffers and manage the submission of new
* contexts to the ELSP accordingly.
*/
static void execlists_submission_tasklet(unsigned long data)
{
struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
unsigned long flags;
GEM_TRACE("%s awake?=%d, active=%x\n",
engine->name,
!!engine->i915->gt.awake,
engine->execlists.active);
spin_lock_irqsave(&engine->timeline.lock, flags);
__execlists_submission_tasklet(engine);
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
static void queue_request(struct intel_engine_cs *engine,
struct i915_sched_node *node,
int prio)
{
list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
}
static void __submit_queue_imm(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
if (reset_in_progress(execlists))
return; /* defer until we restart the engine following reset */
if (execlists->tasklet.func == execlists_submission_tasklet)
__execlists_submission_tasklet(engine);
else
tasklet_hi_schedule(&execlists->tasklet);
}
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
if (prio > engine->execlists.queue_priority_hint) {
engine->execlists.queue_priority_hint = prio;
__submit_queue_imm(engine);
}
}
static void execlists_submit_request(struct i915_request *request)
{
struct intel_engine_cs *engine = request->engine;
unsigned long flags;
/* Will be called from irq-context when using foreign fences. */
spin_lock_irqsave(&engine->timeline.lock, flags);
queue_request(engine, &request->sched, rq_prio(request));
GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
GEM_BUG_ON(list_empty(&request->sched.link));
submit_queue(engine, rq_prio(request));
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
static void __execlists_context_fini(struct intel_context *ce)
{
intel_ring_put(ce->ring);
GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
i915_gem_object_put(ce->state->obj);
}
static void execlists_context_destroy(struct kref *kref)
{
struct intel_context *ce = container_of(kref, typeof(*ce), ref);
GEM_BUG_ON(intel_context_is_pinned(ce));
if (ce->state)
__execlists_context_fini(ce);
intel_context_free(ce);
}
static int __context_pin(struct i915_vma *vma)
{
unsigned int flags;
int err;
flags = PIN_GLOBAL | PIN_HIGH;
flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
err = i915_vma_pin(vma, 0, 0, flags);
if (err)
return err;
vma->obj->pin_global++;
vma->obj->mm.dirty = true;
return 0;
}
static void __context_unpin(struct i915_vma *vma)
{
vma->obj->pin_global--;
__i915_vma_unpin(vma);
}
static void execlists_context_unpin(struct intel_context *ce)
{
struct intel_engine_cs *engine;
/*
* The tasklet may still be using a pointer to our state, via an
* old request. However, since we know we only unpin the context
* on retirement of the following request, we know that the last
* request referencing us will have had a completion CS interrupt.
* If we see that it is still active, it means that the tasklet hasn't
* had the chance to run yet; let it run before we teardown the
* reference it may use.
*/
engine = READ_ONCE(ce->active);
if (unlikely(engine)) {
unsigned long flags;
spin_lock_irqsave(&engine->timeline.lock, flags);
process_csb(engine);
spin_unlock_irqrestore(&engine->timeline.lock, flags);
GEM_BUG_ON(READ_ONCE(ce->active));
}
i915_gem_context_unpin_hw_id(ce->gem_context);
intel_ring_unpin(ce->ring);
i915_gem_object_unpin_map(ce->state->obj);
__context_unpin(ce->state);
}
static void
__execlists_update_reg_state(struct intel_context *ce,
struct intel_engine_cs *engine)
{
struct intel_ring *ring = ce->ring;
u32 *regs = ce->lrc_reg_state;
GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
regs[CTX_RING_HEAD + 1] = ring->head;
regs[CTX_RING_TAIL + 1] = ring->tail;
/* RPCS */
if (engine->class == RENDER_CLASS)
regs[CTX_R_PWR_CLK_STATE + 1] =
gen8_make_rpcs(engine->i915, &ce->sseu);
}
static int
__execlists_context_pin(struct intel_context *ce,
struct intel_engine_cs *engine)
{
void *vaddr;
int ret;
GEM_BUG_ON(!ce->gem_context->ppgtt);
ret = execlists_context_deferred_alloc(ce, engine);
if (ret)
goto err;
GEM_BUG_ON(!ce->state);
ret = __context_pin(ce->state);
if (ret)
goto err;
vaddr = i915_gem_object_pin_map(ce->state->obj,
i915_coherent_map_type(engine->i915) |
I915_MAP_OVERRIDE);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto unpin_vma;
}
ret = intel_ring_pin(ce->ring);
if (ret)
goto unpin_map;
ret = i915_gem_context_pin_hw_id(ce->gem_context);
if (ret)
goto unpin_ring;
ce->lrc_desc = lrc_descriptor(ce, engine);
ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
__execlists_update_reg_state(ce, engine);
return 0;
unpin_ring:
intel_ring_unpin(ce->ring);
unpin_map:
i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
__context_unpin(ce->state);
err:
return ret;
}
static int execlists_context_pin(struct intel_context *ce)
{
return __execlists_context_pin(ce, ce->engine);
}
static const struct intel_context_ops execlists_context_ops = {
.pin = execlists_context_pin,
.unpin = execlists_context_unpin,
.destroy = execlists_context_destroy,
};
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
u32 *cs;
GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* Check if we have been preempted before we even get started.
*
* After this point i915_request_started() reports true, even if
* we get preempted and so are no longer running.
*/
*cs++ = MI_ARB_CHECK;
*cs++ = MI_NOOP;
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = rq->timeline->hwsp_offset;
*cs++ = 0;
*cs++ = rq->fence.seqno - 1;
intel_ring_advance(rq, cs);
/* Record the updated position of the request's payload */
rq->infix = intel_ring_offset(rq, cs);
return 0;
}
static int emit_pdps(struct i915_request *rq)
{
const struct intel_engine_cs * const engine = rq->engine;
struct i915_hw_ppgtt * const ppgtt = rq->gem_context->ppgtt;
int err, i;
u32 *cs;
GEM_BUG_ON(intel_vgpu_active(rq->i915));
/*
* Beware ye of the dragons, this sequence is magic!
*
* Small changes to this sequence can cause anything from
* GPU hangs to forcewake errors and machine lockups!
*/
/* Flush any residual operations from the context load */
err = engine->emit_flush(rq, EMIT_FLUSH);
if (err)
return err;
/* Magic required to prevent forcewake errors! */
err = engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
return err;
cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* Ensure the LRI have landed before we invalidate & continue */
*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
for (i = GEN8_3LVL_PDPES; i--; ) {
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
u32 base = engine->mmio_base;
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
*cs++ = upper_32_bits(pd_daddr);
*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
*cs++ = lower_32_bits(pd_daddr);
}
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
/* Be doubly sure the LRI have landed before proceeding */
err = engine->emit_flush(rq, EMIT_FLUSH);
if (err)
return err;
/* Re-invalidate the TLB for luck */
return engine->emit_flush(rq, EMIT_INVALIDATE);
}
static int execlists_request_alloc(struct i915_request *request)
{
int ret;
GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
/*
* Flush enough space to reduce the likelihood of waiting after
* we start building the request - in which case we will just
* have to repeat work.
*/
request->reserved_space += EXECLISTS_REQUEST_SIZE;
/*
* Note that after this point, we have committed to using
* this request as it is being used to both track the
* state of engine initialisation and liveness of the
* golden renderstate above. Think twice before you try
* to cancel/unwind this request now.
*/
/* Unconditionally invalidate GPU caches and TLBs. */
if (i915_vm_is_4lvl(&request->gem_context->ppgtt->vm))
ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
else
ret = emit_pdps(request);
if (ret)
return ret;
request->reserved_space -= EXECLISTS_REQUEST_SIZE;
return 0;
}
/*
* In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
* PIPE_CONTROL instruction. This is required for the flush to happen correctly
* but there is a slight complication as this is applied in WA batch where the
* values are only initialized once so we cannot take register value at the
* beginning and reuse it further; hence we save its value to memory, upload a
* constant value with bit21 set and then we restore it back with the saved value.
* To simplify the WA, a constant value is formed by using the default value
* of this register. This shouldn't be a problem because we are only modifying
* it for a short period and this batch in non-premptible. We can ofcourse
* use additional instructions that read the actual value of the register
* at that time and set our bit of interest but it makes the WA complicated.
*
* This WA is also required for Gen9 so extracting as a function avoids
* code duplication.
*/
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
{
/* NB no one else is allowed to scribble over scratch + 256! */
*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = i915_scratch_offset(engine->i915) + 256;
*batch++ = 0;
*batch++ = MI_LOAD_REGISTER_IMM(1);
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = i915_scratch_offset(engine->i915) + 256;
*batch++ = 0;
return batch;
}
/*
* Typically we only have one indirect_ctx and per_ctx batch buffer which are
* initialized at the beginning and shared across all contexts but this field
* helps us to have multiple batches at different offsets and select them based
* on a criteria. At the moment this batch always start at the beginning of the page
* and at this point we don't have multiple wa_ctx batch buffers.
*
* The number of WA applied are not known at the beginning; we use this field
* to return the no of DWORDS written.
*
* It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
* so it adds NOOPs as padding to make it cacheline aligned.
* MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
* makes a complete batch buffer.
*/
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
/* WaDisableCtxRestoreArbitration:bdw,chv */
*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
if (IS_BROADWELL(engine->i915))
batch = gen8_emit_flush_coherentl3_wa(engine, batch);
/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
/* Actual scratch location is at 128 bytes offset */
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE,
i915_scratch_offset(engine->i915) +
2 * CACHELINE_BYTES);
*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
/*
* MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
* execution depends on the length specified in terms of cache lines
* in the register CTX_RCS_INDIRECT_CTX
*/
return batch;
}
struct lri {
i915_reg_t reg;
u32 value;
};
static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
{
GEM_BUG_ON(!count || count > 63);
*batch++ = MI_LOAD_REGISTER_IMM(count);
do {
*batch++ = i915_mmio_reg_offset(lri->reg);
*batch++ = lri->value;
} while (lri++, --count);
*batch++ = MI_NOOP;
return batch;
}
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
static const struct lri lri[] = {
/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
{
COMMON_SLICE_CHICKEN2,
__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
0),
},
/* BSpec: 11391 */
{
FF_SLICE_CHICKEN,
__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
},
/* BSpec: 11299 */
{
_3D_CHICKEN3,
__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
}
};
*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
batch = gen8_emit_flush_coherentl3_wa(engine, batch);
batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
/* WaMediaPoolStateCmdInWABB:bxt,glk */
if (HAS_POOLED_EU(engine->i915)) {
/*
* EU pool configuration is setup along with golden context
* during context initialization. This value depends on
* device type (2x6 or 3x6) and needs to be updated based
* on which subslice is disabled especially for 2x6
* devices, however it is safe to load default
* configuration of 3x6 device instead of masking off
* corresponding bits because HW ignores bits of a disabled
* subslice and drops down to appropriate config. Please
* see render_state_setup() in i915_gem_render_state.c for
* possible configurations, to avoid duplication they are
* not shown here again.
*/
*batch++ = GEN9_MEDIA_POOL_STATE;
*batch++ = GEN9_MEDIA_POOL_ENABLE;
*batch++ = 0x00777000;
*batch++ = 0;
*batch++ = 0;
*batch++ = 0;
}
*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
return batch;
}
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
int i;
/*
* WaPipeControlBefore3DStateSamplePattern: cnl
*
* Ensure the engine is idle prior to programming a
* 3DSTATE_SAMPLE_PATTERN during a context restore.
*/
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_CS_STALL,
0);
/*
* WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
* the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
* total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
* confusing. Since gen8_emit_pipe_control() already advances the
* batch by 6 dwords, we advance the other 10 here, completing a
* cacheline. It's not clear if the workaround requires this padding
* before other commands, or if it's just the regular padding we would
* already have for the workaround bb, so leave it here for now.
*/
for (i = 0; i < 10; i++)
*batch++ = MI_NOOP;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
return batch;
}
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int err;
obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
if (IS_ERR(obj))
return PTR_ERR(obj);
vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
if (err)
goto err;
engine->wa_ctx.vma = vma;
return 0;
err:
i915_gem_object_put(obj);
return err;
}
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
{
i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
}
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
{
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
&wa_ctx->per_ctx };
wa_bb_func_t wa_bb_fn[2];
struct page *page;
void *batch, *batch_ptr;
unsigned int i;
int ret;
if (GEM_DEBUG_WARN_ON(engine->id != RCS0))
return -EINVAL;
switch (INTEL_GEN(engine->i915)) {
case 11:
return 0;
case 10:
wa_bb_fn[0] = gen10_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
case 9:
wa_bb_fn[0] = gen9_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
case 8:
wa_bb_fn[0] = gen8_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
default:
MISSING_CASE(INTEL_GEN(engine->i915));
return 0;
}
ret = lrc_setup_wa_ctx(engine);
if (ret) {
DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
return ret;
}
page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
batch = batch_ptr = kmap_atomic(page);
/*
* Emit the two workaround batch buffers, recording the offset from the
* start of the workaround batch buffer object for each and their
* respective sizes.
*/
for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
wa_bb[i]->offset = batch_ptr - batch;
if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
CACHELINE_BYTES))) {
ret = -EINVAL;
break;
}
if (wa_bb_fn[i])
batch_ptr = wa_bb_fn[i](engine, batch_ptr);
wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
}
BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
kunmap_atomic(batch);
if (ret)
lrc_destroy_wa_ctx(engine);
return ret;
}
static void enable_execlists(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
/*
* Make sure we're not enabling the new 12-deep CSB
* FIFO as that requires a slightly updated handling
* in the ctx switch irq. Since we're currently only
* using only 2 elements of the enhanced execlists the
* deeper FIFO it's not needed and it's not worth adding
* more statements to the irq handler to support it.
*/
if (INTEL_GEN(dev_priv) >= 11)
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
else
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
I915_WRITE(RING_MI_MODE(engine->mmio_base),
_MASKED_BIT_DISABLE(STOP_RING));
I915_WRITE(RING_HWS_PGA(engine->mmio_base),
i915_ggtt_offset(engine->status_page.vma));
POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
bool unexpected = false;
if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
unexpected = true;
}
return unexpected;
}
static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
intel_engine_apply_workarounds(engine);
intel_engine_apply_whitelist(engine);
intel_mocs_init_engine(engine);
intel_engine_reset_breadcrumbs(engine);
if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
struct drm_printer p = drm_debug_printer(__func__);
intel_engine_dump(engine, &p, NULL);
}
enable_execlists(engine);
return 0;
}
static void execlists_reset_prepare(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
unsigned long flags;
GEM_TRACE("%s: depth<-%d\n", engine->name,
atomic_read(&execlists->tasklet.count));
/*
* Prevent request submission to the hardware until we have
* completed the reset in i915_gem_reset_finish(). If a request
* is completed by one engine, it may then queue a request
* to a second via its execlists->tasklet *just* as we are
* calling engine->init_hw() and also writing the ELSP.
* Turning off the execlists->tasklet until the reset is over
* prevents the race.
*/
__tasklet_disable_sync_once(&execlists->tasklet);
GEM_BUG_ON(!reset_in_progress(execlists));
intel_engine_stop_cs(engine);
/* And flush any current direct submission. */
spin_lock_irqsave(&engine->timeline.lock, flags);
process_csb(engine); /* drain preemption events */
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
static bool lrc_regs_ok(const struct i915_request *rq)
{
const struct intel_ring *ring = rq->ring;
const u32 *regs = rq->hw_context->lrc_reg_state;
/* Quick spot check for the common signs of context corruption */
if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
(RING_CTL_SIZE(ring->size) | RING_VALID))
return false;
if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
return false;
return true;
}
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq;
unsigned long flags;
u32 *regs;
spin_lock_irqsave(&engine->timeline.lock, flags);
/*
* Catch up with any missed context-switch interrupts.
*
* Ideally we would just read the remaining CSB entries now that we
* know the gpu is idle. However, the CSB registers are sometimes^W
* often trashed across a GPU reset! Instead we have to rely on
* guessing the missed context-switch events by looking at what
* requests were completed.
*/
execlists_cancel_port_requests(execlists);
/* Push back any incomplete requests for replay after the reset. */
rq = __unwind_incomplete_requests(engine);
/* Following the reset, we need to reload the CSB read/write pointers */
reset_csb_pointers(&engine->execlists);
if (!rq)
goto out_unlock;
/*
* If this request hasn't started yet, e.g. it is waiting on a
* semaphore, we need to avoid skipping the request or else we
* break the signaling chain. However, if the context is corrupt
* the request will not restart and we will be stuck with a wedged
* device. It is quite often the case that if we issue a reset
* while the GPU is loading the context image, that the context
* image becomes corrupt.
*
* Otherwise, if we have not started yet, the request should replay
* perfectly and we do not need to flag the result as being erroneous.
*/
if (!i915_request_started(rq) && lrc_regs_ok(rq))
goto out_unlock;
/*
* If the request was innocent, we leave the request in the ELSP
* and will try to replay it on restarting. The context image may
* have been corrupted by the reset, in which case we may have
* to service a new GPU hang, but more likely we can continue on
* without impact.
*
* If the request was guilty, we presume the context is corrupt
* and have to at least restore the RING register in the context
* image back to the expected values to skip over the guilty request.
*/
i915_reset_request(rq, stalled);
if (!stalled && lrc_regs_ok(rq))
goto out_unlock;
/*
* We want a simple context + ring to execute the breadcrumb update.
* We cannot rely on the context being intact across the GPU hang,
* so clear it and rebuild just what we need for the breadcrumb.
* All pending requests for this context will be zapped, and any
* future request will be after userspace has had the opportunity
* to recreate its own state.
*/
regs = rq->hw_context->lrc_reg_state;
if (engine->pinned_default_state) {
memcpy(regs, /* skip restoring the vanilla PPHWSP */
engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
engine->context_size - PAGE_SIZE);
}
/* Rerun the request; its payload has been neutered (if guilty). */
rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
intel_ring_update_space(rq->ring);
execlists_init_reg_state(regs, rq->hw_context, engine, rq->ring);
__execlists_update_reg_state(rq->hw_context, engine);
out_unlock:
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
/*
* After a GPU reset, we may have requests to replay. Do so now while
* we still have the forcewake to be sure that the GPU is not allowed
* to sleep before we restart and reload a context.
*/
GEM_BUG_ON(!reset_in_progress(execlists));
if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
execlists->tasklet.func(execlists->tasklet.data);
if (__tasklet_enable(&execlists->tasklet))
/* And kick in case we missed a new request submission. */
tasklet_hi_schedule(&execlists->tasklet);
GEM_TRACE("%s: depth->%d\n", engine->name,
atomic_read(&execlists->tasklet.count));
}
static int gen8_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* WaDisableCtxRestoreArbitration:bdw,chv
*
* We don't need to perform MI_ARB_ENABLE as often as we do (in
* particular all the gen that do not need the w/a at all!), if we
* took care to make sure that on every switch into this context
* (both ordinary and for preemption) that arbitrartion was enabled
* we would be fine. However, for gen8 there is another w/a that
* requires us to not preempt inside GPGPU execution, so we keep
* arbitration disabled for gen8 batches. Arbitration will be
* re-enabled before we close the request
* (engine->emit_fini_breadcrumb).
*/
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* FIXME(BDW+): Address space and security selectors. */
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
intel_ring_advance(rq, cs);
return 0;
}
static int gen9_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR,
~(engine->irq_enable_mask | engine->irq_keep_mask));
ENGINE_POSTING_READ(engine, RING_IMR);
}
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
}
static int gen8_emit_flush(struct i915_request *request, u32 mode)
{
u32 cmd, *cs;
cs = intel_ring_begin(request, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW + 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_INVALIDATE_TLB;
if (request->engine->class == VIDEO_DECODE_CLASS)
cmd |= MI_INVALIDATE_BSD;
}
*cs++ = cmd;
*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
intel_ring_advance(request, cs);
return 0;
}
static int gen8_emit_flush_render(struct i915_request *request,
u32 mode)
{
struct intel_engine_cs *engine = request->engine;
u32 scratch_addr =
i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
bool vf_flush_wa = false, dc_flush_wa = false;
u32 *cs, flags = 0;
int len;
flags |= PIPE_CONTROL_CS_STALL;
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/*
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
* pipe control.
*/
if (IS_GEN(request->i915, 9))
vf_flush_wa = true;
/* WaForGAMHang:kbl */
if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
dc_flush_wa = true;
}
len = 6;
if (vf_flush_wa)
len += 6;
if (dc_flush_wa)
len += 12;
cs = intel_ring_begin(request, len);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (vf_flush_wa)
cs = gen8_emit_pipe_control(cs, 0, 0);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
intel_ring_advance(request, cs);
return 0;
}
/*
* Reserve space for 2 NOOPs at the end of each request to be
* used as a workaround for not being allowed to do lite
* restore with HEAD==TAIL (WaIdleLiteRestore).
*/
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
{
/* Ensure there's always at least one preemption point per-request. */
*cs++ = MI_ARB_CHECK;
*cs++ = MI_NOOP;
request->wa_tail = intel_ring_offset(request, cs);
return cs;
}
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write(cs,
request->fence.seqno,
request->timeline->hwsp_offset,
0);
cs = gen8_emit_ggtt_write(cs,
intel_engine_next_hangcheck_seqno(request->engine),
I915_GEM_HWS_HANGCHECK_ADDR,
MI_FLUSH_DW_STORE_INDEX);
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
request->tail = intel_ring_offset(request, cs);
assert_ring_tail_valid(request->ring, request->tail);
return gen8_emit_wa_tail(request, cs);
}
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write_rcs(cs,
request->fence.seqno,
request->timeline->hwsp_offset,
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_CS_STALL);
cs = gen8_emit_ggtt_write_rcs(cs,
intel_engine_next_hangcheck_seqno(request->engine),
I915_GEM_HWS_HANGCHECK_ADDR,
PIPE_CONTROL_STORE_DATA_INDEX);
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
request->tail = intel_ring_offset(request, cs);
assert_ring_tail_valid(request->ring, request->tail);
return gen8_emit_wa_tail(request, cs);
}
static int gen8_init_rcs_context(struct i915_request *rq)
{
int ret;
ret = intel_engine_emit_ctx_wa(rq);
if (ret)
return ret;
ret = intel_rcs_context_init_mocs(rq);
/*
* Failing to program the MOCS is non-fatal.The system will not
* run at peak performance. So generate an error and carry on.
*/
if (ret)
DRM_ERROR("MOCS failed to program: expect performance issues.\n");
return i915_gem_render_state_emit(rq);
}
/**
* intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
* @engine: Engine Command Streamer.
*/
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv;
/*
* Tasklet cannot be active at this point due intel_mark_active/idle
* so this is just for documentation.
*/
if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
&engine->execlists.tasklet.state)))
tasklet_kill(&engine->execlists.tasklet);
dev_priv = engine->i915;
if (engine->buffer) {
WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
}
if (engine->cleanup)
engine->cleanup(engine);
intel_engine_cleanup_common(engine);
lrc_destroy_wa_ctx(engine);
engine->i915 = NULL;
dev_priv->engine[engine->id] = NULL;
kfree(engine);
}
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
{
engine->submit_request = execlists_submit_request;
engine->cancel_requests = execlists_cancel_requests;
engine->schedule = i915_schedule;
engine->execlists.tasklet.func = execlists_submission_tasklet;
engine->reset.prepare = execlists_reset_prepare;
engine->park = NULL;
engine->unpark = NULL;
engine->flags |= I915_ENGINE_SUPPORTS_STATS;
if (!intel_vgpu_active(engine->i915))
engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
if (engine->preempt_context &&
HAS_LOGICAL_RING_PREEMPTION(engine->i915))
engine->flags |= I915_ENGINE_HAS_PREEMPTION;
}
static void
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
{
/* Default vfuncs which can be overriden by each engine. */
engine->init_hw = gen8_init_common_ring;
engine->reset.prepare = execlists_reset_prepare;
engine->reset.reset = execlists_reset;
engine->reset.finish = execlists_reset_finish;
engine->cops = &execlists_context_ops;
engine->request_alloc = execlists_request_alloc;
engine->emit_flush = gen8_emit_flush;
engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
engine->set_default_submission = intel_execlists_set_default_submission;
if (INTEL_GEN(engine->i915) < 11) {
engine->irq_enable = gen8_logical_ring_enable_irq;
engine->irq_disable = gen8_logical_ring_disable_irq;
} else {
/*
* TODO: On Gen11 interrupt masks need to be clear
* to allow C6 entry. Keep interrupts enabled at
* and take the hit of generating extra interrupts
* until a more refined solution exists.
*/
}
if (IS_GEN(engine->i915, 8))
engine->emit_bb_start = gen8_emit_bb_start;
else
engine->emit_bb_start = gen9_emit_bb_start;
}
static inline void
logical_ring_default_irqs(struct intel_engine_cs *engine)
{
unsigned int shift = 0;
if (INTEL_GEN(engine->i915) < 11) {
const u8 irq_shifts[] = {
[RCS0] = GEN8_RCS_IRQ_SHIFT,
[BCS0] = GEN8_BCS_IRQ_SHIFT,
[VCS0] = GEN8_VCS0_IRQ_SHIFT,
[VCS1] = GEN8_VCS1_IRQ_SHIFT,
[VECS0] = GEN8_VECS_IRQ_SHIFT,
};
shift = irq_shifts[engine->id];
}
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
}
static int
logical_ring_setup(struct intel_engine_cs *engine)
{
int err;
err = intel_engine_setup_common(engine);
if (err)
return err;
/* Intentionally left blank. */
engine->buffer = NULL;
tasklet_init(&engine->execlists.tasklet,
execlists_submission_tasklet, (unsigned long)engine);
logical_ring_default_vfuncs(engine);
logical_ring_default_irqs(engine);
return 0;
}
static int logical_ring_init(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
struct intel_engine_execlists * const execlists = &engine->execlists;
u32 base = engine->mmio_base;
int ret;
ret = intel_engine_init_common(engine);
if (ret)
return ret;
intel_engine_init_workarounds(engine);
if (HAS_LOGICAL_RING_ELSQ(i915)) {
execlists->submit_reg = i915->uncore.regs +
i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
execlists->ctrl_reg = i915->uncore.regs +
i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
} else {
execlists->submit_reg = i915->uncore.regs +
i915_mmio_reg_offset(RING_ELSP(base));
}
execlists->preempt_complete_status = ~0u;
if (engine->preempt_context)
execlists->preempt_complete_status =
upper_32_bits(engine->preempt_context->lrc_desc);
execlists->csb_status =
&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
execlists->csb_write =
&engine->status_page.addr[intel_hws_csb_write_index(i915)];
reset_csb_pointers(execlists);
return 0;
}
int logical_render_ring_init(struct intel_engine_cs *engine)
{
int ret;
ret = logical_ring_setup(engine);
if (ret)
return ret;
/* Override some for render ring. */
engine->init_context = gen8_init_rcs_context;
engine->emit_flush = gen8_emit_flush_render;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
ret = logical_ring_init(engine);
if (ret)
return ret;
ret = intel_init_workaround_bb(engine);
if (ret) {
/*
* We continue even if we fail to initialize WA batch
* because we only expect rare glitches but nothing
* critical to prevent us from using GPU
*/
DRM_ERROR("WA batch buffer initialization failed: %d\n",
ret);
}
intel_engine_init_whitelist(engine);
return 0;
}
int logical_xcs_ring_init(struct intel_engine_cs *engine)
{
int err;
err = logical_ring_setup(engine);
if (err)
return err;
return logical_ring_init(engine);
}
u32 gen8_make_rpcs(struct drm_i915_private *i915, struct intel_sseu *req_sseu)
{
const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
bool subslice_pg = sseu->has_subslice_pg;
struct intel_sseu ctx_sseu;
u8 slices, subslices;
u32 rpcs = 0;
/*
* No explicit RPCS request is needed to ensure full
* slice/subslice/EU enablement prior to Gen9.
*/
if (INTEL_GEN(i915) < 9)
return 0;
/*
* If i915/perf is active, we want a stable powergating configuration
* on the system.
*
* We could choose full enablement, but on ICL we know there are use
* cases which disable slices for functional, apart for performance
* reasons. So in this case we select a known stable subset.
*/
if (!i915->perf.oa.exclusive_stream) {
ctx_sseu = *req_sseu;
} else {
ctx_sseu = intel_device_default_sseu(i915);
if (IS_GEN(i915, 11)) {
/*
* We only need subslice count so it doesn't matter
* which ones we select - just turn off low bits in the
* amount of half of all available subslices per slice.
*/
ctx_sseu.subslice_mask =
~(~0 << (hweight8(ctx_sseu.subslice_mask) / 2));
ctx_sseu.slice_mask = 0x1;
}
}
slices = hweight8(ctx_sseu.slice_mask);
subslices = hweight8(ctx_sseu.subslice_mask);
/*
* Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
* wide and Icelake has up to eight subslices, specfial programming is
* needed in order to correctly enable all subslices.
*
* According to documentation software must consider the configuration
* as 2x4x8 and hardware will translate this to 1x8x8.
*
* Furthemore, even though SScount is three bits, maximum documented
* value for it is four. From this some rules/restrictions follow:
*
* 1.
* If enabled subslice count is greater than four, two whole slices must
* be enabled instead.
*
* 2.
* When more than one slice is enabled, hardware ignores the subslice
* count altogether.
*
* From these restrictions it follows that it is not possible to enable
* a count of subslices between the SScount maximum of four restriction,
* and the maximum available number on a particular SKU. Either all
* subslices are enabled, or a count between one and four on the first
* slice.
*/
if (IS_GEN(i915, 11) &&
slices == 1 &&
subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
GEM_BUG_ON(subslices & 1);
subslice_pg = false;
slices *= 2;
}
/*
* Starting in Gen9, render power gating can leave
* slice/subslice/EU in a partially enabled state. We
* must make an explicit request through RPCS for full
* enablement.
*/
if (sseu->has_slice_pg) {
u32 mask, val = slices;
if (INTEL_GEN(i915) >= 11) {
mask = GEN11_RPCS_S_CNT_MASK;
val <<= GEN11_RPCS_S_CNT_SHIFT;
} else {
mask = GEN8_RPCS_S_CNT_MASK;
val <<= GEN8_RPCS_S_CNT_SHIFT;
}
GEM_BUG_ON(val & ~mask);
val &= mask;
rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
}
if (subslice_pg) {
u32 val = subslices;
val <<= GEN8_RPCS_SS_CNT_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
val &= GEN8_RPCS_SS_CNT_MASK;
rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
}
if (sseu->has_eu_pg) {
u32 val;
val = ctx_sseu.min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
val &= GEN8_RPCS_EU_MIN_MASK;
rpcs |= val;
val = ctx_sseu.max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
val &= GEN8_RPCS_EU_MAX_MASK;
rpcs |= val;
rpcs |= GEN8_RPCS_ENABLE;
}
return rpcs;
}
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
{
u32 indirect_ctx_offset;
switch (INTEL_GEN(engine->i915)) {
default:
MISSING_CASE(INTEL_GEN(engine->i915));
/* fall through */
case 11:
indirect_ctx_offset =
GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 10:
indirect_ctx_offset =
GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 9:
indirect_ctx_offset =
GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 8:
indirect_ctx_offset =
GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
}
return indirect_ctx_offset;
}
static void execlists_init_reg_state(u32 *regs,
struct intel_context *ce,
struct intel_engine_cs *engine,
struct intel_ring *ring)
{
struct i915_hw_ppgtt *ppgtt = ce->gem_context->ppgtt;
bool rcs = engine->class == RENDER_CLASS;
u32 base = engine->mmio_base;
/* A context is actually a big batch buffer with several
* MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
* values we are setting here are only for the first context restore:
* on a subsequent save, the GPU will recreate this batchbuffer with new
* values (including all the missing MI_LOAD_REGISTER_IMM commands that
* we are not initializing here).
*/
regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
MI_LRI_FORCE_POSTED;
CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
if (INTEL_GEN(engine->i915) < 11) {
regs[CTX_CONTEXT_CONTROL + 1] |=
_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
CTX_CTRL_RS_CTX_ENABLE);
}
CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
RING_CTL_SIZE(ring->size) | RING_VALID);
CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
if (rcs) {
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
RING_INDIRECT_CTX_OFFSET(base), 0);
if (wa_ctx->indirect_ctx.size) {
u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
regs[CTX_RCS_INDIRECT_CTX + 1] =
(ggtt_offset + wa_ctx->indirect_ctx.offset) |
(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
intel_lr_indirect_ctx_offset(engine) << 6;
}
CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
if (wa_ctx->per_ctx.size) {
u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
regs[CTX_BB_PER_CTX_PTR + 1] =
(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
}
}
regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
/* PDP values well be assigned later if needed */
CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
if (i915_vm_is_4lvl(&ppgtt->vm)) {
/* 64b PPGTT (48bit canonical)
* PDP0_DESCRIPTOR contains the base address to PML4 and
* other PDP Descriptors are ignored.
*/
ASSIGN_CTX_PML4(ppgtt, regs);
} else {
ASSIGN_CTX_PDP(ppgtt, regs, 3);
ASSIGN_CTX_PDP(ppgtt, regs, 2);
ASSIGN_CTX_PDP(ppgtt, regs, 1);
ASSIGN_CTX_PDP(ppgtt, regs, 0);
}
if (rcs) {
regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
i915_oa_init_reg_state(engine, ce, regs);
}
regs[CTX_END] = MI_BATCH_BUFFER_END;
if (INTEL_GEN(engine->i915) >= 10)
regs[CTX_END] |= BIT(0);
}
static int
populate_lr_context(struct intel_context *ce,
struct drm_i915_gem_object *ctx_obj,
struct intel_engine_cs *engine,
struct intel_ring *ring)
{
void *vaddr;
u32 *regs;
int ret;
vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
return ret;
}
if (engine->default_state) {
/*
* We only want to copy over the template context state;
* skipping over the headers reserved for GuC communication,
* leaving those as zero.
*/
const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
void *defaults;
defaults = i915_gem_object_pin_map(engine->default_state,
I915_MAP_WB);
if (IS_ERR(defaults)) {
ret = PTR_ERR(defaults);
goto err_unpin_ctx;
}
memcpy(vaddr + start, defaults + start, engine->context_size);
i915_gem_object_unpin_map(engine->default_state);
}
/* The second page of the context object contains some fields which must
* be set up prior to the first execution. */
regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
execlists_init_reg_state(regs, ce, engine, ring);
if (!engine->default_state)
regs[CTX_CONTEXT_CONTROL + 1] |=
_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
if (ce->gem_context == engine->i915->preempt_context &&
INTEL_GEN(engine->i915) < 11)
regs[CTX_CONTEXT_CONTROL + 1] |=
_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
ret = 0;
err_unpin_ctx:
__i915_gem_object_flush_map(ctx_obj,
LRC_HEADER_PAGES * PAGE_SIZE,
engine->context_size);
i915_gem_object_unpin_map(ctx_obj);
return ret;
}
static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
{
if (ctx->timeline)
return i915_timeline_get(ctx->timeline);
else
return i915_timeline_create(ctx->i915, NULL);
}
static int execlists_context_deferred_alloc(struct intel_context *ce,
struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *ctx_obj;
struct i915_vma *vma;
u32 context_size;
struct intel_ring *ring;
struct i915_timeline *timeline;
int ret;
if (ce->state)
return 0;
context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
/*
* Before the actual start of the context image, we insert a few pages
* for our own use and for sharing with the GuC.
*/
context_size += LRC_HEADER_PAGES * PAGE_SIZE;
ctx_obj = i915_gem_object_create(engine->i915, context_size);
if (IS_ERR(ctx_obj))
return PTR_ERR(ctx_obj);
vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto error_deref_obj;
}
timeline = get_timeline(ce->gem_context);
if (IS_ERR(timeline)) {
ret = PTR_ERR(timeline);
goto error_deref_obj;
}
ring = intel_engine_create_ring(engine,
timeline,
ce->gem_context->ring_size);
i915_timeline_put(timeline);
if (IS_ERR(ring)) {
ret = PTR_ERR(ring);
goto error_deref_obj;
}
ret = populate_lr_context(ce, ctx_obj, engine, ring);
if (ret) {
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
goto error_ring_free;
}
ce->ring = ring;
ce->state = vma;
return 0;
error_ring_free:
intel_ring_put(ring);
error_deref_obj:
i915_gem_object_put(ctx_obj);
return ret;
}
void intel_lr_context_resume(struct drm_i915_private *i915)
{
struct i915_gem_context *ctx;
struct intel_context *ce;
/*
* Because we emit WA_TAIL_DWORDS there may be a disparity
* between our bookkeeping in ce->ring->head and ce->ring->tail and
* that stored in context. As we only write new commands from
* ce->ring->tail onwards, everything before that is junk. If the GPU
* starts reading from its RING_HEAD from the context, it may try to
* execute that junk and die.
*
* So to avoid that we reset the context images upon resume. For
* simplicity, we just zero everything out.
*/
list_for_each_entry(ctx, &i915->contexts.list, link) {
list_for_each_entry(ce, &ctx->active_engines, active_link) {
GEM_BUG_ON(!ce->ring);
intel_ring_reset(ce->ring, 0);
__execlists_update_reg_state(ce, ce->engine);
}
}
}
void intel_execlists_show_requests(struct intel_engine_cs *engine,
struct drm_printer *m,
void (*show_request)(struct drm_printer *m,
struct i915_request *rq,
const char *prefix),
unsigned int max)
{
const struct intel_engine_execlists *execlists = &engine->execlists;
struct i915_request *rq, *last;
unsigned long flags;
unsigned int count;
struct rb_node *rb;
spin_lock_irqsave(&engine->timeline.lock, flags);
last = NULL;
count = 0;
list_for_each_entry(rq, &engine->timeline.requests, link) {
if (count++ < max - 1)
show_request(m, rq, "\t\tE ");
else
last = rq;
}
if (last) {
if (count > max) {
drm_printf(m,
"\t\t...skipping %d executing requests...\n",
count - max);
}
show_request(m, last, "\t\tE ");
}
last = NULL;
count = 0;
if (execlists->queue_priority_hint != INT_MIN)
drm_printf(m, "\t\tQueue priority hint: %d\n",
execlists->queue_priority_hint);
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
int i;
priolist_for_each_request(rq, p, i) {
if (count++ < max - 1)
show_request(m, rq, "\t\tQ ");
else
last = rq;
}
}
if (last) {
if (count > max) {
drm_printf(m,
"\t\t...skipping %d queued requests...\n",
count - max);
}
show_request(m, last, "\t\tQ ");
}
spin_unlock_irqrestore(&engine->timeline.lock, flags);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif